©@®O
This is a chapter from the book
System Design, Modeling, and Simulation using Ptolemy II

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported
License. To view a copy of this license, visit:

http://creativecommons.org/licenses/by-sa/3.0/,

or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View,
California, 94041, USA. Permissions beyond the scope of this license may be available
at:

http://ptolemy.org/books/Systems.

First Edition, Version 1.0

Please cite this book as:

Claudius Ptolemaeus, Editor,
System Design, Modeling, and Simulation using Ptolemy II, Ptolemy.org, 2014.
http://ptolemy.org/books/Systems.

http://creativecommons.org/licenses/by-sa/3.0/
http://ptolemy.org/books/Systems
http://ptolemy.org/books/Systems

Finite State Machines

Thomas Huining Feng, Edward A. Lee, Xiaojun Liu, Christian Motika,
Reinhard von Hanxleden, and Haiyang Zheng

Contents
6.1 CreatingFSMsinPtolemy 187
6.2 Structure and ExecutionofanFSM 192
6.2.1 Defining Transition Guards 194
6.2.2 Output Actions i 198
6.2.3 Set Actions and Extended Finite State Machines 199
Sidebar: Models of State Machines 199
6.2.4 Final States 201
6.2.5 Default Transitions 204
6.2.6 Nondeterministic State Machines 205
6.2.7 Immediate Transitions 208
Probing Further: Weakly Transient States 210
6.3 Hierarchical FSMs 212
6.3.1 State Refinements 213
6.3.2 Benefits of Hierarchical FSMs 215
6.3.3 Preemptive and History Transitions 217
6.3.4 Termination Transitions 218
6.3.5 Execution Pattern for Modal Models 220
Probing Further: Internal Structure ofan FSM 221
Probing Further: Hierarchical State Machines 222
6.4 Concurrent Composition of State Machines 223
6.5 SUMMATY « ¢ v v v v v v e e e e o e ot oo o oo oo oo s oo s aas 226
Exercises it i it e e e e e e e e e 228

186

6. FINITE STATE MACHINES

Finite state machines are used to model system behavior in many types of engineering
and scientific applications. The state of a system is defined as its condition at a particular
point in time; a state machine is a system whose outputs depend not only on the current
inputs, but also on the current state of the system. The state of a system is a summary of
everything the system needs to know about previous inputs in order to produce outputs.
It is represented by a state variable s € 3, where X is the set of all possible states for
the system. A finite state machine (FSM) is a state machine where ¥ is a finite set. In
a finite state machine, a system’s behavior is modeled as a set of states and the rules that
govern transitions between them.

A number of Ptolemy II actors include state and behave as simple state machines. For
example, the Ramp actor (which produces a counting sequence) has state, which is the
current position in the sequence. This actor uses a local variable, called a state variable,
to keep track of its current value. The Ramp actor’s reaction to a trigger input depends
on how many times it has previously fired, which is captured by the state variable. The
number of possible states for a Ramp actor depends on the data type of the counting
sequence. If it is int, then there are 232 possible states. If it is double, then there are
264 _Tf the data type is St ring, then the number of possible states is infinite (and thus the
Ramp cannot be described as a finite state machine).

Although the number of Ramp actor states is potentially very large, the logic for changing
from one state to the next is simple, which makes it easy to characterize the behavior of
the actor. In contrast, it is common to have actors that have a small number of possible
states, but use relatively complex logic for moving from one state to the next. This chapter
focuses on such actors.

This chapter discusses approaches for designing, visualizing, and analyzing finite state
machines in Ptolemy II. In Chapter 8, we extend these approaches to construct modal
models, in which the states themselves are Ptolemy II models.

6.1 Creating FSMs in Ptolemy

A Ptolemy II finite state machine is created in a similar manner to the previously described
actor-oriented models, but it is built using states and transitions rather than actors and con-
nections/relations. A transition represents the act of moving from one state to another;
it can be triggered by a guard, which specifies the conditions under which the transition

Ptolemaeus, System Design 187

http://Ptolemy.org

6.1. CREATING FSMS IN PTOLEMY

is taken. It is also possible to specify output actions (actions that produce outputs when
the transition is taken) and set actions (actions that set parameters when the transition is
taken).

The main actor used to implement FSM models in Ptolemy II is ModalModel, found
in the Utilities library.* A ModalModel contains an FSM, which is a collection of
states and transitions depicted using visual notation shown in Figure 6.1. In this figure,
the ModalModel has two input and two output ports, though in general it could have any
number of input and output ports. It has three states. One of these states is an initial state
(labeled initialState in the figure), which is the state of the actor when the model begins
execution. The initial state is indicated visually by a bold outline. Some of the states may
also be final states, indicated visually with a double outline (more about final states later).
The process for creating an FSM model in Vergil is shown in Figure 6.2.

To begin creating an FSM, drag the ModalModel into your model from the library. Pop-
ulate the actor with input and output ports by right clicking (or control-clicking on a
Mac) and selecting [Customize—Ports], clicking Add, and specifying port names and
whether they are inputs or outputs. Then right click on the ModalModel and select Open
Actor. The resulting window is shown in Figure 6.3. It is similar to other Vergil win-

*You can also use FSMActor, found in MoreLibraries—Automata, which is simpler in that it
does not support mode refinements, used in Section 6.3 and Chapter 8.

ModalModel

o tPortl

input >
o
inputPort2 ’ @ >ou(purPonZ

te.

transition2 outputPort2

-

transitionl:

guard: expression

output: port assignments
inputPort1 set: variable assignments

»

inputPort2

»

elfTransition

outputPortl

initialState
FinalState

transition3

Figure 6.1: Visual notation for state machines in Ptolemy Il.

188 Ptolemaeus, System Design

http://Ptolemy.org

6. FINITE STATE MACHINES

] Utilities r
== DocViewerAttribute
L]

LocalPreferences

ModalModel

" RepaintController
CompositeClassDefinitic

>

CompositeActor

—_—
» [] Decorative ~ 1.Drag
» || Parameters

= DocViewerAttribute
== LocalPreferences
= RepaintController
|| Decorative

|| Parameters

|| Analysis

om

. o =

[XeXe) Configure ports for ModalModel
Name Input Output Multiport Type Direction Show Name
inl ™ DEFAULT ™
in2 ™ DEFAULT ™
out ™ DEFAULT ™
(Commit) (Apply) (Add) (Remove out) (He
J 3. Commit
2. Customize/Ports
ModalModel
inl
’ >0Ut
inZ’
4. Open Actor
inl
» out
in2 G L

.

6. Create m

Control- or Command-Drag

Figure 6.2: Creating FSMs in Vergil, using the ModalModel actor (a similar pro-
cedure applies to using the FSMActor).

800

Unnamed#ModalModel._Controller

File View Edit Craph Debug Help

|Ho|e|@[R]a|A L] 00]@]= 8|55)

= DocViewerAttribute

= LocalPreferences

|ibra|’y = RepaintController
/ (1] Decorative

pane [Parameters

(2] Analysis
D state

-
-
panning—/)

pane

=%

Create a state machine here (and ports, if needed) and
create refinements for the states. Create transitions

by holding the control key and dragging from one state
to another. Right click to configure the properties

of this model, including setting the final state(s).

Then delete this annotation.

input output
ports ports
outl out2

— suggestive

comment
(delete this)

I~~~ editing
pane

Figure 6.3: Editor for FSMs in Vergil, showing two input and two output ports,
before being populated with an FSM.

Ptolemaeus, System Design

189

http://Ptolemy.org

6.1. CREATING FSMS IN PTOLEMY

annotation:
-

guardExpression:

outputActions:

setActions:

default:
nondeterministic:
immediate:
preemptive:
history:

error:

termination:

Cancel Help Preferences Defaults Remove Add Commit

Figure 6.4: Dialog box for configuring a transition in an FSM.

dows, but has a customized library consisting primarily of a State, a library of parameters,
and a library of decorative elements for annotating your design.

Drag in one or more states. To create transitions between states, hold the control key (or
the Command key on a Mac) and click and drag from one state to the other. The “grab
handles” on the transitions can be used to control the curvature and positioning of the
transitions.

Double click (or right click and select Configure) on the transition to set the guard,
output actions, and set actions by entering text into the dialog box shown in Figure 6.4.
For readability, you can also specify an annotation associated with the transition.

The ModalModel implementing the finite state machine can be placed within a larger
model, to be executed using another director. The choice of director will depend on the
application. All directors are compatible with it.

190 Ptolemaeus, System Design

http://Ptolemy.org

6. FINITE STATE MACHINES

We illustrate the use of this process with a simple FSM application example, described
below.

Example 6.1: Consider a thermostat that controls a heater. The thermostat is
modeled as a state machine with states ¥ = {heating, cooling}. If the state s =
heating, then the heater is on. If s = cooling, then the heater is off. Suppose the
target temperature is 20 degrees Celsius. It would be undesirable for the heater
to cycle on and off whenever the temperature is slightly above or below the target
temperature; thus, the state machine should include hysteresis around the setpoint.
If the heater is on, then the thermostat allows the temperature to rise slightly above
the target, to an upper limit specified as 22 degrees. If the heater is off, then it allows
the temperature to drop below the target to 18 degrees. Note that the behavior of
the system at temperatures between 18 and 22 degrees depends not only on the
input temperature but also on the state. This strategy avoids chattering, where the
heater would turn on and off rapidly when the temperature is close to the target
temperature.

