
Boston San Francisco New York

London Toronto Sydney Tokyo Singapore Madrid

Mexico City Munich Paris Cape Town Hong Kong Montreal

Laboratory Manual
T O A C C O M P A N Y

S T R U C T U R E A N D
I N T E R P R E T A T I O N O F

Signals and
Systems

Edward A. Lee

Pravin Varaiya
U n i v e r s i t y o f C a l i f o r n i a a t B e r k e l e y

Reproduced by Addison Wesley from electronic files supplied by Windfall Software.

Copyright © 2003 by Pearson Education, Inc.

All rights reserved. Publisher grants permission soley for classroom reproduction pro-
vided the above copyright notice appears on all classroom copies. No other reproduc-
tion or uses of this publication in any form or by any means without the prior written
permission of the publisher. For information, address Addison Wesley, 75 Arlington
Street, Suite 300, Boston, Massachusetts 02116.

ISBN: 0-321-16876-3

Laboratory Manual

This laboratory manual contains laboratory exercises based on MATLAB
and Simulink.∗ The purpose of these exercises is to help reconcile the declarative
(what is) and imperative (how to) points of view on signals and systems. The
mathematical treatment that dominates in the associated text is declarative in
that it asserts properties of signals and studies the relationships between signals
that are implied by systems. This laboratory manual focuses on an imperative
style, where signals and systems are constructed procedurally.

MATLAB and Simulink, distributed by The MathWorks, Inc., are chosen as
the basis for these exercises because they are widely used by practitioners in
the field, and because they are capable of realizing interesting systems. Why
use both MATLAB and Simulink? Although they are integrated into a single
package, MATLAB and Simulink are two very different pieces of software with
radically different approaches to modeling of signals and systems. MATLAB is
an imperative programming language, whereas Simulink is a block diagram
language. In MATLAB, one specifies the sequence of steps that construct a signal
or operate on a signal to produce a new signal. In Simulink, one connects blocks
that implement elementary systems to construct more interesting systems. The
systems we construct are aggregates of simpler systems.

MATLAB fundamentally operates on matrices and vectors. Simulink funda-
mentally operates on discrete and continuous-time signals. Finite discrete-time

∗ MATLAB and Simulink are registered trademarks of The MathWorks, Inc.

1

2 Laboratory Manual

signals, of course, can be represented as vectors. Continuous-time signals, how-
ever, can only be approximated. Simulink, since it is a computer program, must
of course approximate continuous-time signals by discretizing time. But that ap-
proximation is largely transparent, and the user (the model builder) can pretend
that he or she is operating directly on continuous-time signals.

There is considerable value in becoming adept with these software pack-
ages. MATLAB and Simulink are often used in practice for “quick-and-dirty”
prototyping of concepts. In a matter of a few hours, very elaborate models can
be constructed. This contrasts with the weeks or months that would often be
required to build a hardware prototype to test the same concept.

Of course, a conventional programming language such as C++ or Java could
also be used to construct prototypes of systems. However, these languages lack
the rich libraries of built-in functions that MATLAB and Simulink have. A task as
conceptually simple as plotting a waveform can take weeks of programming in
Java to accomplish well. Algorithms, such as the FFT or filtering algorithms, are
also built in, saving considerable effort.

MATLAB and Simulink both have capabilities that are much more sophisti-
cated than anything covered in this text. This may be a bit intimidating at first
(“what the heck is singular-value decomposition!?”). In fact, these tools are rich
enough in functionality to keep you busy for an entire career in engineering. You
will need to learn to ignore what you don’t understand, and focus on building
up your abilities gradually.

If you have no background in programming, these exercises will be difficult
at first. MATLAB, at its root, is a fairly conventional programming language, and
it requires a clear understanding of programming concepts such as variables
and flow of control (for loops, while loops). As programming languages go, it
is an especially easy one to learn. Its syntax (the way commands are written)
is straightforward and close to that of the mathematical concepts that it emu-
lates. Moreover, since it is an interpreted language (in contrast to a compiled
language), you can easily experiment by just typing in commands at the console
and seeing what happens. Be fearless! The worst that can happen is that you will
have to start over.

These labs assume the computer platform is Microsoft Windows, although
any platform capable of running MATLAB and Simulink will work, as long as it
has full support for sound and images.

Mechanics of the labs
The labs are divided into two distinct sections, in-lab and independent. The
purpose of the in-lab section is to introduce concepts needed for later parts of
the lab. Each in-lab section is designed to be completed during a scheduled lab
time with an instructor present to clear up any confusing or unclear concepts.
The in-lab section is completed by obtaining the signature of an instructor on a
verification sheet.

Laboratory Manual 3

The independent section begins where the in-lab section leaves off. It can be
completed within a scheduled lab period, or may be completed independently.
Students should write a brief summary of their solutions to the lab exercise. The
summary should clearly answer each question posed in the independent section
of the lab.

The lab writeup should be kept simple. It will typically include the names
of the members of the group (if the lab is done by a group), the time of the lab
section, the name of the lab, and the date. It should then proceed to give clear
answers to each of the questions posed by the lab. MATLAB code should be
provided in a fixed-width font (Courier New, 10pt, for example) and plots should
be clearly labeled and referenced in the writeup. Plots may be included directly
in the flow of the analysis. If included on a separate page, two to eight plots should
be placed on the same page, depending on the nature of the plots. Students can
copy MATLAB plots into most word processors using the Copy Figure command
in the Edit menu.

Here is an example of a response to a portion of a lab:

2. Simple Low Pass Filter

Figure L.1 shows the data before (top) and after (bottom) the low pass filter.
The low pass filter has the effect of smoothing sharp transitions in the original.

0 10 20 30 40 50 60 70 80 90 100
–15

–10
–5
0

5

0 10 20 30 40 50 60 70 80 90 100 –15

–10
–5

0
5

F I G U R E L . 1 : Before and after LPF.

4 Laboratory Manual

For instance, notice the disappearance of the step from sample points 91 to 94.
The MATLAB code used to generate the smoothed waveform v1 from the original
waveform x1 is:

h5 = [1 1 1 1 1] / 5;

v1 = firfilt(x1, h5);

Notes to the instructor
How to schedule the labs depends somewhat on the specific organization of a
course. At Berkeley, we have a 15 week course that covers chapters 1 through 11,
and we organize the labs as follows. In the first week, there is no lab assignment.
In the second week, the lab meeting is devoted to instructional technology. It
is intended to ensure that all participants in the class are comfortable with the
computing environment and software. The specific tasks that we ask students to
accomplish in this first meeting are:

Log in to a computer.
Find and print the instructor verification sheet for this lab.
Access the class Web page, and find and run at least one sound applet.
Send e-mail to the lab teaching assistant.
Start MATLAB and access its on-line help and its on-line demos. Find the
“help desk” and spend some time in the section “getting started.” Get familiar
with the tool.
Start Simulink and access its on-line demos.

In weeks 3 through 15, students complete one lab per week, with one gap where
the scheduled lab time is used to review for the midterm exam. The lectures and
reading assignments are closely coordinated with the lab assignments so that
students have seen in lecture the required background material prior to the lab
meeting.

L.1 Arrays and sound 5

L.1 Arrays and sound

The purpose of this lab is to explore arrays in MATLAB and to use them to
construct sound signals. The lab is designed to help you become familiar with
the fundamentals of MATLAB. It is self-contained in the sense that no additional
documentation for MATLAB is needed. Instead, we rely on the online help
facilities. Some people, however, much prefer to sit down with a tutorial text
about a piece of software, rather than relying on online help. There are many
excellent books that introduce MATLAB. Check your local bookstore or The
MathWorks’ Web site (http://www.mathworks.com/).

Note that there is some potential confusion because MATLAB uses the term
“function” somewhat more loosely than we do when we refer to mathematical
functions. Any MATLAB command that takes arguments in parentheses is called
a function. And most have a well-defined domain and range, and do, in fact,
define a mapping from the domain to the range. These can be viewed formally
as a (mathematical) function. Some, however, such as plot and sound are a bit
harder to view this way. The last exercise here explores this relationship.

L.1.1 In-lab section

To run MATLAB simply double-click on the MATLAB icon on the desktop, or find
the MATLAB command in the start menu. This will open a MATLAB command
window, which displays a prompt “>>”. You type commands at the prompt. The
“>>” is the MATLAB prompt. You do not type that part. Explore the built-in demos
by typing demo.

MATLAB provides an online help system accessible by using the help

command. For example, to get information about the function size, enter the
following:

>> help size

There also is a help desk (formatted in HTML for viewing from a Web
browser) with useful introductory material. It is accessed from the Help menu.
If you have no prior experience with MATLAB, see the topic “Getting Started” in
the help desk. Spend some time with this. You can find in the help desk all the
information you need to carry out the following exercises.

1. A variable in MATLAB is an array. An array has dimensions N × M , where
N and M are in Naturals. N is the number of rows and M is the number of
columns. If N = M = 1, the variable is a scalar. If N = 1and M > 1, then the
variable is a row vector. If N > 1 and M = 1, then the variable is a column
vector. If both N and M are greater than one, then the variable is a matrix,
and if N = M , then the variable is a square matrix. The coefficients of an
array are real or complex numbers.