This FSM is constructed as shown in 6.5. The FSM has a temperature input and a
heat output; its output specifies the rate at which the air is being heated (or cooled).
This system has two states, ¥ = {heating, cooling}. There are four transitions,
each of which has a guard that specifies the conditions under which the transition

heat
temperature guard: temperature < heatOffThreshold

’ output: heat = heatingRate

guard:

temperature >= heatOffThreshold
output: heat = coolingRate

guard:
temperature <= heatOnThreshold
output: heat = heatingRate

cooling

@ heatOnThreshold: 18.0

@ heatOffThreshold: 22.0

guard: temperature > heatOnThreshold @ heatingRate: 0.1
output: heat = coolingRate)
@ coolingRate: -0.05

Figure 6.5: FSM model of a thermostat.

Ptolemaeus, System Design 191

http://Ptolemy.org

6.2. STRUCTURE AND EXECUTION OF AN FSM

is taken. The transitions show the values produced on the output ports when the
transition is taken. When the system is in the heating state, if the femperature input
is less than heatOffThreshold (22.0), then the output value is heatingRate (0.1).
When the temperature input becomes greater than or equal to heatOffThreshold,
then the FSM changes to the cooling state and produces output value given by
coolingRate (-0.05). Notice that the guards are mutually exclusive, in that in each
state, it is not possible for guards on two of the outgoing transitions to evaluate to
true. This makes the machine deterministic.

The FSM of Figure 6.5 is embedded in an SDF model as shown in Figure 6.6. The
Temperature Model actor, whose definition is shown in Figure 6.7, models changes
in the ambient temperature value based on the the output of the FSMActor. The
system’s output is plotted in Figure 6.8.

6.2 Structure and Execution of an FSM

As shown in the previous example, an FSM contains a set of states and transitions. One of
the states is an initial state, and any number of states may be final states. Each transition
has a guard expression, any number of output actions, and any number of set actions. At
the start of execution, the state of the actor is set to the initial state. Subsequently, each
firing of the actor executes a sequence of steps as follows. In the fire phase of execution,
the actor

reads inputs;

evaluates guards on outgoing transitions of the current state;
chooses a transition whose guard evaluates to true; and
executes the output actions on the chosen transition, if any.

Sl o

In the postfire phase, the actor

5. executes the set actions of the chosen transition, which sets parameter values; and
6. changes the current state to the destination of the chosen transition.

Each of these steps is explained in more detail below. Table 6.1 summarizes the Ptolemy II
notations for FSM transitions (without hierarchy), which follow those in Kieler (Fuhrmann
and Hanxleden, 2010) and Klepto (Motika et al., 2010), that are explained in this chapter.

192 Ptolemaeus, System Design

http://Ptolemy.org

6. FINITE STATE MACHINES

l notation \ description ‘
guard: g . o S .
output: x = y An ordinary transition. Upon firing, if the guard g is t rue
set:a=b (or if no guard is specified), then the FSM will choose the
transition and produce the value y on output z. Upon transi-
@ @ tioning, the actor will set the variable a to have value b.
guard: g
output: x =y A default transition. Upon firing, if no other non-default
set:a=hb transition is enabled and the guard g is t rue, then the FSM
N actor will choose this transition, produce outputs, and set
@ @ variables in the same manner as above.
guard: g o e e e . .-
output: x = y A nondeterministic transition This transition allows an-
setta=b other nondeterministic transition to be enabled in the same

iteration. One of the enabled transitions will be chosen non-

@ @ deterministically.

An immediate transition. If state s/ is the current state,
then this is like an ordinary transition. However, if state s/ is

gﬂfrﬂi-gx B the destination state of some transition that will be taken and
set:pa _ b_ y the guard g is true, then the FSM will also immediately

transition to s2. In this case, there will be two transitions in
@ @ a single iteration. The output x will be set to value y upon

firing, and the variable a will be set to b upon transitioning. If
more than one transition in a chain of immediate transitions
sets an output or variable, then the last transition will prevail.

guard: g

output: X =y

seta=b A nondeterministic default transition. A nondeterministic
A transition with the (lower) priority of a default transition.
guard: g
S::P : t:=X =Y An immediate default transition. An immediate transition

g Y with the (lower) priority of a default transition, compared

@ @ with other immediate transitions.

Table 6.1: Summary of FSM transitions and their notations, which may be com-
bined to indicate combinations of transition types. For example, a nondeterminis-
tic immediate default transition will be colored red, have the initial diamond, and
be rendered with dotted lines.

Ptolemaeus, System Design 193

http://Ptolemy.org

6.2. STRUCTURE AND EXECUTION OF AN FSM

6.2.1 Defining Transition Guards

Defining appropriate guards on state transitions is a critical part of creating a finite state
machine. As we discuss below, however, the behavior of some guard expressions may
cause unexpected results, depending on the director chosen to run the model. In particular,
different directors handle absent input values in different ways, which can cause guard
expressions to be evaluated in a manner that may seem counterintuitive.

SDF Director

e initialTemp: 15.0
@ noiseStandardDeviation: 0.2

Temperature Model SequencePlotter
— [=]=]x]

N\

SequencePlotter2
[2]=]x]

Av4

= heat
temperature guard: temperature < heatOffThreshold
’ output: heat = heatingRate -

guard:
temperature >= heatOffThreshold
output: heat = coolingRate

guard:
temperature <= heatOnThreshold
output: heat = heatingRate

cooling

@ heatOnThreshold: 18.0

o heatOffThreshold: 22.0

guard: temperature > heatOnThreshold @ heatingRate: 0.1
output: heat = coolingRate

e coolingRate: -0.05

Figure 6.6: The FSM model of a thermostat of Figure 6.5 embedded in an SDF
model. The Temperature Model actor is shown in Figure 6.7. [online]

194 Ptolemaeus, System Design

http://ptolemy.org/systems/models/fsm/Hysteresis/index.html
http://Ptolemy.org

6. FINITE STATE MACHINES

heat Accumulator

SampleDelay temperature

> pt Cten — e

initialOutputs: {initialTemp}

Gaussian

triggerE> /\

standardDeviation: noiseStandardDeviation

init: initialTemp

Figure 6.7: The Temperature Model composite actor of Figure 6.6.

Temperature

N
N
T

temperature
_ - N
@ o
T T

00 02 04 06 08 10 12 14 16 18 20
time x102

Heating/Cooling Rate

0.05 4

rate

0.00 4

-0.05

0.0 0.2 04 06 08 1.0 1.2 1.4 1.6 18 2.0
time x10

Figure 6.8: Two plots generated by Figure 6.6, showing the temperature (above)
and the heating rate (below), which reflects whether the heater is on or off. Both
are shown as a function of time.

Ptolemaeus, System Design 195

http://Ptolemy.org

6.2. STRUCTURE AND EXECUTION OF AN FSM

Each transition has a guard, which is a predicate (a boolean-valued expression) that can
depend on inputs to the state machine, parameters and variables, and outputs of mode
refinements (which are explained in Chapter 8).

Example 6.2: In Figure 6.5, in the guard expression

temperature < heatOffThreshold,

the variable temperature refers to the current value in the port named tempera-
ture, and heatOffThreshold refers to the parameter named heatOffThreshold.

| | guard description

1 A blank guard always evaluates to true.

2 p-isPresent True if there is a token at port p.

3 S True if there is a token at port p and it has value
true.

4 'p True if there is a token at port p and it has value
false.

5 p >0 True if there is a token at port p and it has value
greater than zero.

6 P > a True if there is a token at port p and it has value
greater than the value of the parameter a.

7 a>0o0 True if parameter a has value greater than 0.

8 P && g True if ports p and g both have tokens with value
true.

9 p Il g True if port p is present and true or if p is present
and false and ¢ is present and true.

10 | p-O > p_1 True if port p has a token on both channel 0 and
channel 1 and the token on channel O is larger than
the one on channel 1.

11 | p-1_isPresent && (p-0O || p-1l) | True if port p has a token on both channel 0 and
channel 1 and one of the two tokens is t rue.

12 | timeout (t) True when time t has elapsed since entering the
source state.

Table 6.2: Examples of guard expressions, where p and q are ports, and ais a

parameter.

196

Ptolemaeus, System Design

http://Ptolemy.org

6. FINITE STATE MACHINES

A few examples of valid guards are given in Table 6.2 for an FSM with input ports p and
q and parameter a.

As shown in line 2 of the table, for any port p, the symbol p_isPresent may be used
in guard expressions. This is a boolean that is true if an input token is present on port
p. Conversely, the expression !p_isPresent evaluates to true when p is absent. Note
that in domains where p is never absent, such as PN, this expression will never evaluate
to true.

If port p has no input tokens (it is absent on all channels), then all the guards in the table
except number 1 are false. In particular, if p has type boolean, and it has no input tokens,
then it is possible for both p and !p to be false. Similarly, it is possible forp > 0, ! (p
> 0),and p <= 0 to simultaneously evaluate to false. Of course, this can only happen if
the FSM is used with a director that can fire it with absent inputs, such as SR and DE.

Note that because of the way absent inputs are treated, guard 9 in the table has a partic-
ularly subtle effect. It cannot evaluate to true unless p has an input token, but it does not
require that ¢ have a token. If the intent is that both ports have a token for the transition
to become enabled, then the guard should be written

g_isPresent && (p |1 9)

It would be clearer, though not strictly necessary, to write

(p_isPresent && g_isPresent) && (p || qg)

In short, any mention of an input port p in a guard expression can cause the entire guard
expression to evaluate to false if the port p is absent. But it may not evaluate to false if
the subexpression involving p is not evaluated. In particular, the logical OR notated as | |
will not evaluate its right argument if the left argument is true. This is why ¢ in guard 9
in the table is not required to be present for the guard to evaluate to true.

A consequence of this evaluation strategy is that erroneous guard expressions may not be
detected. For example, if the guard expression is specified as p. foo (), but foo () is not
a defined method on the data type of p, then this error will not be detected if p is known
to be absent. The fact that p appears in the guard expression causes it to evaluate to false.
Moreover, the expression “true || p < 107 always evaluates to true, whether p has a
token or not.

Ptolemaeus, System Design 197

http://Ptolemy.org

6.2. STRUCTURE AND EXECUTION OF AN FSM

For multiports with multiple channels, the guard expression can specify a channel us-
ing the symbol p_i, where ¢ is an integer between 0 and n» — 1 and n is the number of
channels connected to the port. For example, line 10 in Table 6.2 compares input to-
kens on two channels of the same input port. Similarly, a guard expression may refer to
p-i_isPresent, as shown in line 11.

Line 12 shows a guard expression that can be used to trigger a transition after some time
has elapsed. The expression timeout (t), where t is a double, becomes true when the
FSM has spent t time units in the source state. In domains with partial support for time,
such as SDF and SR, the transition will be taken at the next firing time of the FSM greater
than or equal to t (and hence, of course, will only be taken if the period parameter of
the director is not zero); see Section 3.1.3. In domains with full support for time, such as
such as DE and Continuous, covered in later chapters, the transition will be taken exactly
t time units after entering the source state, unless some other transition becomes enabled
sooner.

In all cases, the type of an input port or parameter must match the usage in an expression.
For example, the expressionp || g will trigger an exception if port p has type int.

6.2.2 Output Actions

Once a transition is chosen, its output actions are executed. The output action are spec-
ified by the outputActions parameter of the transition (see Figure 6.4). The format of an
output action is typically portName = expression, where the expression may refer to input
values (as in guard expressions) or to a parameter. For example, in Figure 6.5, the line

output: heat = coolingRate

specifies that the output port named heat should produce the value given by the parameter
coolingRate.

As explained in the sidebar on page 199, the two classes of state machines are Mealy ma-
chines and Moore machines. The above-described behavior constitutes a Mealy machine;
a Moore machine can be implemented using state refinements that produce outputs, as
explained in Chapter 8.

Multiple output actions may be given by separating them with semicolons, asin portl
= expressionl; port2 = expression2.

198 Ptolemaeus, System Design

http://Ptolemy.org

6. FINITE STATE MACHINES

6.2.3 Set Actions and Extended Finite State Machines

The set actions for a transition can be used to set the values of parameters of the state
machine. One practical use for this feature is to create an extended state machine, which
is a finite state machine extended with a numerical state variable. It is called “extended”
because the number of states depends on the number of distinct values that the variable
can take. It can even be infinite.

Sidebar: Models of State Machines

State machines are often described in the literature as a five-tuple (X,71,0,T,0). X
is the set of states, and o is the initial state. Nondeterminate state machines may have
more than one initial state, in which case ¢ C X is itself a set, although this particular
capability is not supported in Ptolemy II FSMs. I is a set of possible valuations of the
inputs. In Ptolemy II FSMs, I is a set of functions of the form i: P, — D U {absent},
where P, is the set of input ports (or input port names), D is the set of values that may
be present on the input ports at a particular firing, and absent represents “absent” inputs
(i.e., i(p) = absent when p_isPresent evaluates to false). O is similarly the set of all
possible valuations for the output ports at a particular firing.

For a deterministic state machine, 7" is a function of the form 7: ¥ x I — X x O,
representing the transition relations in the FSM. The guards and output actions are, in
fact, just encodings of this function. For a nondeterministic state machine (which is
supported by Ptolemy II), the codomain of 7" is the powerset of 3 x O, allowing there
to be more than one destination state and output valuation.

The classical theory of state machines (Hopcroft and Ullman, 1979) makes a distinc-
tion between a Mealy machine and a Moore machine. A Mealy machine associates
outputs with transitions. A Moore machine associates outputs with states. Ptolemy II
supports both, using output actions for Mealy machines and state refinements in modal
models for Moore machines.

Ptolemy II state machines are actually extended state machines, which require a richer
model than that given above. Extended state machines add a set V' of variable valuations,
which are functions of the form v: N — D, where N is a set of variable names and
D is the set of values that variables can take on. An extended state machine is a six-
tuple (3, 1,0, T, 0, V) where the transition function now has the form7: ¥ x I xV —
> x 0O x V (for deterministic state machines). This function is encoded by the transitions,
guards, output actions, and set of actions of the FSM.

Ptolemaeus, System Design 199

http://Ptolemy.org

6.2. STRUCTURE AND EXECUTION OF AN FSM

Example 6.3: A simple example of an extended state machine is shown in Figure
6.9. In this example, the FSM has a parameter called count. The transition from
the initial state init to the counting state initializes count to 0 in its set action. The
counting state has two outgoing transitions, one that is a self transition, and the
other that goes to the state called final. The self transition is taken as long as count
is less than 5. That transition increments the value of count by one in its set actions.
In the firing after the value of count reaches 5, the transition to final is taken. At
that firing, the output is set equal to 5. In subsequent firings, the output will always
be 5, as specified by the self loop on the final state. This model, therefore, outputs

the sequence 0, 1, 2, 3,4,5,5,5, - -.

SDF Director

FSMActor

o]

Display

=

guard: count < 5
output: out = in

count: 5
O set: count = count + 1

guard: true
output: out = in
set: count = 0

guard: true
output: out = 5

guard: count >= 5
output: out = 5

out

Figure 6.9: An extended state machine, where the count variable is part of the

state of the system. [online]

200

Ptolemaeus, System Design

http://ptolemy.org/systems/models/fsm/ExtendedFSM/index.html
http://Ptolemy.org

6. FINITE STATE MACHINES

6.2.4 Final States

An FSM may have final states, which are states that, when entered, indicate the end of
execution of the state machine.

Example 6.4: A variant of Example 6.3 is shown in Figure 6.10. This variant
has the isFinalState parameter of the final state set to true, as indicated by the
double outline around the state. Upon entering that state, the FSM indicates to the
enclosing director that it does not wish to execute any more (it does this by returning
false from its postfire method). As a result, the output sent to the Display actor is
the finite sequence 0, 1, 2, 3, 4, 5, 5. Notice the two 5’s at the end. This underscores
the fact that guards are evaluated before set actions are executed. Thus, at the start
of the sixth firing, the input to the FSM is 5 and the value of count is 4. The self-
loop on the counting state will be taken, producing output 5. At the start of the next
firing, count is 5, so the transition to the final state is taken, producing another 5.

SDF Director

Ramp FSMActor Display

] O p—]

guard: count < 5
output: out = in

® caunt.5 set: count = count + 1

guard: true : guard: count >= 5
output: out = in output: out = 5
set: count = 0

»

Figure 6.10: A state machine with a final state, which indicates the end of execu-
tion of the state machine. [online]

Ptolemaeus, System Design 201

http://ptolemy.org/systems/models/fsm/FinalStates/index.html
http://Ptolemy.org

6.2. STRUCTURE AND EXECUTION OF AN FSM

In the iteration in which an FSM enters a state that is marked final, the post fi re method
of the ModalModel or FSMActor returns false. This indicates to the enclosing director
that the FSM does not wish to be fired again. Most directors will simply avoid firing the
FSM again, but will continue executing the rest of the model. The SDF director, however,
is different. Since it assumes the same consumption and production rates for all actors,
and since it constructs its schedule statically, it cannot accommodate non-firing actors.
Hence, the SDF director will stop execution of the model altogether if any actor returns
false from postfire. In contrast, the SR director will continue executing, but all
outputs of the now terminated FSM will be absent in subsequent ticks.

202

SR Director

FSMActor NonStrictDisplay

OHE

Example 6.5: Figure 6.11 shows an SR model that produces a finite count, but
unlike Example 6.4, the model does not stop executing when the state machine
reaches its final state. The display output is shown for 10 iterations. Notice that
after the FSM reaches the final state, the output of the FSM is absent. Notice
also that the first output of the FSM is absent. This is because the transition from

File Help
absent

L R e

absent
absent
absent

guard: count < 5
output: out = count

count:
O > set: count = count + 1

guard: count >= 5
output: out = count

guard: true
set: count = 0

Figure 6.11: A state machine with a final state in an SR model. [online]

Ptolemaeus, System Design

http://ptolemy.org/systems/models/fsm/FinalStatesSR/index.html
http://Ptolemy.org

6. FINITE STATE MACHINES

init to counting does not include any output action. Such a transition would not
be compatible with SDF, because actors in SDF are required to produce a fixed
number of outputs on each firing.

Notice the use of NonStrictDisplay. This actor is similar to Display except that
it displays “absent” when the input is absent, whereas Display does not display
anything when the input is absent.