(a) Each of the following is an assignment of a value to a variable called
array. For each, identify the dimensions of the array (M and N), and

6 Laboratory Manual

identify whether the variable is a scalar, row vector, column vector, or
matrix.

array = [1 2 3 4 5]

array = [1:5]

array = 1:5

array = [1:1:5]

array = [1:-1:-5]

array = [1 2; 3 4]

array = [1; 2; 3; 4]

(b) Create a 2 × 3 matrix containing arbitrary data. Explore using the
MATLAB functions zeros, ones, eye, and rand to create the matrix.
Find a way to use the square matrix eye(2) as part of your 2 × 3 matrix.
Verify the sizes of your arrays using size.

(c) Use the MATLAB commands size and length to determine the length
of the arrays given by 1:0.3:10 and 1:1:-1. Consider more generally
the array constructor pattern

array = start : step : stop

where start, stop, and step are scalar variables or real numbers. How
many elements are there in array? Give an expression in MATLAB in
terms of the variables start, stop, and step. That is, we should be able
to do the following:

>> start = 1;

>> stop = 5;

>> step = 1;

>> array = start:step:stop;

and then evaluate your expression and have it equal length(array).
(Notice that the semicolons at the end of each command above sup-
press MATLAB’s response to each command.) Hint: To get a general
expression, you will need something like the floor function. Verify your
answer for the arrays 1:0.3:10 and 1:1:-1.

2. MATLAB can be used as a general-purpose programming language. Unlike a
general-purpose programming language, however, it has special features for
operating on arrays that make it especially convenient for modeling signals
and systems.

(a) In this exercise, we will use MATLAB to compute

25∑
k=0

k.

Use a for loop (try help for) to specify each individual addition in the
summation.

L.1 Arrays and sound 7

(b) Use the sum function to give a more compact, one-line specification
of the sum in part (a). The difference between these two approaches
illustrates the difference between using MATLAB and using a more tra-
ditional programming language. The for loop is closer to the style one
would use with C++ or Java. The sum function illustrates what MATLAB
does best: compact operations on entire arrays.

(c) In MATLAB, any built-in function that operates on a scalar can also
operate on an array. For example,

>> sin(pi/4)

ans =

0.7071

>> sin([0 pi/4 pi/2 3*pi/4 pi])

ans =

0 0.7071 1.0000 0.7071 0.0000

This feature is called vectorization. Use vectorization to construct a
vector that tabulates the values of the sin function for the set {0, π/10,
2π/10, . . . , π}. Use the colon notation explored in the previous exercise.

(d) Given two arrays A and B that have the same dimensions, MATLAB can
multiply the elements pointwise using the .* operator. For example,

>> [1 2 3 4].*[1 2 3 4]

ans =

1 4 9 16

Use this pointwise multiply to tabulate the values of sin2 for the set

{0, π/10, 2π/10, . . . , π}.

3. A discrete-time signal may be approximated in MATLAB by a vector (either
a row or a column vector). In this exercise, you build a few such vectors and
plot them.

(a) Create an array that is a row vector of length 36, with zeros everywhere
except in the 18th position, which has value 1. (Hint: Try help zeros

to find a way to create a row vector with just zeros, and then assign the
18th element of this vector the value one.) This array approximates a
discrete-time impulse, which is a signal that is zero everywhere except
at one sample point. We will use impulses to study linear systems. Plot
the impulse signal, using both plot and stem.

8 Laboratory Manual

(b) Sketch by hand the sine wave x : [−1, 1]→ Reals, given by

∀ t ∈ [−1, 1], x(t) = sin(2π × 5t + π/6).

In your sketch carefully plot the value at time 0. Assume the domain
represents time in seconds. What is the frequency of this sine wave in
Hertz and in radians per second, what is its period in seconds, and how
many complete cycles are there in the interval [−1, 1]?

(c) Sample the function x from the previous part at 8 kHz, and using
MATLAB, plot the samples for the entire interval [−1, 1]. How many
samples are there?

(d) Change the frequency of the sine wave from the previous section to 440
Hz and plot the signal for the interval [−1, 1]. Why is the plot hard to
read? Plot the samples that lie in the interval [0, 0.01] instead (this is a
10-msec interval).

(e) The MATLAB function sound (see help sound) with syntax

>> sound(sampledSignal, frequency)

sends the one-dimensional array or vector sampledSignal to the audio
card in your PC. The second argument specifies the sampling frequency
in Hertz. The values in sampledSignal are assumed to be real numbers
in the range [−1.0, 1.0]. Values outside this range are clipped to −1.0 or
1.0. Use this function to listen to the signal you created in the previous
part. Listen to both a 10-msec interval and 2-second interval. Describe
what you hear.

(f) Listen to

>> sound(0.5*sampledSignal,frequency)

and

>> sound(2*sampledSignal,frequency)

where sampledSignal is the signal you created in part (d) above. Ex-
plain in what way are these different from what you heard in the previous
part. Listen to

>> sound(sampledSignal,frequency/2)

and

>> sound(sampledSignal,frequency*2)

Explain how these are different.

L.1.2 Independent section

1. Use MATLAB to plot the following continuous-time functions f : [−0.1, 0.1]→
Reals:

L.1 Arrays and sound 9

∀ t ∈ [−0.1, 0.1], f (t) = sin(2π × 100t)

∀ t ∈ [−0.1, 0.1], f (t) = exp(−10t) sin(2π × 100t)

∀ t ∈ [−0.1, 0.1], f (t) = exp(10t) sin(2π × 100t)

The first of these is a familiar sinusoidal signal. The second is a sinusoidal
signal with a decaying exponential envelope. The third is a sinusoidal signal
with a growing exponential envelope. Choose a sampling period so that the
plots closely resemble the continuous-time functions. Explain your choice
of the sampling period. Use subplot to plot all three functions in one tiled
figure. Include the figure in your lab report.

2. Use MATLAB to listen to a one-second sinusoidal waveform scaled by a
decaying exponential given by

∀ t ∈ [0, 1], f (t) = exp(−5t) sin(2π × 440t).

Use a sample rate of 8,000 samples/second. Describe how this sound is
different from sinusoidal sounds that you listened to in the in-lab section.

3. Construct a sound signal that consists of a sequence of half-second sinusoids
with exponentially decaying envelopes, as in the previous part, but with a
sequence of frequencies: 494, 440, 392, 440, 494, 494, and 494. Listen to
the sound. Can you identify the tune? In your lab report, give the MATLAB
commands that produce the sound.

4. This exercise explores the relationship between MATLAB functions and
mathematical functions.

(a) The sound function in MATLAB returns no value, as you can see from
the following:

>> x = sound(n)

??? Error using ==> sound

Too many output arguments.

Nonetheless, sound can be viewed as a function, with its range being
the set of sounds. Read the help information on the sound function
carefully and give a precise characterization of it as a mathematical func-
tion (define its domain and range). You may assume that the elements
of MATLAB vectors are members of the set Doubles, double-precision
floating-point numbers, and you may, for simplicity, consider only the
one-argument version of the function, and model only monophonic
(not stereo) sound.

(b) Give a similar characterization of the soundsc MATLAB function, again
considering only the one-argument version and monophonic sound.

(c) Give a similar characterization of the plot MATLAB function, consider-
ing the one-argument version with a vector argument.

Instructor Verification Sheet for Lab L.1

Name: Date:

1. MATLAB arrays.

Instructor verification:

2. MATLAB programming.

Instructor verification:

3. Discrete-time signals in MATLAB.

Instructor verification:

10 Laboratory Manual

L.2 Images 11

L.2 Images

The purpose of this lab is to explore images and colormaps. You will create
synthetic images and movies, and you will process a natural image by blurring
it and by detecting its edges.

L.2.1 Images in MATLAB

Figure L.2 shows a grayscale image where the intensity of the image varies
sinusoidally in the vertical direction. The top row of pixels in the image is white.
As you move down the image, it gradually changes to black, and then back
to white, completing one cycle. The image is 200 × 200 pixels so the vertical
frequency is 1/200 cycles per pixel. The image rendered on the page is about
10 × 10 centimeters, so the vertical frequency is 0.1 cycles per centimeter. The
image is constant horizontally (it has a horizontal frequency of 0 cycles per pixel).

We begin this lab by constructing the MATLAB commands that generate
this image. To do this, you need to know a little about how MATLAB represents
images. In fact, MATLAB is quite versatile with images, and we will only explore
a portion of what it can do.

50 100 150 200

20

40

60

80

100

120

140

160

180

200

F I G U R E L . 2 : An image where the intensity varies sinusoidally in the vertical direction.

12 Laboratory Manual

10 20 30 40 50 60

5

10

15

20

25

30

F I G U R E L . 3 : An image rendered by MATLAB.