As illustrated by the above example, SR supports a notion of absent values. Dataflow
domains and PN have no such notion. Failure to produce outputs will starve downstream
actors, preventing them from executing. An FSM with a final state in PN will simply stop
producing outputs when it reaches the final state. This can result in termination of the
entire model if it causes starvation (i.e., if other actors require inputs from the FSM in
order to continue).

temperature heat

output: heat = heatingRate '
guard:

temperature >= heatOffThreshold
output: heat = coolingRate

guard:
temperature <= heatOnThreshold
output: heat = heatingRate

cooling

output: heat ;-coolingRate

Figure 6.12: An FSM equivalent to that shown in Figure 6.5, but using default self-
transitions (indicated with dashed lines). These are taken if the other outgoing
transition is not enabled. [online]

Ptolemaeus, System Design 203

http://ptolemy.org/systems/models/fsm/HysteresisWithDefault/index.html
http://Ptolemy.org

6.2. STRUCTURE AND EXECUTION OF AN FSM

6.2.5 Default Transitions

An FSM may have default transitions, which are transitions that have the default param-
eter set to true (see Figure 6.4). These transitions become enabled if no other outgoing
(non-default) transition of the current state is enabled. Default transitions are shown as
dashed arcs rather than solid arcs.

Example 6.6: The thermostat FSM of Figure 6.5 can be equivalently implemented
using default transitions as shown in Figure 6.12. Here, the default transitions

simply specify that if the outgoing transition to the other state is not enabled, then

the FSM should remain in the same state and produce an output.

If a default transition also has a guard expression, then that transition is enabled only if
the guard evaluates to true and there are no other non-default transitions enabled. De-
fault transitions, therefore, provide a rudimentary form of priority; non-default transi-
tions have priority over default transitions. Unlike some state-machine languages, such
as SyncCharts, Ptolemy II FSMs offer only two levels of priority, although it is always
possible to encode arbitrary priorities using guards. Note that using default transitions
with timed models of computation can be somewhat tricky; see Section 8.5 in Chapter 8.

Default transitions can often be used to simplify guard expressions, as illustrated by the
following example.

204

Example 6.7: Consider the counting state machine of Example 6.5, shown in
Figure 6.11. We can add a reset input, as shown in Figure 6.13, to enable the count
to be reset. If reset is present and true, then the state machine returns to the init
state. However, the implementation in Figure 6.13 must then be modified; the two
existing transitions out of the counting state must include an additional clause

&& (!reset_isPresent || !reset)
This clause ensures that the self loop on the counting state is only taken if the reset

input is either absent or false. Without this clause, the state machine would have
become nondeterministic, since two of the transitions out of the counting state could

Ptolemaeus, System Design

http://Ptolemy.org

6. FINITE STATE MACHINES

have become simultaneously enabled. This clause, however, increases the visual
complexity of the guard expression, which is functionally quite simple. Figure
6.14 shows a version where default transitions are used instead. These indicate that
the machine should count only if the reset input is not present and t rue.

For this machine, if reset is present in the fourth firing, for example, then the first
few outputs willbe absent, 0, 1, 2, absent, 0, 1. In theiteration when
reset is present and true, the output “2” is produced, and then the machine starts
OVET.

6.2.6 Nondeterministic State Machines

If more than one guard evaluates to true at any time, then the FSM is a nondetermin-
istic FSM (unless one of the guards is on a default transition and the other is not). The
transitions that are simultaneously enabled are called nondeterministic transitions. By
default, transitions are not allowed to be nondeterministic, so if more than one guard
evaluates to true, Ptolemy will issue an exception similar to the below:

Nondeterministic FSM error: Multiple enabled transitions found but
not all of them are marked nondeterministic.

in ... name of a transition not so marked ...

e count: 5 guard: count < 5 && (Ireset_isPresent || !reset)
: output: out = count

guard: reset set: count = count + 1

output: out = count

reset

» @

out

al h

i~

counting

set: count = 0

guard: count >= 5 && (Ireset_isPresent || !reset)
output: out = count

Figure 6.13: A state machine like that in Figure 6.11, but with an additional reset
input port. [online]

Ptolemaeus, System Design 205

http://ptolemy.org/systems/models/fsm/FinalStatesReset/index.html
http://Ptolemy.org

6.2. STRUCTURE AND EXECUTION OF AN FSM

There are cases, however, where it is desirable to allow nondeterministic transitions. In
particular, nondeterministic transitions provide good models of systems that can exhibit
multiple behaviors for the same inputs. They can also be useful for modeling the pos-
sibility of fault conditions where there is no information about the likelihood of a fault
occurring. Nondeterministic transitions are allowed by setting the nondeterministic pa-
rameter to t rue on every transition that can be enabled while another another transition
is enabled (see Figure 6.4).

Example 6.8: A model of a faulty thermostat is shown in Figure 6.15. When the
FSM is in the heating state, both outgoing transitions are enabled (their guards are
both t rue), so either one can be taken. Both transitions are marked nondetermin-
istic, indicated by the red arc color. A plot of the model’s execution is shown in
Figure 6.16. Note that the heater is on for relatively short periods of time, causing
the temperature to hover around 18 degrees, the threshold at which the heater is
turned on.

In a nondeterministic FSM, if more than one transition is enabled and they are all marked
nondeterministic, then one is chosen at random in the fire method of the ModalModel
or FSMActor. If the £ire method is invoked more than once in an iteration (see Section

guard: count < 5
output: out = count
set: coynt, = count + 1

@ count: 5

guard: reset
output: out = count

reset

> @

counting

set: count = 0

guard: count >=5
output: out = count

Figure 6.14: A state machine like that in Figure 6.13, but using default transitions
to simplify the guard expressions. [online]

206 Ptolemaeus, System Design

http://ptolemy.org/systems/models/fsm/FinalStatesResetDefault/index.html
http://Ptolemy.org

6. FINITE STATE MACHINES

temperature

»

guard: true
output: heat = heatingRate

heat

O =

guard: true

output: heat = coolingRate guard:

temperature <= heatOnThreshold
output: heat = heatingRate

cooling

guard: temperature > heatOnThreshold
output: heat = coolingRate

Figure 6.15: A model of a faulty thermostat that nondeterministically switches
from heating to cooling. [online]

rate

20
)
é 19
©
518
o
€ 17
Qo

16

15

0.10
0.05

0.00

-0.05

Temperature
00 02 04 06 08 10 12 14 16 18 20
time x102
Heating/Cooling Rate
C T T T T T T L
00 02 04 06 08 10 12 14 16 18 20
time x102

Figure 6.16: Plot of the thermostat FSM of Figure 6.15, a variant of Figure 6.5.

Ptolemaeus, System Design

207

http://ptolemy.org/systems/models/fsm/CapriciousThermostat/index.html
http://Ptolemy.org

6.2. STRUCTURE AND EXECUTION OF AN FSM

6.4 below), then subsequent invocations in the same iteration will always choose the same
transition.

6.2.7 Immediate Transitions

Thus far we have only considered the case where each firing of an FSM results in a single
transition. It is possible, however, to take more than one transition in a single firing, by
using an immediate transition. If a state A has an immediate transition to another state
B, then that transition will be taken in the same firing as a transition into state A if the
guard on the immediate transition is true. The transition into and out of A will occur in
the same firing. In this case, A is called a transient state.

Example 6.9: In Example 6.7, the output of the thermostat is absent in the first
iteration and in the iteration immediately following a reset. These absent outputs
can be avoided by marking the transition from init to counting immediate, as shown
in Figure 6.17. This change has two effects. First, when the model is initialized, the
transition from init to counting is taken immediately (during initialization), which
sets the count variable to 0. Thus, in the first iteration of the state machine, it will
be in state counting. This prevents the initial absent from appearing at the output.
Instead, the output in the first iteration will be 0.

guard: count < 5
output: out = count
set: coynt = count + 1

@ count: 5

guard: reset
output: out = count

reset

> @

counting

set: count = 0

guard: count >=5
output: out = count

Figure 6.17: A state machine like that in Figure 6.14, but using an immediate
transition to prevent absent outputs before counting. The immediate transition is
indicated by a red diamond. [online]

208 Ptolemaeus, System Design

http://ptolemy.org/systems/models/fsm/FinalStatesImmediate/index.html
http://Ptolemy.org

6. FINITE STATE MACHINES

The second effect is that in the counting state, if the reset input is present and true,
then the machine will transition from counting to init, and back to counting, in the
same iteration, reseting the count variable to 0.

For this machine, if reset is present in the fourth firing (for example), then the first
few outputs displayed will be as follows: 0, 1, 2, 3, 0, 1. In the iteration
when reset is present and true, the output “3” is produced by the transition back to
init, and then the machine starts over.

Note that a transient state is not quite the same thing as a state in which the state machine
spends zero time; because of superdense time in Ptolemy II, a state machine may spend
zero time in a state, but the transition into the state and out of the state occur in different
firings, at different microstep indexes (see sidebar on page 210).

When a state machine reacts, the state at the start of the reaction is called the current
state. The current state may have immediate transitions coming out of it. For this to be the
case, it is necessary that in the previous reaction the guards on these transitions evaluated
to false; otherwise, the state would have been transient and would not have become the
current state. When the current state has both immediate and non-immediate transitions
out of it, those two classes of transitions are treated identically. There is no distinction
between them, and no priority order between them. If an immediate and non-immediate
transition out of the current state both have guards that evaluate to true, then either one of
them needs to a default transition, or both of them need to marked nondeterministic.