An image in MATLAB can be represented as an array with two dimensions
(a matrix) where each element of the matrix indexes a colormap. Consider, for
example, the image constructed by the image command:

>> v = [1:64];

>> image(v);

This should create an image something like that shown in figure L.3, but in color.
The image is 1 pixel high by 64 pixels wide (MATLAB, by default, stretches the

image to fit the standard rectangular graphic window, so the one pixel vertically
is rendered as a very tall pixel). You could use the repmat MATLAB function
to make an image taller than 1 pixel by just repeating this row some number of
times.

The pixels each have value ranging from 1 to 64. These index the default
colormap, which has length 64 and colors ranging from blue to red through the
rainbow. To see the default colormap numerically, type

>> map = colormap

To verify its size, type

>> size(map)

ans =

64 3

L.2 Images 13

Notice that it has 64 rows and three columns. Each row is one entry in the col-
ormap. The three columns give the amounts of red, green, and blue, respectively,
in the colormap. These amounts range from 0 (none of the color present) to 1.0
(the maximum amount of the color possible). Examine the colormap to con-
vince yourself that it begins with blue and ends with red.

Change the colormap using the colormap command as follows:

>> map = gray(256);

>> colormap(map);

>> image([1:256]);

Examine the map variable to understand the resulting image. This is called a
grayscale colormap.

L.2.2 In-lab section

1. What is the representation in a MATLAB colormap for the color white? What
about black?

2. Create a 200 × 200 pixel image like that shown in figure L.2. You will want
the colormap set to gray(256), as indicated above. Note that when you
display this image using the image command, it probably will not be square.
This is because of the (somewhat annoying) stretching that MATLAB insists
on doing to make the image fit the default graphics window. To disable the
stretching and get a square image, issue the command axis image:

axis image

As usual with MATLAB, a brute-force way to create matrices is to use for
loops, but there is almost always a more elegant (and faster) way that exploits
MATLAB’s ability to operate on arrays all at once. Try to avoid using for loops
to solve this and subsequent problems.

3. Change your image so that the sinusoidal variations are horizontal rather
than vertical. Vary the frequency so that you get four cycles of the sinusoid
instead of one. What is the frequency of this image?

4. An image can have both vertical and horizontal frequency content at the
same time. Change your image so that the intensity at any point is the product
of a vertical and horizontal sinusoid. Be careful to stay within the numerical
range that indexes the colormap.

5. Get the image file from

http://www.aw.com/lee_varaiya/images/helen.jpg

Save it in some directory where you have write permission with the name
“helen.jpg”.

In MATLAB, change the current working directory to that directory using
the cd command. Then use imfinfo to get information about the file, as
follows:

14 Laboratory Manual

>> imfinfo(’helen.jpg’)

ans =

Filename: ’helen.jpg’

FileModDate: ’27-Jan-2000 10:48:16’

FileSize: 18026

Format: ’jpg’

FormatVersion: ’’

Width: 200

Height: 300

BitDepth: 24

ColorType: ’truecolor’

FormatSignature: ’’

Make a note of the file size, which is given in bytes. Then use imread to read
the image into MATLAB and display it as follows:

>> helen = imread(’helen.jpg’);

>> image(helen);

>> axis image

Use the whos command to identify the size, in bytes, and the dimensions of
the helen array. Can you infer from this what is meant by truecolor above?
The file is stored in JPEG format, where JPEG, which stands for Joint Pictures
Expert Group, is an image representation standard. The imread function
in MATLAB decodes JPEG images. What is the compression ratio achieved
by the JPEG file format (the compression ratio is defined to be size of the
uncompressed data in bytes divided by the size of the compressed data in
bytes)?

6. The helen array returned by imread has elements that are of type uint8,
which means unsigned 8-bit integers. The possible values for such numbers
are the integers from 0 to 255. The upper left pixel of the image can be
accessed as follows:

>> pixel = helen(1,1,:)

pixel(:,:,1) =

205

pixel(:,:,2) =

205

L.2 Images 15

pixel(:,:,3) =

205

In this command, the final argument is “:”, which means to MATLAB, return
all elements in the third dimension. The information about the result is:

>> whos pixel

Name Size Bytes Class

pixel 1x1x3 3 uint8 array

Grand total is 3 elements using 3 bytes

MATLAB provides the squeeze command to remove dimensions of length
one:

>> rgb = squeeze(pixel)

rgb =

205

205

205

Find the RGB values of the lower right pixel. By looking at the image, and
correlating what you see with these RGB values, infer how white and black
are represented in truecolor images.

L.2.3 Independent section

1. Construct a mathematical model for the MATLAB image function as used
in parts 3 and 4 of the in-lab section by giving its domain and its range.
Notice that the colormap, although it is not passed to image as an argument,
is in fact an argument. It is passed in the form of a global variable, the
current colormap. Your mathematical model should show this as an explicit
argument.

2. In MATLAB, you can create a movie using the following template:

numFrames = 15;

m = moviein(numFrames);

for frame = 1:numFrames;

... create an image X ...

image(X), axis image

m(:,frame) = getframe;

end

movie(m)

16 Laboratory Manual

The line with the getframe command grabs the current image and makes
it a frame of the movie. Use this template to create a vertical sinusoidal
image where the sine waves appear to be moving upward, like waves in water
viewed from above (i.e., create something like figure L.2, but where the wave
appears to be moving upward). Try help movie to learn about various ways
to display this movie.

3. We can examine individually the contributions of red, green, and blue to
the image by creating color separations. MATLAB makes this very easy
for truecolor images by providing its versatile array indexing mechanism. To
extract the red portion of the helen image created previously, we can simply
indicate:

red = helen(:,:,1);

The result is a 300 × 200 array of unsigned 8-bit integers, as we can see from
the following:

>> whos red

Name Size Bytes Class

red 300x200 60000 uint8 array

Grand total is 60000 elements using 60000 bytes

(Note that, strangely, the squeeze command is not needed whenever the
last dimension(s) collapse to size 1.) If we display this array, its value will be
interepreted as indexes into the current color map:

image(red), axis image

If the current colormap is the default one, then the image will look very off
indeed (and very colorful). Change the colormap to grayscale to get a more
meaningful image:

map = gray(256);

colormap(map);

The resulting image gives the red portion of the image, albeit rendered in
black and white. Construct a colormap to render it in red. Show the MATLAB
code that does this in your report (you need not show the image). Then give
similar color separations for the green and blue portions. Again, showing
the MATLAB code is sufficient. Hint: Create a matrix to multiply pointwise
by the map matrix above (using the .* operator) to zero out two of its three
columns. The zeros and ones functions might be useful.

4. A moving average can be applied to an image, with the effect of blurring
it. For simplicity, operate on a black-and-white image constructed from the
preceding red color separation as follows:

L.2 Images 17

>> bwImage = double(red);

>> image(bwImage), axis image

>> colormap(gray(256))

The first line converts the image to an array of doubles instead of unsigned 8-
bit integers because MATLAB cannot operate numerically on unsigned 8-bit
integers. The remaining two lines simply display the image using a grayscale
colormap.

Construct a new image where each pixel is the average of 25 pixels
in the original image, where the 25 pixels lie in a 5 × 5 square. The new
image will need to be slightly smaller than the original (figure out why).
The result should be a blurred image because the moving average reduces
the high frequency content of a signal, and sharp edges are high-frequency
phenomena.

5. A simple way to perform edge detection on a black-and-white image is to
calculate the difference between a pixel and the pixel immediately above it
and to the left of it. If either difference exceeds some threshold, we decide
there is an edge at that position in the image. Perform this calculation on the
image bwImage given in the previous part. To display with the edges, start
with a white image the same size or slightly smaller than the original image.
When you detect an edge at a pixel, replace the white pixel with a black one.
The resulting image should resemble a line drawing of Helen. Experiment
with various threshold values. Hint: To perform the threshold test, you will
probably need the MATLAB if command. Try help if and help relop.

Note: Edge detection is often the first step in image understanding,
which is the automatic interpretation of images. A common application of
image understanding is optical character recognition or OCR, which is
the transcription of printed documents into computer documents.

The difference between pixels tends to emphasize high-frequency con-
tent in the image and deemphasize low-frequency content. This is why it is
useful in detecting edges, which are high-frequency content. This is obvious
if we note that frequency in images refers to the rate of change of intensity
over space. That rate is very fast at edges.

Instructor Verification Sheet for Lab L.2

Name: Date:

1. Representation in a colormap of white and black.

Instructor verification:

2. Vertical sinusoidal image.

Instructor verification:

3. Horizontal higher frequency image. Give the frequency.

Instructor verification:

4. Horizontal and vertical sinusoidal image.

Instructor verification:

5. Compression ratio.

Instructor verification:

6. Representation in truecolor of white and black.

Instructor verification:

18 Laboratory Manual

L.3 State machines 19

L.3 State machines

State machines are sequential. They begin in a starting state, and react to a
sequence of inputs by sequentially transitioning between states. Implementation
of state machines in software is fairly straightforward. In this lab, we explore doing
this systematically, and build up to an implementation that composes two state
machines.

L.3.1 Background

Strings in MATLAB
State machines operate on sequences of symbols from an alphabet. Sometimes,
the alphabet is numeric, but more commonly, it is a set of arbitrary elements with
names that suggest their meaning. For example, the input set for the answering
machine in figure 3.1 is

Inputs = {ring, offhook, end greeting, end message, absent}.

Each element of the above set can be represented in MATLAB as a string (try
help strings). Strings are surrounded by single quotes. For example,

>> x = ’ring’;

The string itself is an array of characters, so you can index individual characters,
as in

>> x(1:3)

ans =

rin

You can join strings just as you join ordinary arrays,

>> y = ’the’;

>> z = ’bell’;

>> [x, y, z]

ans =

ringthebell

However, this is not necessarily what you want. You may want instead to construct
an array of strings, where each element of the array is a string (rather than a
character). Such a collection of strings can be represented in MATLAB as a cell
array,

20 Laboratory Manual

>> c = {’ring’ ’offhook’ ’end greeting’ ’end message’ ’absent’};

Notice the curly braces instead of the usual square braces. A cell array in MATLAB
is an array where the elements of the array are arbitrary MATLAB objects (such
as strings and arrays). Cell arrays are indexed like ordinary arrays, so

>> c(1)

ans =

’ring’

Often, you wish to test a string to see whether it is equal to some string. You
usually cannot compare strings or cells of a cell array using ==, as illustrated here:

>> c = ’ring’;

>> if (c == ’offhook’) result = 1; end

??? Error using ==> ==

Array dimensions must match for binary array op.

>> c = {’ring’ ’offhook’ ’end greeting’ ’end message’ ’absent’};

>> if (c(1) == ’ring’) result = 1; end

??? Error using ==> ==

Function ’==’ not defined for variables of class ’cell’.

Strings should instead be compared using strcmp or switch (see the online
help for these commands).

M-files
In MATLAB, you can save programs in a file and execute them from the command
line. The file is called an m-file, and has a name of the form command.m, where
command is the name of the command that you enter on the command line to
execute the program.

You can use any text editor to create and edit m-files, but the one built into
MATLAB is probably the most convenient. To invoke it, select “New” and “M-file”
under the “File” menu.

To execute your program, MATLAB needs to know where to find your file.
The simplest way to handle this is to make the current directory in MATLAB the
same as the directory storing the m-file. For example, if you put your file in the
directory

D:\users\eal

then the following will make the file visible to MATLAB:

>> cd D:\users\eal

>> pwd

L.3 State machines 21

ans =

D:\users\eal

The cd command instructs MATLAB to change the current working directory.
The pwd command returns the current working directory (probably the mne-
monic is present working directory).

You can instruct MATLAB to search through some sequence of directories
for your m-files, so that they do not have to all be in the same directory. See help

path. For example, instead of changing the current directory, you could type

path(path, ’D:\users\eal’);

This command tells MATLAB to search for functions wherever it was searching
before (the first argument path) and also in the new directory.

Suppose you create a file called hello.m containing

% HELLO - Say hello.

disp(’Hello’);

The first line is a comment. The disp command displays its argument without
displaying a variable name. On the command line, you can execute this

>> hello

Hello

Command names are not case sensitive, so HELLO is the same as Hello and
hello. The comment in the file is used by MATLAB to provide online help. Thus,

>> help hello

HELLO - Say hello.

The M-file above is a program, not a function. There is no returned value.
To define a function, use the function command in your m-file. For example,
store the following in a file reverse.m:

function result = reverse(argument)

% REVERSE - return the argument array reversed.

result = argument(length(argument):-1:1);

Then try:

>> reverse(’hello’)

ans =

olleh

The returned value is the string argument reversed.

22 Laboratory Manual

A function can have any number of arguments and returned values. To define
a function with two arguments, use the syntax

function [result1, result2] = myfunction(arg1, arg2)

and then assign values to result1 and result2 in the body of the file. To use
such function on the command line, you must assign each of the return values
to a variable as follows:

>> [r1, r2] = myfunction(a1, a2);

The names of the arguments and result variables are arbitrary.

L.3.2 In-lab section

1. Write a for loop that counts the number of occurrences of ’a’ in

>> d = {’a’ ’b’ ’a’ ’a’ ’b’};

Then define a function count that counts the number of occurrences of
’a’ in any argument. How many occurrences are there in the following two
examples?

>> x = [’a’, ’b’, ’c’, ’a’, ’aa’];

>> y = {’a’, ’b’, ’c’, ’a’, ’aa’};

>> count(x)

ans =

??

>> count(y)

ans =

??

Why are they different?
2. The input function can be used to interactively query the user for input.

Write a program that repeatedly asks the user for a string and then uses your
count function to report the number of occurrences of ’a’ in the string.
Write the program so that if the user enters quit or exit, the program exits,
and otherwise, it asks for another input. Hint: Try help while and help

break.
3. Consider the state machine in figure L.4. Construct an m-file containing

a definition of its update function. Then construct an m-file containing a
program that queries the user for an input, then if the input is in the input
alphabet of the machine, uses it to react, and then asks the user for another

L.3 State machines 23

0 1

{1} / 0

{0} / 1

{0} / 0 {1} / 1

Inputs = {0, 1, absent}
Outputs = {0, 1, absent}

F I G U R E L . 4 : A simple state machine.

input. If the input is not in the input alphabet, the program should assume
the input is absent and stutter. Be sure that your update function handles
stuttering.

L.3.3 Independent section

1. Design a virtual pet,∗ in this case a cat, by constructing a state machine,
writing an update function, and writing a program to repeatedly execute the
function, as in previous (3). The cat should behave as follows:

It starts out happy. If you pet it, it purrs. If you feed it, it throws up. If time
passes, it gets hungry and rubs against your legs. If you feed it when it is
hungry, it purrs and gets happy. If you pet it when it is hungry, it bites you. If
time passes when it is hungry, it dies.

The italicized phrases in this description should be elements in either the
state space or the input or output alphabets. Give the input and output
alphabets and a state transition diagram. Define the update function in
MATLAB, and write a program to execute the state machine until the user
types “quit” or “exit.”

2. Construct a state machine that provides inputs to your virtual cat so that the
cat never dies. In particular, your state machine should generate time passes
and feed outputs in such a way that the cat never reaches the dies state.

Note that this new state machine does not have particularly meaningful
inputs. You can let the input alphabet be

Inputs = {1, absent}

∗ This problem is inspired by the Tamagotchi virtual pet made by Bandai in Japan. Tamagotchi, which
translates as “cute little egg,” were extremely popular in the late 1990s, and had behavior considerably
more complex than that described in this exercise.

24 Laboratory Manual

where an input of 1 indicates that the machine should output a nonstuttering
output, and an input of absent means it should output a stuttering output.

Write a program where your feeder state machine is composed in cas-
cade with your cat state machine, and verify (experimentally) that the cat
does not die. Your state machine should allow time to pass (by producing an
infinite number of time passes outputs) but should otherwise be as simple
as possible.

Note that a major point of this exercise is to show that systematically
constructed state machines can be very easily composed.

The feeder state machine is called an open-loop controller because it
controls the pet without observing the output of the pet. For most practical
systems, it is not possible to design an open-loop controller. The next lab
explores closed-loop controllers.

Instructor Verification Sheet for Lab L.3

Name: Date:

1. Count the number of occurrences of a. Understand the difference between a
cell array and an array.

Instructor verification:

2. Write a program with an infinite loop and user input.

Instructor verification:

3. Construct and use update function.

Instructor verification:

25L . 3 State machines

26 Laboratory Manual

L.4 Control systems

This lab extends the previous one by introducing nondeterminism and feedback.
In particular, you will modify the virtual pet that you constructed last time so that
it behaves nondeterministically. The modification will make it impossible to keep
the pet alive by driving it with another state machine in a cascade composition.
You will instead have to use a feedback composition.

This scenario is typical of a control problem. The pet is a system to be
controlled, with the objective of keeping it alive. You will construct a controller
that observes the output of the virtual pet, and based on that output, constructs
an appropriate input that will keep the pet alive. Since this controller observes
the output of the pet, and provides input to the pet, it is called a closed-loop
controller.

L.4.1 Background

Nondeterministic state machines have a possibleUpdates function rather than an
update function. The possibleUpdates function returns a set of possible updates.
You will construct this function to return a cell array, which was explored in the
previous lab.

A software implementation of a nondeterministic state machine can ran-
domly choose from among the results returned by possibleUpdates. It could
conceptually flip coins to determine which result to choose each time. In soft-
ware, the equivalent of coin flips is obtained through pseudo-random number
generators. The MATLAB function rand is just such a pseudo-random number
generator. The way that it works is that each time you use it, it gives you a new
number (try help rand).