If there are immediate transitions out of the initial state, then their guards are evaluated
when the FSM is initialized, and if the guard is true, then the transition is taken before the
FSM starts executing. Notice that in some domains, such as SR, outputs produced prior
to the start of execution will never be observed by the destination, so in those domains, an
immediate transition out of an initial state should not produce outputs.

Immediate, default, and nondeterministic transitions can be used in combination to some-
times dramatically simplify a state machine diagram, as illustrated in the following exam-
ple.

Example 6.10: An ABRO state machine is a class of FSM that waits for a signal
A and a signal B to arrive. Once both have arrived, it produces an output O, unless
a reset signal R arrives, in which case it starts all over, waiting for A and B.

Ptolemaeus, System Design 209

http://Ptolemy.org

6.2. STRUCTURE AND EXECUTION OF AN FSM

This pattern is used to model a variety of applications. For example, A may repre-
sent a buyer for a widget, B a seller, and O the occurrence of a transaction. R may
represent the widget becoming unavailable.

Specifically, the system has boolean-valued inputs A, B, and R, and a boolean-
valued output O. Output O will be present and true as soon as both inputs A and
B have been present and true. In any iteration where R is present and true, the
behavior is restarted from the beginning.

An implementation of this state machine is shown in Figure 6.18. The initial state,
nAnB (short for “not A and not B”) represents the situation where neither A nor B
has arrived. The state nAB represents the situation where A has not arrived but B
has — and so on.

Probing Further: Weakly Transient States

A state machine may spend zero time in a state without the use of immediate transitions.
Such a state is called a weakly transient state. It is not quite like the transient states
of Section 6.2.7, which have immediate transitions that move out of the state within a
single reaction. A weakly transient state is the final state of one reaction, and the current
state of the next reaction, but no model time elapses between reactions. Note that any
state that has default transitions (without guards or with guards that evaluate to true
immediately) is a transient state, since exiting the state is always immediately enabled
after entering the state.

When a transition is taken in an FSM, the FSMActor or ModalModel calls the
fireAtCurrentTime method of its enclosing director. This method requests a new
firing in the next microstep regardless of whether any additional inputs become avail-
able. If the director honors this request (as timed directors typically do), then the actor
will be fired again at the current time, one microstep later. This ensures that if the des-
tination state has a transition that is immediately enabled (in the next microstep), then
that transition will be taken before model time has advanced. Note also that in a modal
model (see Section 6.3 and Chapter 8), if the destination state has a refinement, then that
refinement will be fired at the current time in the next microstep. This is particularly
useful for continuous-time models (see Chapter 9), since the transition may represent
a discontinuity in otherwise continuous signals. The discontinuity translates into two
distinct events with the same time stamp.

210 Ptolemaeus, System Design

http://Ptolemy.org

6. FINITE STATE MACHINES

guard: A_isPresent
&& IR_isPresent

guard: B_isPresent output: O = true

&& !A_isPresent
A && IR_isPresent
guard: R_isPresent

guard: R

B (0]
guard: B_isPresent
&& A_isPresent
R && IR_isPresent

output: O = true

guard: R_isPresent

guard: A_isPresent
&& 'B_isPresent

&& IR isPresent guard: B_isPresent

&& IR_isPresent
output: O = true

Figure 6.18: A brute-force implementation of the classic ABRO state machine.
[online]

The guard expressions in Figure 6.18 can be difficult to read (although it can get
much worse — see Exercise 4). An alternative implementation that is easier to
read (once you are familiar with the transition notation, which are summarized in
Table 6.1) is shown in Figure 6.19. This example uses nondeterminate, default, and
immediate transitions to simplify guard expressions.

Immediate transitions may write to the same output ports that are written to by previ-
ous transitions taken in the same iteration. FSMs are imperative, with a well-defined
sequence of execution, so the output of the FSM will be the last value written to an out-

Ptolemaeus, System Design 211

http://ptolemy.org/systems/models/fsm/ABROFlat_SA_BruteForce/index.html
http://Ptolemy.org

6.3. HIERARCHICAL FSMS

A guard: Ao

» ..\"output: = true

B o
» AB *
R

guard: B
output: O = true

Figure 6.19: An implementation of the ABRO state machine that leverages default
transitions, immediate transitions, and nondeterministic transitions to simplify the
guard expressions. [online]

put port in a chain of transitions. Similarly, immediate transitions may write to the same
parameter in their set actions, overwriting values written in previously taken transitions.

6.3 Hierarchical FSMs

It is always possible (and encouraged) to construct an FSM by using the ModalModel
actor rather than the FSMActor. The ModalModel actor allows states to be defined with
one or more refinements, or submodels. In Chapter 8§ we discuss the general form of
this approach, called modal models, where the submodel can be an arbitrary Ptolemy II
model. Here, we consider only the special case where the submodel is itself an FSM. The
approach yields a hierarchical FSM or hierarchical state machine.

To create a hierarchical FSM, select Add Refinement in the context menu for a state,
and choose State Machine Refinement, as shown in Figure 6.20. This creates a
state machine refinement (submodel) that can reference the higher-level state machine’s
input ports and write to the output ports. The refinement’s states can themselves have
refinements (either Default Refinements or State Machine Refinements).

In addition to the transition types of Table 6.1, hierarchical state machines offer additional
transition types, summarized in Table 6.3. These will be explained below.

212 Ptolemaeus, System Design

http://ptolemy.org/systems/models/fsm/ABROFlat_SA/index.html
http://Ptolemy.org

6. FINITE STATE MACHINES

Unnamed#ModalModel.state._Controlle

@ File View Edit Craph Debug Help
Customize > Holala/E alAlE]> [N @] = =150
Documentation > == DocViewerAttribute

= LocalPreferences
A-ppearance . > == RepaintController
Listen to Attribute i Decorative
Add Refinement [Parameters
Remove Refinement s

. state
Look Inside %L \
port

Specify Refinement

] Name:
'™ state
Class: State Machine Refinement v

Cancel OK

Figure 6.20: How to add a refinement to the state of a ModalModel.

6.3.1 State Refinements

The execution of a modal model follows a simple pattern. When the modal model fires,
first, its refinements fire. Then its guards are evaluated and a transition may be chosen.
A refinement may produce outputs, and so may a transition, but since the refinement is
fired first, if both produce output values on the same port, the transition will overwrite the
value produced by the refinement. Execution is strictly sequential.

Postfire is similar. When the modal model postfires, it first postfires its refinements, and
then commits the transition, executing any set actions on the transition. Again, if the
refinement and the transition write to the same variable, the transition prevails.

Note that a state can have more than one refinement. To create a second refinement, invoke
Add Refinement again. Refinements are executed in order, so if two refinements of the
same state produce a value on the same output or update the same variable, then the second
one will prevail.! The last output value produced becomes the output of the modal model
for the firing. It overwrites the actions of the first, as with chains of immediate transitions.
To change the order in which refinements execute, simply double click on the state and
edit the refinementName parameter, which is a comma-separated list of refinements.

TIf you wish to have refinements that execute concurrently, see Chapter 8.

Ptolemaeus, System Design 213

http://Ptolemy.org

6.3. HIERARCHICAL FSMS

notation \ description
An ordinary transition. Upon firing, the refinement of the
source state is fired first, and then if the guard g is true
(or if no guard is specified), then the FSM will choose the
guard: g transition. It will produce the value y on output port x, over-
g:tt_p:t:: Xb= Y writing any value that the source state refinement might have

G &)

produced on the same port. Upon transitioning (in postfire),
the actor will set the variable a to have value b, again over-
writing any value that the refinement may have assigned to
a. Finally, the refinements of state s2 are reset to their initial
states. For this reason, these transitions are sometimes called
reset transitions.

guard: g
output: x =y

& %

A history transition. This is similar to an ordinary transi-
tion, except that when entering state s2, the refinements of
that state are nof reset to their initial states, but rather resume
from whatever state they were in when the refinement was
last active. On first entry to s2, of course, the refinements
will start from their initial states.

guard: g
g:tt_p:t::’(; Y A preemptive transition. If the current state is s/ and the
guard is true, then the state refinement (the FSM sub-model)
@ @ for s/ will not be invoked prior to the transition.
guard: g
output: x =y
setta=b A termination transition. If all refinements of state s/ reach

GV ©)

a final state and the guard is true, then the transition is taken.

Table 6.3: Summary of FSM transitions and their notations for hierarchical state
machines. Here, we assume all refinements are themselves FSMs, although in
Chapter 8 we will see that refinements can be arbitrary Ptolemy Il models.

214 Ptolemaeus, System Design

http://Ptolemy.org

6. FINITE STATE MACHINES

It is also possible for a refinement to be the refinement of more than one state. To add a
refinement to a state that is already the refinement of another state, double click on the
state and insert the name of the refinement into the refinementName parameter.

6.3.2 Benefits of Hierarchical FSMs

Hierarchical FSMs can be easier to understand and more modular than flat FSMs, as
illustrated in the following example.

Example 6.11: A hierarchical FSM that combines the normal and faulty ther-
mostats of Examples 6.1 and 6.8 is shown in Figure 6.21.