For this lab, you will need to be able to use cell arrays in more sophisticated
ways than in the previous lab. Recall that a cell array is like an ordinary array,
except that the elements of the array can be arbitrary MATLAB objects, including
strings, arrays, or even cell arrays. A cell array can be constructed using curly
braces instead of square brackets, as in

>> letters = {’a’, ’b’, ’c’, ’d’, ’e’};

>> whos letters

Name Size Bytes Class

letters 1x5 470 cell array

Grand total is 10 elements using 470 bytes

The elements of the cell array can be accessed like elements of any other
array, but there is one subtlety. If you access an element in the usual way, the
result is a cell array, which might not be what you expect. For example,

L.4 Control systems 27

>> x = letters(2)

x =

’b’

>> whos x

Name Size Bytes Class

x 1x1 94 cell array

Grand total is 2 elements using 94 bytes

To access the element as a string (or whatever the element happens to be),
then use curly braces when indexing the array, as in

>> y = letters{2}

y =

b

>> whos y

Name Size Bytes Class

y 1x1 2 char array

Grand total is 1 elements using 2 bytes

Notice that now the result is a character array rather than a 1× 1 cell array.
You can also use curly braces to construct a cell array piece by piece. Here,

for example, we construct and display a two-dimensional cell array of strings,
and then access one of the elements as a string.

>> t{1,1} = ’upper left’;

>> t{1,2} = ’upper right’;

>> t{2,1} = ’lower left’;

>> t{2,2} = ’lower right’;

>> t

t =

’upper left’ ’upper right’

’lower left’ ’lower right’

>> t{2,1}

28 Laboratory Manual

ans =

lower left

You can find out the size of a cell array in the usual way for arrays:

>> [rows, cols] = size(t)

rows =

2

cols =

2

You can also extract an entire row or column from the cell array the same way
you do it for ordinary arrays, using “:” in place of the index. For example, to get
the first row, do

>> t(1,:)

ans =

’upper left’ ’upper right’

L.4.2 In-lab section

1. Construct a MATLAB function select that, given a cell array with one row as
an argument, returns a randomly chosen element of the cell array. Use your
function to generate a random sequence of 10 letters from the cell array

>> letters = {’a’, ’b’, ’c’, ’d’, ’e’};

Hint: The MATLAB function floor combined with rand might prove useful
to get random indexes into the cell array.

2. Construct a MATLAB function chooserow that, given a cell array with one or
more rows, randomly chooses one of the rows and returns it as a cell array.
Apply your function a few times to the t array that we constructed above.

3. A nondeterministic state machine has a possibleUpdates function rather than
updates. This function returns a set of pairs, where each pair is a new state
and an output.

A convenient MATLAB implementation is a function that returns a two-
dimensional cell array, with each of the possible updates on one row. As a
first step toward this, modify your realization of the update function for the
virtual cat of the previous lab so that it returns a 1× 2 cell array with the

L.4 Control systems 29

next state and output. Also modify your program that runs the cat (without
the driver) so that it uses your new function. Verify that the cat still works
properly.

4. Now modify the cat’s behavior so that if it is hungry and you feed it, it
sometimes gets happy and purrs (as it did before), but it sometimes stays
hungry and rubs against your legs (i.e., change your update function so that
if the state is hungry and you feed the cat, then return a 2 × 2 cell array where
the two rows specify the two possible next state, output pairs). Modify the
program that runs the cat to use your chooserow function to choose from
among the options.

5. Compose your driver machine from the previous lab with your nondeter-
ministic cat, and verify that the driver no longer keeps the cat alive. In fact,
no open-loop controller will be able to keep the cat alive and allow time
to pass. In the independent section of this lab, you will construct a closed-
loop controller that keeps the cat alive. It is a feedback composition of state
machines.

L.4.3 Independent section

Design a deterministic state machine that you can put into a feedback composi-
tion with your nondeterministic cat so that the cat is kept alive and time passes.
Give the state transition diagram for your state machine and write a MATLAB
function that implements its update function. Write a MATLAB program that im-
plements the feedback composition.

Note that your program that implements the feedback composition faces a
challenging problem. When the program starts, neither the inputs to the con-
troller machine nor the inputs to the cat machine are available. So neither
machine can react. For your controller machine, you should define MATLAB
functions for both update, which requires a known input, and output, which does
not. The output function, given the current state, returns the output that will be
produced by the next reaction, if it is known, or unknown if it is not known. In the
case of your controller, it should always be known, or the feedback composition
will not be well formed.

Verify (by running your program) that the cat does not die.

Instructor Verification Sheet for Lab L.4

Name: Date:

1. Generated random sequence of letters using select.

Instructor verification:

2. Applied chooserow to the t array.

Instructor verification:

3. The cat still works with the update function returning a cell array.

Instructor verification:

4. The nondeterministic cat sometimes stays hungry when fed.

Instructor verification:

5. The nondeterministic cat dies under open-loop control.

Instructor verification:

30 Laboratory Manual

L.5 Difference equations 31

L.5 Difference equations

The purpose of this lab is to construct difference equation models of systems
and to study their properties. In particular, we experimentally examine stability
by constructing stable, unstable, and marginally stable systems. We will also
introduce elementary complexity measures. The principal new MATLAB skill
required to develop these concepts is matrix operations.

L.5.1 In-lab section

1. MATLAB is particularly good at matrix arithmetic. In this problem, we explore
matrix multiplication (see Basics: Matrix arithmetic on page 175 of the text).

(a) Consider the 2 × 2 matrix

M =
[

1 1
0 1

]

Without using MATLAB, give Mn, for n = 0, 1, 2, 3. Recall that by mathe-
matical convention, for any square matrix M , M0 = I , the identity matrix,
so in this case,

M0 =
[

1 0
0 1

]
.

Guess the general form of the matrix Mn. That is, give an expression for
each of the elements of the matrix Mn.

(b) Use MATLAB to compute M25. Was your guess correct? Calculate a few
more values using MATLAB until your guess is correct.

(c) If your guess was correct, try to show it using induction. That is, first show
that your guess for Mn is correct for some fixed n, like, for example, n = 0.
Then assume your guess for Mn is correct for some fixed n, and show
that it is correct for Mn+1.

2. A vector is a matrix where either the number of rows is one (in the case of
a row vector) or the number of columns is one (in the case of a column
vector). Let

b =
[

2
3

]

be a column vector. We can equally well write this b = [2, 3]T , where the
superscript T indicates that the row vector [2, 3] is transposed to make a
column vector.

32 Laboratory Manual

(a) Create a column vector in MATLAB equal to b above. Multiply it by M ,
given in the previous problem. Try forming both bM and Mb. Why does
only one of these two work?

(b) Create a row vector by transposing b. (Try help transpose or look up
“transpose” in the help desk.) Multiply this transpose by M . Try both bT M
and MbT . Why does only one of them work?

3. Consider a two-dimensional difference equation system given by

A = σ

[
cos(ω) − sin(ω)

sin(ω) cos(ω)

]
, b =

[
0
1

]
, c = σ

[− cos(ω)

sin(ω)

]
, d = 0,

where ω, σ ∈ Reals. Note that this is similar to the systems studied in exercises
10 and 14 of chapter 5, with the differences being the multiplying constant σ
and the c vector. Let ω = π/8 and plot the first 100 samples of the zero-state
impulse response for the following values of σ .

(a) σ = 1.
(b) σ = 0.95.
(c) σ = 1.05.
(d) For which values of σ is the result periodic? What is the period? The

system producing the periodic output is called an oscillator.
(e) You have constructed three distinct difference equation systems. One

of these is a stable system, one is an unstable system, and one is a
marginally stable system. Which is which? You can infer the answer
from the ordinary English-language meaning of the word “stable.” What
will happen if the unstable system is allowed to continue to run beyond
the 100 samples you calculated?

L.5.2 Independent section

1. In lab L.1, you constructed a sound waveform f : Reals → Reals given by

∀ t ∈ [0, 1], f (t) = exp(−5t) sin(2π × 440t).

You wrote a MATLAB script that calculated samples of this waveform at a
sample rate of 8,000 samples/second. In this lab, we will construct the same
waveform in a very different way, using difference equations.

Construct a difference equation system with impulse response given by

∀ n ∈ Naturals0, h(n) = exp(−5n/8,000) sin(2π × 440n/8,000).

Give the matrix A, the vectors b, and c, and the scalar d of (5.33) and (5.34).
Also give a MATLAB program that produces the first 8,000 samples of this

L.5 Difference equations 33

impulse response and plays it as a sound. Hint: You will need to understand
what you did in problem 3 of the in-lab section.

2. For the system with the impulse response constructed in part 1, change the
input so it consists of an impulse every 1/5 of a second (i.e., at an 8,000
samples/second sample rate),

x(n) =
{

1 if n is a multiple of 1,600
0 otherwise

Write a MATLAB script that plays two seconds of sound with this input.
(Note: This is a simplified model of a guitar string being repeatedly plucked.
The model is justifiable on physical grounds, although it is a fairly drastic
simplification.)

3. Compare the complexity of the state machine model and the one you con-
structed in lab L.1. In particular, assuming in each case that you generate
one second of sound at an 8,000 samples/second sample rate, count the
number of scalar multiplications and additions that must be done to con-
struct the sound vector. In the realization in lab L.1, you used the built-in
MATLAB functions exp and sin. These functions are surprisingly expensive
to compute, so count each evaluation of exp or sin on a scalar argument as
20 multiplications and 15 additions (they are actually typically more expen-
sive even than this). You should find that the state machine realization is far
less expensive by this measure. Do not count the cost of the MATLAB sound

function, which we can’t easily determine.