In this model, a Bernoulli actor is used to generate a fault signal (which will be
true with some fixed probability, shown as 0.01 in the figure). When the fault
signal is t rue, the modal model will transition to the faulty state and remain there
for ten iterations before returning to the normal mode. The state refinements are the
same as those in Figures 6.12 and 6.15, modeling the normal and faulty behavior
of the thermostat.

The transitions from normal to faulty and back in top-level FSM are preemptive
transitions, indicated by the red circles on their stem, which means that when the
guards on those transitions become true, the refinement of the current state is not
executed, and the refinement of the destination state is reset to its initial state. In
contrast, the self-loop transition from faulty back to itself is a history transition,
which, as we will explain below, means that when the transition is taken, the desti-
nation state refinement is not initialized. It resumes where it left off.

An equivalent flat FSM is shown in Figure 6.22. Arguably, the hierarchical diagram
is easier to read and more clearly expresses the separate normal and faulty mecha-
nisms and how transitions between these occur. See Exercise 7 of this chapter for a
more dramatic illustration of the potential benefits of using a hierarchical approach.

Notice that the model in Figure 6.21 combines a stochastic state machine with a
nondeterministic FSM. The stochastic state machine has random behavior, but an
explicit probability model is provided in the form of the Bernoulli actor. The non-
deterministic FSM also has random behavior, but no probability model is provided.

Ptolemaeus, System Design 215

http://Ptolemy.org

6.3. HIERARCHICAL FSMS

SDF Director

iterations: 200 einitialTemp: 15.0

Temperature Model

@ heatOnThreshold: 18.0
o heatOffThreshold: 22.0

@ heatingRate: 0.1
@ coolingRate: -0.05
@ noiseStandardDeviation: 0.2

SequencePlotter

» output: heat = heatingRate '

fault ;
>
guard:

guard:
temperature <= heatOnThreshold
output: heat = heatingRate

cooling

temperature >= heatOffThreshold
output: heat = coolingRate

output: heat ;-coolingRate

ooo|
heatp) E}D temperature N
5 li ModalModel
ernoulli temperggure.
- heat
trigger fauh'
SequencePlotter2
L truePrabability: 0.01 ﬂ:i
> /\/
e count: 0
guard: count >= 10
temperature output: heat = 0 4 guard: count < 10
» set:
@ count = count + 1
faui
heat
guard: fault
output: heat = 0
set: count = 0
temperature heat temperature g ar4: true e

» output: heat = heatingRate

fault .
>
guard: true guard:

Gl liee: = @reiiie e temperature <= heatOnThreshold

output: heat = heatingRate

cooling

guard: temperature > heatOnThreshold
output: heat = coolingRate

Figure 6.21: A hierarchical FSM that combines the normal and faulty thermostats

of Examples 6.1 and 6.8. [online]

216

Ptolemaeus, System Design

http://ptolemy.org/systems/models/fsm/HierarchicalFSM/index.html
http://Ptolemy.org

6. FINITE STATE MACHINES

guard: count < 10
output: heat = heatingRate
output: heat = heatingRate guard: fault set: count = count + 1
output: heat =0
set: count = 0

count: 1 ;
b 0 - output: heat = 0 "
heating heating2
temperature
I heat
fault *
output: ¥
guard:) guard: count < 10 guard:
! fault && guard: output: count < 10 &&
temperature I fault && heat = coolingRate temperature

>= heatOffThreshold
output: heat = coolingRate

<= heatOnThreshold
output: heat = heatingRate
set: count = count + 1

temperature <= heatOnThreshold set: count = count + 1

output: heat = heatingRate

guard: fault .,
output: heat = 0 *,
set: count = 0 A

output: heat =-‘coolingRate .

guard:

count < 10 &&

temperature > heatOnThreshold
output: heat = coolingRate
set: count = count + 1

Figure 6.22: A flat FSM version of the hierarchical FSM of Figure 6.21. [online]

6.3.3 Preemptive and History Transitions

A state that has a refinement is shaded in light green in Vergil, as shown in Figure 6.21.
The top-level FSM in that figure also uses two new specialized transitions, which we now
explain (see Table 6.3).

The first is a preemptive transition, indicated by red circle at the start of the transition.
In a firing where the current state has a preemptive transition leading to another state, the
refinement does not fire if the guard on the transition is true. It is preempted by the tran-
sition.? If the transition out of the normal state was not preemptive in this example, then
in an iteration where the fault input is true and present, the refinement FSM of the normal
state would nonetheless produce a normal output. The preemptive transition prevents this

#In the literature, this is sometimes called strong preemption, where weak preemption refers to a normal
transition out of a state that allows the refinement to execute.

Ptolemaeus, System Design 217

http://ptolemy.org/systems/models/fsm/HierarchicalFSM_Flattened/index.html
http://Ptolemy.org

6.3. HIERARCHICAL FSMS

from occurring. In iterations where a fault occurs, the preemptive transition generates
outputs that are not the normal outputs produced by the normal or faulty submodels. The
model shown in the figure assigns the outputs the value O in the iteration when either a
transition occurs from normal to faulty, or vice versa.

A current state may have preemptive, default preemptive, non-preemptive, and default
non-preemptive transitions. The guards on these transitions are checked in that order,
giving four priority levels. Similarly, immediate transitions may also be preemptive and/or
default transitions, so they again have four possible priority levels (see Exercise 9).

The second of the two specialized transitions is a history transition, indicated by an out-
lined arrowhead and a circle with an “H.” When such a transition is taken, the refinement
of the destination state is not initialized, in contrast to an ordinary transition. Instead, it
resumes from the state it was last in when the refinement was previously active. In Figure
6.21, the self transition from faulty back to itself is a history transition because its purpose
is to just count iterations, not to interfere with the execution of the refinement.

Transitions that are not history transitions are often called reset transitions, because they
reset the destination refinements.

6.3.4 Termination Transitions

A termination transition is a transition that is enabled only when the refinements of
the current state reach a final state. The following example uses such a transition to
significantly simplify the ABRO example.

Example 6.12: A hierarchical version of the ABRO model of Figure 6.19 is shown
in Figure 6.23. At the top level is a single state and a preemptive reset transition that
is triggered by an input R. Below that is a two-state machine that waits in waitAB
until the two refinements of waitAB transition reach a final state. Its transition is a
termination transition, indicated by the green diamond at its stem. When that the
termination transition is taken, it will transition to the final state called done and
produce the output O. Each refinement of waifAB waits for one of A or B, and once
it receives it, transitions to a final state.

In each firing of the modal model, while in waitAB, both of the lowest level refine-
ments execute. In this case, it does not matter in which order they execute.

218 Ptolemaeus, System Design

http://Ptolemy.org

6. FINITE STATE MACHINES

//loutput: O =true -

guard: A guard: B

Figure 6.23: A hierarchical version of the ABRO model of Figure 6.19. [online]

Hierarchical machines can be much more compact than their flat counterparts. Exercise
5 (at the end of the chapter), for example, illustrates that if you increase the number of
signals that ABRO waits for (making, for example ABCRO, with three inputs), then the
flat machine gets very large very quickly, whereas the hierarchical machine scales linearly.

This use of transitions triggered by entering final states in the refinements is sometimes
referred to as normal termination. The submodel stops executing when it enters a final
state and can be restarted by a reset. André (1996) points out that specialized termination
transitions are not really necessary, as local signals can be used instead (see Exercise 6).
But they can be convenient for making diagrams simpler.

Ptolemaeus, System Design 219

http://ptolemy.org/systems/models/fsm/ABROHierarchicalTermination/index.html
http://Ptolemy.org

6.3. HIERARCHICAL FSMS

6.3.5 Execution Pattern for Modal Models

Execution of a ModalModel proceeds in two phases, fire and postfire. In fire, it:

1. reads inputs, makes inputs available to current state refinements, if any;
2. evaluates the guards of preemptive transitions out of the current state;
3. if a preemptive transition is enabled, the actor choses that transition and executes its
output actions.
4. if no preemptive transition is enabled, then it:
a. fires the refinements of the current state (if any), evaluating guards on transitions of
the lower-level FSM and producing any required outputs;
b. evaluates guards on the non-preemptive transitions of the upper-level FSM (which
may refer to outputs produced by the refinement); and
c. executes the output actions of the chosen transition of the upper-level FSM.

In post fire, the ModalModel actor

1. postfires the refinements of the current state if they were fired, which includes executing
set actions on any chosen transitions in the lower-level FSM and committing its state
change;

2. executes the set actions of the chosen transition of the upper-level FSM;

3. changes the current state to the destination of the chosen transition; and

4. initializes the refinements of the destination state if the transition is a reset transition.

The transitions out of a state are checked in the following order:

preemptive transitions,

preemptive default transitions,
non-preemptive transitions, and
non-preemptive default transitions.

sl .

For transitions emerging from the current state (the state at the start of a reaction), no dis-
tinction is made between immediate and non-immediate transitions. The distinction only
matters upon entering a state, when immediate transitions are also checked in the same
order as above (preemptive, preemptive default, non-preemptive, and non-preemptive de-
fault immediate transitions).