Instructor Verification Sheet for Lab L.5

Name: Date:

1. Matrix multiplication in MATLAB, and induction demonstration.

Instructor verification:

2. Matrix-vector multiplication.

Instructor verification:

3. Sinusoids with exponential envelopes; stability.

Instructor verification:

34 Laboratory Manual

L.6 Differential equations 35

L.6 Differential equations

The purpose of this lab is to experiment with models of continuous-time sys-
tems that are described as differential equations. The exercises aim to solidify
state-space concepts while giving some experience with software that models
continuous-time systems.

The lab uses Simulink, a companion to MATLAB. The lab is self-contained,
in the sense that no additional documentation for Simulink is needed. Instead,
we rely on the online help facilities. Be warned, however, that these are not as
good for Simulink as for MATLAB. The lab exercise will guide you, trying to steer
clear of the more confusing parts of Simulink.

Simulink is a block-diagram modeling environment. As such, it has a more
declarative flavor than MATLAB, which is imperative. You do not specify exactly
how signals are computed in Simulink. You simply connect together blocks that
represent systems. These blocks declare a relationship between the input signal
and the output signal.

Simulink excels at modeling continuous-time systems. Of course, contin-
uous-time systems are not directly realizable on a computer, so Simulink must
simulate the system. There is quite a bit of sophistication in how this is done.
The fact that you do not specify how it is done underscores the observation that
Simulink has a declarative flavor.

The simulation is carried out by a solver, which examines the block diagram
you have specified and constructs an execution that simulates its behavior. As
you read the documentation and interact with the software, you will see various
references to the solver. In fact, Simulink provides a variety of solvers, and many
of these have parameters you can control. Indeed, simulation of continuous-time
systems is generally inexact, and some solvers work better on some models than
others. The models that we will construct work well with the default solver, so
we need not be concerned with this (considerable) complication.

Simulink can also model discrete-time systems, and (a bit clumsily) mixed
discrete and continuous-time systems. We will emphasize the continuous-time
modeling because this cannot be done (conveniently) in MATLAB, and it is really
the strong suit of Simulink.

L.6.1 Background

To run Simulink, start MATLAB and type simulink at the command prompt.
This will open the Simulink library browser. To explore Simulink demos, at the
MATLAB command prompt, type demo, and then find the Simulink item in the list
that appears. To get an orientation about Simulink, open the help desk (using the
Help menu), and find Simulink. Much of what is in the help desk will not be very
useful to you. Find a section with a title “Building a Simple Model” or something
similar and read that.

36 Laboratory Manual

We will build models in state-space form, as in chapter 5, and as in the
previous lab, but in continuous time. A continuous-time state-space model for
a linear system has the form (see section 5.4):

ż(t) = Az(t) + bv(t) (L.1)

w(t) = cz(t) + dv(t) (L.2)

where

z: Reals → RealsN gives the state response;
ż(t) is the derivative of z evaluated at t ∈ Reals;
v: Reals → Reals is the input signal; and
w: Reals → Reals is the output signal.

The input and output are scalars, so the models are SISO, but the state is a vector
of dimension N , which in general can be larger than one. The derivative of a
vector z is simply the vector consisting of the derivative of each element of the
vector.

The principle that we will follow in modeling such a system is to use an
Integrator block, which looks like this in Simulink:

s

1

Integrator

This block can be found in the library browser under “Simulink” and “Continu-
ous.” Create a new model by clicking on the blank-document icon at the upper
left of the library browser, and drag an integrator into it. You should see the same
icon as previously.

If the input to the integrator is ż, then the output is z (just think about what
happens when you integrate a derivative). Thus, the pattern we will follow is to
provide as the input to this block a signal ż.

We begin with a one-dimensional system (N = 1) in order to get familiar with
Simulink. Consider the scalar differential equation

ż(t) = az(t) (L.3)

where a ∈ Reals is a given scalar and z: Reals → Reals and z(0) is some given
initial state. We will set things up so that the input to the integrator is ż and the
output is z. To provide the input, however, we need the output, since ż(t) = az(t).
So we need to construct a feedback system that looks like this:

L.6 Differential equations 37

s

1

Integrator

1

Gain

This model seems self-referential, and in fact it is, just as is (L.3).
Construct the preceding model. You can find the triangular “Gain” block in

the library browser under “Simulink” and “Math.” To connect the blocks, simply
place the cursor on an output port and click and drag to an input port.

After constructing the feedback arc, you will likely see the following:

Gain
s

1

Integrator

1

This is simply because Simulink is not very smart about routing your wires. You
can stretch the feedback wire by clicking on it and dragging downward so that
it does not go over top of the blocks.

This model, of course, has no inputs, no initial state, and no outputs, so it will
not be very interesting to run it. You can set the initial state by double clicking on
the integrator and filling in a value under “initial condition.” Set the initial state to
1. Why is the initial state a property of the integrator? Because its output at time
t is the state at time t. The “initial condition” parameter gives the output of the
integrator when the model starts executing. Just like the feedback compositions
of state machines in chapter 4, we need at least one block in the feedback loop
whose output can be determined without knowing its input.

You will want to observe the output. To do this, find a block called “Scope”
under “Simulink” and “Sinks” in the library browser, and drag it into your design.
Connect it so that it displays the output of the integrator, as follows:

Scope

s

1

Integrator

1

Gain

To make the connection, you need to hold the Control key while dragging
from the output port of the integrator to the input port of the Scope. We are
finished with the basic construction of the model. Now we can experiment
with it.

38 Laboratory Manual

L.6.2 In-lab section

1. Set the gain of the gain block by double-clicking on the triangular icon. Set
it to −0.9. What value of a does this give you in the equation (L.3)?

2. Run the model for 10 time units (the default). To run the model, choose
“Start” under the “Simulation” menu of the model window. To control the
number of time units for the simulation, choose “Parameters” under the
“Simulation” menu. To examine the result, double-click on the Scope icon.
Clicking on the binoculars icon in the scope window will result in a better
display of the result.

3. Write down analytically the function z given by this model. You can guess
its form by examining the simulation result. Verify that it satisfies (L.3) by
differentiating.

4. Change the gain block to have value 0.9 instead of −0.9 and re-run the
model. What happens? Is the system stable? (Stable means that if the input
is bounded for all time, then the output is bounded for all time. In this case,
clearly the input is bounded since it is zero.) Give an analytical formula for
z for this model.

5. Experiment with values of the gain parameter. Determine over what range
of values the system is stable.

L.6.3 Independent section

Continuous-time linear state-space models are reasonable for some musical in-
struments. In this exercise, we will simulate an idealized and a more realistic
tuning fork, which is a particularly simple instrument to model. The model will
be a two-dimensional continuous-time state-space model.

Consider the state and output equations (L.1) and (L.2). Since the model
is two dimensional, the state at each time is now a two-dimensional vector. The
“initial condition” parameter of the Integrator block in Simulink can be given a
vector. Set the initial value to the column vector

z(0) =
[

1
0

]
. (L.4)

The factor Amust be a 2 × 2 matrix if the state is a two-dimensional column vector.
Unfortunately, the Gain block in Simulink cannot be given a matrix parameter.
You must replace the Gain block with the MatrixGain block, also found in the
“Math” library under “Simulink” in the library browser.

At first, we will assume there is no input, and we will examine the state
response. Thus, we are only concerned at first with the simplified state equation

ż(t) = Az(t). (L.5)

L.6 Differential equations 39

Recall that in chapter 2, equation (2.11) states that the displacement x(t) at time
t of a tine of the tuning fork satisfies the differential equation

ẍ(t) = −ω2
0x(t)

where ω0 is constant that depends on the mass and stiffness of the tine, and where
ẍ(t) denotes the second derivative with respect to time of x (see Probing Further:
Physics of a Tuning Fork on page 61 of the text). This does not have the form of
(L.5). However, we can put it in that form using a simple trick. Let

z(t) =
[

x(t)
ẋ(t)

]

and observe that

ż(t) =
[

ẋ(t)
ẍ(t)

]
.

Thus, we can write (L.5) as

ż(t) =
[

ẋ(t)
ẍ(t)

]
=

[
a1,1 a1,2
a2,1 a2,2

] [
x(t)
ẋ(t)

]

for suitably chosen constants a1,1, a1,2, a2,1, and a2,2.

1. Find a1,1, a1,2, a2,1, and a2,2 for the tuning fork model.
2. Use Simulink to plot the state response of the tuning fork when the initial state

is given by (L.4). You will have to pick a value of ω0. Use Simulink to help
you find a value of ω0 so that the state completes one cycle in 10 time units.
Each sample of the state response has two elements. These represent the
displacement and speed, respectively, of the tuning fork tine in the model.
The displacement is what directly translates into sound.

3. Change ω0 so that the state has a frequency of 440 Hz, assuming the time
units are seconds. Change the simulation parameters so that you run the
model through five complete cycles.

4. Change the simulation parameters so that you run the model through one
second. Use the Simulink To Workspace block to write the result to the
workspace, and then use the MATLAB soundsc function to listen to it. Note:
You will need to set the sample time parameter of the To Workspace block
to 1/8,000. You will also need to specify that the save format should be a
matrix. For your lab report, print your block diagram and annotate it with all
the parameters that have values different from the defaults.

5. In practice, a tuning fork will not oscillate forever as the model does. We can
add damping by modifying the matrix A. Try replacing the zero value of a2,2
with −10. What happens to the sound? This is called damping. Experiment

40 Laboratory Manual

F I G U R E L . 5 : Four modes of vibration of a guitar string.

with different values for a2,2. Describe how the different values affect the
sound. Determine (experimentally) for what values of a2,2 the system is
stable.

6. A tuning fork is not much of a musical instrument. Its sound is too pure
(spectrally). A guitar string, however, operates on similar principles as the
tuning fork, but has a much more appealing sound.

A tuning fork vibrates with only one mode. A guitar string, however,
vibrates with multiple modes, as illustrated in figure L.5. Each of these vibra-
tions produces a different frequency. The top one in the figure produces the
lowest frequency, called the fundamental, which is typically the frequency
of the note being played, such as 440 Hz for A-440. The next mode produces
a component of the sound at twice that frequency, 880 Hz; this component
is called the first harmonic. The third produces three times the frequency,
1,320 Hz, and the fourth produces four times the fundamental, 1,760 Hz;
these components are the second and third harmonics.

If the guitar string is undamped, and the fundamental frequency is f0
Hz, then the combined sound is a linear combination of the fundamental
and the three (or more) harmonics. This can be written as a continuous-time
function y where for all t ∈ Reals,

y(t) =
N∑

k=0

cksin(2π fkt)

where N is the number of harmonics and ck gives the relative weights of these
harmonics. The values of ck will depend on the guitar construction and how
it is played, and affect the timbre of the sound.

The model you have constructed above generates a damped sinusoid at
440 Hz. Create a Simulink model that produces a fundamental of 440 Hz plus

L.6 Differential equations 41

three harmonics. Experiment with the amplitudes of the harmonics relative
to the fundamental, as well as with the rates of decay of the four components.
Note how the quality of the sound changes. Your report should include a
printout of your model with the parameter values that you have chosen to
get a sound like that of a plucked string.

Instructor Verification Sheet for Lab L.6

Name: Date:

1. Value of a.

Instructor verification:

2. Plot of the state response.

Instructor verification:

3. Formula for function z. Verified by differentiating.

Instructor verification:

4. Formula for function z.

Instructor verification:

5. Range of values for the gain over which the system is stable.

Instructor verification:

42 Laboratory Manual

L.7 Spectrum 43

L.7 Spectrum

The purpose of this lab is to learn to examine the frequency domain content of
signals. Two methods will be used. The first method will be to plot the discrete
Fourier series coefficients of finite signals. The second will be to plot the Fourier
series coefficients of finite segments of time-varying signals, creating what is
known as a spectrogram.

L.7.1 Background

A finite discrete-time signal with p samples has a discrete-time Fourier series
expansion

x(n) = A0 +
(p−1)/2∑

k=1

Ak cos(kω0n + φk) (L.6)

for p odd and

x(n) = A0 +
p/2∑
k=1

Ak cos(kω0n + φk) (L.7)

for p even, where ω0 = 2π/p.
A finite signal can be considered to be one cycle of a periodic signal with

fundamental frequency ω0, in units of radians/sample, or 1/p in Hertz. In this lab,
we will assume p is always even, and we will plot the magnitude of each of the
frequency components, |A0|, · · · , |Ap/2| for each of several signals, in order to
gain intuition about the meaning of these coefficients.

Notice that each |Ak| gives the amplitude of the sinusoidal component of the
signal at frequency kω0 = k2π/p, which has units of radians/sample. In order to
interpret these coefficients, you will probably want to convert these units to Hertz.
If the sampling frequency is fs samples/second, then you can do the conversion
as follows (see box on page 248 of the text):

(k2π/p)[radians/sample] fs[samples/second]

2π[radians/cycle]
= kfs/p[cycles/second]

Thus, each |Ak| gives the amplitude of the sinusoidal component of the signal at
frequency kfs/p Hz.

Note that MATLAB does not have any built-in function that directly computes
the discrete Fourier series coefficients. However, it does have a realization of the
fast Fourier transform, a function called fft, which can be used to construct

44 Laboratory Manual

the Fourier series coefficients. In particular, fourierSeries is a function that
returns the DFS coefficients:∗

function [magnitude, phase] = fourierSeries(x)

% FOURIERSERIES - Return the magnitude and phase of each

% sinusoidal component in the Fourier series expansion for

% the argument, which is interpreted as one cycle of a

% periodic signal. The argument is assumed to have an

% even number p of samples. The first returned value is an

% array containing the amplitudes of the sinusoidal

% components in the Fourier series expansion, with

% frequencies 0, 1/p, 2/p, ... 1/2. The second returned

% value is an array of phases for the sinusoidal

% components. Both returned values are arrays with length

% (p/2)+1.

p = length(x);

f = fft(x)/p;

magnitude(1) = abs(f(1));

upper = p/2;

magnitude(2:upper) = 2*abs(f(2:upper));

magnitude(upper+1) = abs(f(upper+1));

phase(1) = angle(f(1));

phase(2:upper) = angle(f(2:upper));

phase(upper+1) = angle(f(upper+1));

In particular, if you have an array x with even length,

[A, phi] = fourierSeries(x);

returns the DFS coefficients in a pair of vectors.
To plot the magnitudes of the Fourier series coefficients versus frequency,

you can simply say

p = length(x);

frequencies = [0:fs/p:fs/2];

plot(frequencies, A);

xlabel(’frequency in Hertz’);

ylabel(’amplitude’);

where fs has been set to the sampling frequency (in samples per second). The
line

frequencies = [0:fs/p:fs/2];

∗ This function can be found at http://www.aw.com/lee_varaiya/matlab/fourierSeries.m.

L.7 Spectrum 45

bears further examination. It produces a vector with the same length as A, namely
1+ p/2, where p is the length of the x vector. The elements of the vector are the
frequencies in Hertz of each Fourier series component.

L.7.2 In-lab section

1. To get started, consider the signal generated by

t = [0:1/8000:1-1/8000];

x = sin(2*pi*800*t);

This is 8,000 samples of an 800-Hz sinusoid sampled at 8,000 samples/second.
Listen to it. Use the fourierSeries function as described above to plot the
magnitude of its discrete Fourier series coefficients. Explain the plot.

Consider the continuous-time sinusoid

x(t) = sin(2π800t).

The preceding x vector is 8,000 samples of this sinusoid taken at a sample
rate of 8 kHz. Notice that the frequency of the sinusoid is the derivative of
the argument to the sine function,

ω = d

dt
2π800t = 2π800

in units of radians per second. This fact will be useful when looking at more
interesting signals.

2. With the same t, consider the more interesting waveform generated by

y = sin(2*pi*800*(t.*t));

This is called a chirp. Listen to it. Plot its Fourier series coefficients using the
fourierSeries function as described.

This chirp is 8-kHz samples of the continuous-time waveform

y(t) = sin(2π800t2).

The instantaneous frequency of this waveform is defined to be the deriva-
tive of the argument to the sine function,

ω(t) = d

dt
2π800t2 = 4π800t.

For the given values t used to compute samples y, what is the range of
instantaneous frequencies? Explain how this corresponds with the plot of
the Fourier series coefficients, and how it corresponds with what you hear.

46 Laboratory Manual

3. The Fourier series coefficients computed in part 2 describe the range of
instantaneous frequencies of the chirp pretty well, but they do not describe
the dynamics very well. Plot the Fourier series coefficients for the waveform
given by

z = y(8000:-1:1);

Listen to this sound. Does it sound the same as y? Does its Fourier series plot
look the same? Why?

4. The chirp signal has a dynamically varying frequency-domain structure.
More precisely, there are certain properties of the signal that change slowly
enough that our ears detect them as a change in the frequency structure of
the signal rather than as part of the frequency structure (the timbre or tonal
content). Recall that our ears do not hear sounds below about 30 Hz. Instead,
the human brain hears changes below 30 Hz as variations in the nature of
the sound rather than as frequency domain content. The preceding Fourier
series methods fail to reflect this psychoacoustic phenomenon.

A simple fix is the short-time Fourier series. The preceding chirp
signals have 8,000 samples, lasting one second. But since we don’t hear
variations below 30 Hz as frequency content, it probably makes sense to
reanalyze the chirp signal for frequency content 30 times in the one second.
This can be done using the following function:∗

function waterfallSpectrogram(s, fs, sizeofspectra, numofspectra)

% WATERFALLSPECTROGRAM - Display a 3-D plot of a spectrogram

% of the signal s.

%

% Arguments:

% s - The signal.

% fs - The sampling frequency (in samples per second).

% sizeofspectra - The number of samples to use to calculate each

% spectrum.