220 Ptolemaeus, System Design

http://Ptolemy.org

© ® N L R W N

© ® N L R W N =

5 = 3

6. FINITE STATE MACHINES

Probing Further: Internal Structure of an FSM

Entity and Relation respectively. The simple structure shown below:

Gae) Cawed)

is represented in MoML as follows:

<entity name="FSMActor" class="...FSMActor">
<entity name="Statel" class="...State">
<property name="isInitialState" class="...Parameter"
value="true"/>
</entity>
<entity name="State2" class="...State"/>
<relation name="relation" class="...Transition"/>
<relation name="relation2" class="...Transition"/>

<link port="Statel.incomingPort" relation="relation2"/>

<link port="Statel.outgoingPort" relation="relation"/>

<link port="State2.incomingPort" relation="relation"/>

<link port="State2.outgoingPort" relation="relation2"/>
</entity>

The same structure can be specified in Java as follows:

import ptolemy.domains.modal.kernel.FSMActor;

import ptolemy.domains.modal.kernel.State;

import ptolemy.domains.modal.kernel.Transition;

FSMActor actor = new FSMActor () ;

State statel = new State (actor, "Statel");

State state2 = new State (actor, "State2");

Transition relation = new Transition (actor, "relation");
Transition relation2 = new Transition (actor, "relation2");
statel.incomingPort.link (relation2) ;
statel.outgoingPort.link (relation);
state2.incomingPort.link (relation);
state2.outgoingPort.link (relation2) ;

ModalModel contains an FSMActor, the controller, plus each of the refinements.

FSMActor is a subclass of CompositeEntity, just like CompositeActor. Internally, it
contains some number of instances of State and Transition, which are subclasses of

Thus, above, we see three distinct concrete syntaxes for the same structure.

A

Ptolemaeus, System Design

221

http://Ptolemy.org

6.3. HIERARCHICAL FSMS

Probing Further: Hierarchical State Machines

State machines have a long history in the theory of computation (Hopcroft and Ull-
man, 1979). An early model for hierarchical FSMs is Statecharts, developed by Harel
(1987). As with Ptolemy II FSMs, states in Statecharts can have multiple refinements,
but unlike ours, in Statecharts the refinements are not executed sequentially. Instead,
they execute concurrently, roughly under the synchronous-reactive model of computa-
tion. We achieve the same effect with modal models, as shown in Chapter 8. Another
feature of Statecharts, not provided in Ptolemy II, is the ability for a transition to cross
levels of the hierarchy.

The Esterel synchronous language also has the semantics of hierarchical state ma-
chines, although it is given a textual syntax rather than a graphical one (Berry and
Gonthier, 1992). Esterel has a rigorous SR semantics for concurrent composition of
state machines (Berry, 1999). SyncCharts, which came later, provides a visual syntax
(André, 1996).

PRET-C (Andalam et al., 2010), Reactive C (RC) (Boussinot, 1991), and Syn-
chronous C (SC) (von Hanxleden, 2009) are C-based languages inspired by Esterel that
support hierarchical state machines. In both RC and PRET-C, state refinements (which
are called “threads”) are executed sequentially in a fixed, static order. The PRET-C
model is more restricted than ours, however, in that distinct states cannot share the same
refinements. A consequence is that refinements will always be executed in the same
order. The model in Ptolemy II, hence, is closer to that of SC, which uses “priorities”
that may be dynamically varied to determine the order of execution of the refinements.

Both RC and PRET-C, like our model, allow repeated writing to outputs, where the
last write prevails. In RC, however, if such an overwrite occurs after a read has occurred,
a runtime exception is thrown. Our model is closer to that of PRET-C, where during an
iteration, outputs function like variables in an ordinary imperative language. Like RC
and PRET-C, only the last value written in an iteration is visible to the environment on
the output port of the FSM. In contrast, Esterel provides combine operators, which
merge multiple writes into a single value (for example by adding numerical values).

222 Ptolemaeus, System Design

http://Ptolemy.org

6. FINITE STATE MACHINES

6.4 Concurrent Composition of State Machines®

Since FSMs can be used in any Ptolemy II domain, and most domains have a concurrent
semantics, a Ptolemy user has many ways to construct concurrent state machines. In
most domains, an FSM behaves just like any other actor. In some domains, however,
there are some subtleties. In this section we particularly focus on issues that arise when
constructing feedback loops in domains that perform fixed-point iteration, such as the SR
and Continuous domains.

As described earlier, when an FSM executes, it performs a sequence of steps in the fire
method, and additional steps in the postfire method. This separation is important in
constructing a fixed point, because the fire method may be invoked more than once per
iteration while the director searches for a solution, and it cannot include any persistent
state changes. Steps 1-4 in the fire method of the FSM read inputs, evaluate guards,
choose a transition, and produce outputs — but they do not commit to a state transition or
change the value of any local variables.

Example 6.13: Consider the example in Figure 6.24, which requires that the fire
method be invoked multiple times. As explained in Chapter 5, execution of an SR
model requires the director to find a value for each signal at each tick of a global
clock. On the first tick, each of the NonStrictDelay actors places the value shown in
its icon on its output port (the values are 1 and 2, respectively). This defines the in/
value for FSMActor] and the in2 value for FSMActor2. But the other input ports
remain undefined. The value of in2 of FSMActorl is specified by FSMActor2, and
the value of in/ of FSMActor2 is specified by FSMActorl. This may appear to
create a causality loop, but as discussed below, it does not.

In Figure 6.24, note that for all states of the FSMActors, each input port has a
guard that depends on the port’s value. Thus, it would seem that both inputs need
to be known before any output value can be asserted, which suggests a causality
loop. However, looking closely at the left FSM, we see that the transition from
statel to state2 will be enabled at the first tick of the clock because in/ has value
1, given by NonStrictDelay1. If the state machine is determinate, then this must be
the only enabled transition. Since there are no nondeterministic transitions in the

$This section may be safely skipped on a first reading unless you are particularly focusing on fixed-point
domains such as SR and Continuous.

Ptolemaeus, System Design 223

http://Ptolemy.org

6.4. CONCURRENT COMPOSITION OF STATE MACHINES

state machine, we can assume this will be the chosen transition. Once we make that
assumption, we can assert both output values as shown on the transition (out! is 2

and out2 is 1).

Once we assert those output values, then both inputs of FSMActor2 become known,
and it can fire. Its inputs are in/ = 2 and in2 = 2, so in the right state machine
the transition from statel to state2 is enabled. This transition asserts that ous2 of
FSMActor2 has value 1, so now both inputs to FSMActor1 are known to have value
1. This reaffirms that FSMActor] has exactly one enabled transition, the one from

statel to state2.

SR Director

NonStrictDelayl

o1

FSMActor1
indal outl

FSMActor2

inl

¥
eEe] O

c

NonStrictDelay2
2

in2y|
>

<

inl
guard: inl ==
in2 output:
outl = 2;
* out2 = 1

guard: in2 ==

output:
outl =3
out2 =3

’

guard: in2 ==
output:

outl =1;
out2 = 2

inl

in2 guard: inl

» output:
outl = 2;
out2 =1

guard: in2 == 1
output:
outl = 3;
out2 =3
outl
== out2
guard: i
output
outl =
out2 =

Figure 6.24: A model that requires separation of actions between the fire
method and the post fire method in order to be able to converge to a fixed point.

[online]

224

Ptolemaeus, System Design

http://ptolemy.org/systems/models/fsm/FixedPointFSM/index.html
http://Ptolemy.org

6. FINITE STATE MACHINES

It is easy to verify that at each tick of the clock, both inputs of each state machine
have the same value, so no state ever has more than one enabled outgoing transition.
Determinism is preserved. Moreover, the values of these inputs alternate between
1 and 2 in subsequent ticks. For FSMActorl, the inputs are 1, 2, 1, - - - in ticks 1,
2,3, ---. For FSMActor2, the inputs are 2, 1, 2, - - - inticks 1,2, 3, - - -.

To understand a fixed-point iteration, it is helpful to examine more closely the four steps
of execution of the f£ire method explained in Section 6.2 above.

1.

reads inputs: Some inputs may not be known. Unknown inputs cannot be read, so the
actor simply doesn’t read them.

evaluates guards on outgoing transitions of the current state: Some of these guards may
depend on unknown inputs. These guards may or may not be able to be evaluated. For
example, if the guard expression is “true || inl” then it can be evaluated whether
the input in/ is known or not. If a guard cannot be evaluated, then it is not evaluated.

. chooses a transition whose guard evaluates to true: If exactly one transition has a

guard that evaluates to true, then that transition is chosen. If a transition has already
been chosen in a previous invocation of the £ire method in the same iteration, then the
actor checks that the same transition is chosen this time. If not, it issues an exception
and execution is halted. The FSM is not permitted to change its mind about which
transition to take partway through an iteration. If more than one transition has a guard
that evaluates to true, then the actor checks that every such transition is identified as a
nondeterministic transition. If any such transition is not marked as nondeterministic,
then the actor issues an exception. If all such transitions are marked nondeterministic,
then it chooses one of the transitions. Subsequent invocations of the fire method in
the same iteration will choose the same transition.

executes the output actions on the chosen transition, if any: If a transition is chosen,
then the output values can all be defined. Some of these may be specified on the tran-
sition itself. If they are not specified, then they are asserted to be absent at this tick.
If all transitions are disabled (all guards evaluate to false), then all outputs are set to
absent. If no transition is chosen but at least one transition remains whose guard
cannot be evaluated, then the outputs remain unknown.

In all of the above, choosing a transition may actually amount to choosing a chain of
transitions, if there are immediate transitions enabled.

Ptolemaeus, System Design 225

http://Ptolemy.org

6.5. SUMMARY

As described earlier, in the postfire() method, the actor executes the set actions of the
chosen transition and changes the current state to the destination of the chosen transition.
These actions are performed exactly once after the fixed-point iteration has determined all
signal values. If any signal values remain undefined at the end of the iteration, the model
is considered defective, and an error message will be issued.

Nondeterministic FSMs that are executed in a domain that performs fixed-point iteration
involve additional subtleties. It is possible to construct a model for which there is a fixed
point that has two enabled transitions but where the selection between transitions is not
actually random. It could be that only one of the transitions is ever chosen. This occurs
when there are multiple invocations of the £ire method in the fixed-point iteration, and
in the first of these invocations, one of the guards cannot be evaluated because it has a
dependence on an input that is not known. If the other guard can be evaluated in the first
invocation of fire, then the other transition will always be chosen. As a consequence,
for nondeterministic state machines, the behavior may depend on the order of firings in a
fixed-point iteration.

Note that default transitions may also be marked nondeterministic. However, a default
transition will not be chosen unless all non-default transitions have guards that evaluate
to false. In particular, it will not be chosen if any non-default transition has a guard that
cannot yet be evaluated because of unknown inputs. If all non-default transitions have
guards that evaluate to false and there are multiple nondeterministic default transitions,
then one is chosen at random.

6.5 Summary

This chapter has introduced the use of finite-state machines in Ptolemy II to define actor
behavior. Finite-state machines can be constructed using the FSMActor or ModalModel
actors, where the latter supports hierarchical refinement of states in the FSM and the for-
mer does not. A number of syntactic devices are provided to make FSM descriptions more
compact. These include the ability to manipulate variables (extended state machines), de-
fault transitions, immediate transitions, preemptive transitions, and hierarchical state ma-
chines, to name a few. Transitions have output actions, which are executed in the fire
method when a transition is chosen, and set actions, which are executed in the postfire
method and are used to change the value of variables. This chapter also briefly introduces
concurrent composition of state machines, but that subject is studied in much more depth

226 Ptolemaeus, System Design

http://Ptolemy.org

6. FINITE STATE MACHINES

in Chapter 8, which shows how state refinements can themselves be concurrent Ptolemy
II models in another domain.

Ptolemaeus, System Design 227

http://Ptolemy.org

EXERCISES

Exercises

1. Consider a variant of the thermostat of example 6.1. In this variant, there is only one

temperature threshold, and to avoid chattering the thermostat simply leaves the heat
on or off for at least a fixed amount of time. In the initial state, if the temperature is
less than or equal to 20 degrees Celsius, it turns the heater on, and leaves it on for
at least 30 seconds. If the temperature is greater than 20 degrees, it turns the heater
off and leaves it off for at least 30 seconds. In both cases, once the 30 seconds have
elapsed, it returns to the initial state.

(a) Create a Ptolemy II model of this thermostat. You may use an SDF director
and assume that it runs at a rate of one iteration per second.

(b) How many possible states does your thermostat have? (Careful! The num-
ber of states should include the number of possible valuations of any local
variables.)

(c) The thermostat in example 6.1 exhibits a particular form of state-dependent
behavior called hysteresis. A system with hysteresis has the property that
the absolute time scale is irrelevant. Suppose the input is a function of time,
x: R — R (for the thermostat, x(t) is the temperature at time t). Suppose
that input x causes output y: R — R, also a function of time. E.g., in Figure
6.8, x is upper signal and y is the lower one. For this system, if instead of x
is the input is 2’ given by

2 (t) = x(a-t)

for a non-negative constant c, then the output is ¢’ given by
y(t) = yla-t).

Scaling the time axis at the input results in scaling the time axis at the output,
so the absolute time scale is irrelevant. Does your new thermostat model have
this property?

2. Exercise 1 of Chapter 5 asks for a model that recognizes the difference between

228

single and double mouse clicks. Specifically, the actor should have an input port
named click, and two output ports, singleClick and doubleClick. When a true
input at click is followed by N absents, the actor should produce output true
on singleClick, where N is a parameter of the actor. If instead a second true
input occurs within N ticks of the first, then the actor should output a true on
doubleClick.

Ptolemaeus, System Design

http://Ptolemy.org

6. FINITE STATE MACHINES

(a) Create an implementation of this actor using an extended state machine.

(b) How does your model behave if given three values true within N ticks on
input port click, followed by at least N absent ticks.

(c) Discuss the feasibility and attractiveness of implementing this as a simple
FSM, with no use the arithmetic variables of extended state machines.

3. A common scenario in embedded systems is where a component A in the system
monitors the health of another component B and raises an alarm. Assume B pro-
vides sensor data as timed events. Component A will use a local clock to provide
a regular stream of local timed events. If component B fails to send sensor data to
component A at least once in each clock interval, then something may be wrong.

(a) Design an FSM called MissDetector with two input ports, sensor and clock,
and two output ports missed and ok. Your FSM should produce an event on
missed when two clock events arrive without an intervening sensor event. It
should produce an ok event when the first sensor event after (or at the same
time that) a clock event arrives.

(b) Design a second FSM called StatusClassifier that takes inputs from your first
FSM and decides whether component B is operating normally. Specifically,
it should enter a warning state if it receives warningThreshold missed events
without an intervening ok event, where warningThreshold is a parameter.
Moreover, once it enters a warning state, it should remain in that state un-
til at least normalThreshold ok events arrive without another intervening ok,
where normalThreshold is another parameter.

(c) Comment about the precision and clarity of the English-language specification
of the behavior in this problem, compared to your state machine implementa-
tion. In particular, find at least one ambiguity in the above specification and
explain how your model interprets it.

4. Figures 6.18, 6.19, and 6.23 show the ABRO example implemented as a finite state
machine, discussed in Example 6.10. In these realizations, in an iteration where the
reset input R arrives, the output O will not be produced, even if in the same iteration
A and B arrive.

Make a variant of each of these that performs weak preemption upon arrival of R.
That is, R prevents the output O from occurring only if it arrives strictly before both
A and B have arrived. Specifically:

Ptolemaeus, System Design 229

http://Ptolemy.org

EXERCISES

(a) Create a weak preemption ABRO that like Figure 6.18, uses only ordinary
transitions and has no hierarchy.

(b) Create a weak preemption ABRO that like Figure 6.19, uses any type of tran-
sition, but has no hierarchy.

(c) Create a weak preemption ABRO that like Figure 6.23, uses any type of tran-
sition and hierarchy.

5. Figures 6.19 and 6.23 show the ABRO example implemented as a flat and a hier-
archical state machine, respectively. Construct corresponding flat and hierarchical
ABCRO models, which wait for three inputs, A, B, and C. If you had to wait for,
say, 10 inputs, would you prefer to construct the flat or the hierarchical model?
Why?

6. André (1996) points out that termination transitions are not necessary, as local sig-
nals can be used instead. Construct a hierarchical version of ABRO like that in
Example 6.12 but without termination transitions.

7. The hierarchical FSM of Example 6.11 uses reset transitions, which initialize each
destination state refinement when it is entered. It also uses preemptive transitions,
which prevent firing of the refinement when taken. If these transitions were not
reset or preemptive transitions, then the flattened equivalent machine of Figure 6.22
would be much more complex.

(a) Construct a flat FSM equivalent to the hierarchical one in Figure 6.21, except
that the transitions from normal to faulty and back are not preemptive.

(b) Construct a flat FSM equivalent to the hierarchical one in Figure 6.21, except
that the transitions from normal to faulty and back are preemptive, as in Figure
6.21, but are also history transitions instead of reset transitions.

(c) Construct a flat FSM equivalent to the hierarchical one in Figure 6.21, except
that the transitions from normal to error and back are nonpreemptive history
transitions.

8. Consider the compact implementation of the ABRO state in Figure 6.19.

(a) Is it possible to do a similarly compact model that does not use nondetermin-
ism?

(b) Can a similarly compact variant of ABCRO be achieved without nondeter-
minism?

230 Ptolemaeus, System Design

http://Ptolemy.org

6. FINITE STATE MACHINES

9. This exercise studies relative priorities of transitions.

(a) Consider the following state machine:

guard: false
output: out = 1 output: out = 1

guard: false guard: false out
output: out = 1 output: out = 1 '

guard: false
output: out = 2

output: out = 2 output: out = 2 output: out = 2

guard: false guard: false
output out =3, output out = 3

output: out = 4

output out =4

output: out = 4 output: out = 4

Determine the output from the first six reactions.
(b) Consider the following state machine:

guard: false guard: false
output: out = 1 output: out = 1 output: out = 1

output: out = 2 output: out = 2

. guard: false S
K output' out = 3‘

output out =4

output out =4 OUTpUt out =4

output: out = 5

output: out = 5 output: out = 5

output: out = 5 output: out = 5

guard: false
output out =4

output out =4

'guard false
output out=3

,.'guard: false
/ output: out = 3

guard: false
output: out = 2

guard: false
output: out = 2

guard: false guard: false
output: out = 1 output: out = 1

Determine the output from the first six reactions.

Ptolemaeus, System Design 231

http://Ptolemy.org