% numofspectra - The number of spectra to calculate.

frequencies = [0:fs/sizeofspectra:fs/2];

offset = floor((length(s)-sizeofspectra)/numofspectra);

for i=0:(numofspectra-1)

start = i*offset;

[A, phi] = fourierSeries(s((1+start):(start+sizeofspectra)));

magnitude(:,(i+1)) = A’;

end

waterfall(frequencies, 0:(numofspectra-1), magnitude’);

∗ This code can be found at http://www.aw.com/lee_varaiya/matlab/waterfallSpectrogram.m

L.7 Spectrum 47

0

1000

2000

3000

4000

0

5

10

15

20

25

30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

frequencytime

m
ag

ni
tu

de

F I G U R E L . 6 : Time varying discrete Fourier series analysis of a chirp.

xlabel(’frequency’);

ylabel(’time’);

zlabel(’magnitude’);

To invoke this function on the chirp, do

t = [0:1/8000:1-1/8000];

y = sin(2*pi*800*(t.*t));

waterfallSpectrogram(y, 8000, 400, 30);

which yields the plot shown in figure L.6. That plot shows 30 distinct sets of
Fourier series coefficients, each calculated using 400 of the 8,000 available
samples. Explain how this plot describes the sound you hear. Create a similar
plot for the reverse chirp, signal z given in part 3.

5. Figure L.6 is reasonably easy to interpret because of the relatively simple
structure of the chirp signal. More interesting signals, however, become very
hard to view this way. An alternative visualization of the frequency content
of such signals is the spectrogram. A spectrogram is a plot like that in figure
L.6, but looking straight down from above the plot. The height of each point
is depicted by a color (or intensity, in a gray-scale image) rather than by
height. You can generate a spectrogram of the chirp as follows:

48 Laboratory Manual

Time

F
re

qu
en

cy

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

500

1000

1500

2000

2500

3000

3500

4000

F I G U R E L . 7 : Spectrogram of the chirp signal.

specgram(y,512,8000);

With the additionala command colormap(gray)256)), the result is the im-
age shown in figure L.7. You could experiment with different colormaps for
rendering this spectrogram by using the colormap command. A particularly
useful one is hot, obtained by the command

colormap(hot);

Create a similar image for the reverse chirp, z, of part 3.
6. A number of audio files are available at

http://www.aw.com/lee_varaiya/sounds

In Netscape, you can save these to your local computer disk by placing the
mouse on the file name, clicking with the right mouse button, and selecting
“Save Link As.” For example, if you save voice.au to your current working
directory, then in MATLAB you can do

y = auread(’voice.au’);

soundsc(y)

subplot(2,1,1); specgram(y,1024,8000,[],900)

L.7 Spectrum 49

Time

F
re

qu
en

cy

0 0.5 1 1.5 2 2.5
0

1000

2000

3000

4000

0 0.5 1 1.5 2 2.5

x 10
4

−1

−0.5

0

0.5

1

F I G U R E L . 8 : Spectrogram and plot of a voice segment (one of the authors saying “this
is the sound of my voice”).

colormap(gray(256))

subplot(2,1,2); plot(y)

to get the result shown in figure L.8. Use this technique to get similar results
for other sound files in the same directory. Interpret the results.

L.7.3 Independent section

1. For the chirp signal as given in the preceding discussion,

y = sin(2*pi*800*(t.*t));

generate the discrete Fourier series coefficients using fourierSeries as
explained in section L.7.1. Then, write a MATLAB function that uses (L.7) to
reconstruct the original signal from the coefficients. Your MATLAB function
should begin as follows:

function x = reconstruct(magnitude, phase)

% RECONSTRUCT - Given a vector of magnitudes and a vector

% of phases, construct a signal that has these magnitudes

50 Laboratory Manual

% and phases as its discrete Fourier series coefficients.

% The arguments are assumed to have odd length, p/2 + 1,

% and the returned vector will have length p.

Note that this function will require a large number of computations. If your
computer is not up to the task, the construct the Fourier series coefficients
for the first 1,000 samples instead of all 8,000, and reconstruct the original
from those coefficients. To check that the reconstruction works, subtract
your reconstructed signal from y and examine the difference. The difference
will not be perfectly zero, but it should be very small compared to the original
signal. Plot the difference signal.

2. In the remainder of this lab, we will study beat signals, which are combina-
tions of sinusoidal signals with closely spaced frequencies. First, we need to
develop some background.

Use Euler’s relation to show that

2 cos(ωct) cos(ω
t) = cos((ωc + ω
)t) + cos((ωc − ω
)t).

for any ωc, ω
, and t in Reals. Hint: See Basics: Sinusoids on page 294 of the
text.

A consequence of this identity is that if two sinusoidal signals with
different frequencies, ωc and ω
, are multiplied together, the result is the
same as if two sinusoids with two other frequencies, ωc + ω
 and ωc − ω
,
are added together.

3. Construct the sum of two cosine waves with frequencies of 790 and 810 Hz.
Assume the sample rate is 8 kHz, and construct a vector in MATLAB with
8,000 samples. Listen to it. Describe what you hear. Plot the first 800 samples
(1/10 second). Explain how the plot illustrates what you hear. Explain how
the identity in part 2 explains the plot.

4. What is the period of the waveform in part 3? What is the fundamental
frequency for its Fourier series expansion? Plot its discrete Fourier series co-
efficients (the magnitude only) using fourierSeries. Plot its spectrogram
using specgram. Choose the parameters of specgram so that the warble is
clearly visible. Which of these two plots best reflects perception?

Instructor Verification Sheet for Lab L.7

Name: Date:

1. Plot of the DFS coefficients of the sinusoid, with explanation.

Instructor verification:

2. Plot of the DFS, plus range of instantaneous frequencies, plus correspondence
with the sound.

Instructor verification:

3. Plot of the DFS is the same, yet the sound is different. Explanation.

Instructor verification:

4. Explain how figure L.6 describes the sound you hear. Plot the reverse chirp.

Instructor verification:

5. Create and interpret a spectrogram for at least one other sound file.

Instructor verification:

51L . 7 Spectrum

52 Laboratory Manual

L.8 Comb filters

The purpose of this lab is to use a kind of filter called a comb filter to deeply
explore concepts of impulse response and frequency response.

The lab uses Simulink, like lab L.6. Unlike lab L.6, it will use Simulink for
discrete-time processing. Be warned that of this writing discrete-time processing
is not the best part of Simulink, so some operations will be awkward. Moreover,
the blocks in the block libraries that support discrete-time processing are not well
organized. It can be difficult to discover how to do something as simple as an
N -sample delay or an impulse source. We will identify the blocks you will need.

The lab is self-contained in the sense that no additional documentation for
Simulink is needed. As in lab L.6, be warned that the online documentation is
not as good for Simulink as for MATLAB. You will want to follow our instructions
closely, or you are likely to discover very puzzling behavior.

L.8.1 Background

To run Simulink, start MATLAB and type simulink at the command prompt. This
will open the Simulink library browser. The library browser is a hierarchical listing
of libraries with blocks. The names of the libraries are (usually) suggestive of the
contents, although sometimes blocks are found in surprising places, and some
of the libraries may have meaningless names (such as “Simulink”).

Here, we explain some of the techniques you will need to implement the
lab. You may wish to skim these now and return them when you need them.

Simulation parameters
First, since we will be processing audio signals with a sample rate of 8,000
samples per second, you need to force Simulink to execute the model as a
discrete-time model with sample rate 8,000 samples per second (recall that
Simulink excels at continuous-time modeling). Open a blank model by clicking
on the document icon at the upper left of the library browser window. Find
the Simulation menu in that window, and select Parameters. Set the parameters
so that the window looks like what is shown in figure L.9. Specifically, set the
stop time to 4.0 (seconds), the solver options to “Fixed-step” and “discrete (no
continuous states),” and the fixed step size to 1/8,000.

Reading and writing audio signals
Surprisingly, Simulink is more limited and awkward than MATLAB in its ability
to read and write audio files. Consequently, the following will seem like more
trouble than it is worth. Bear with us. As of this writing, Simulink only supports
Microsoft wave files, which typically have the suffix “.wav”. You may obtain a
suitable audio file for this lab at

http://www.aw.com/lee_varaiya/sounds/voice.wav

L.8 Comb filters 53

F I G U R E L . 9 : Simulation parameters for discrete-time audio processing in Simulink.

In Netscape you can go to

http://www.aw.com/lee_varaiya/sounds/

and then right-click on the voice.wav file name to bring up a menu, and choose
“Save Link As...” to save the file to your local disk. It is best in the MATLAB
command window to then change the current working directory to the one in
which you stored the file using the cd command. This will make it easier to use
the file.

To make sure we can process audio signals, create the test model shown in
figure L.10. To do this, in a new model window with the simulation parameters
set as explained in “Simulation Parameters” on page 52, create an instance of
the block called From Wave File. This block can be found in the library browser
under DSP Blockset and DSP Sources. Set the parameters of that block to

File name: voice.wav

Samples per frame: 1

54 Laboratory Manual

simout

To Workspace
From Wave

File

From Wave File
voice

(8000Hz/1Ch/8b)

F I G U R E L . 1 0 : Test model for Simulink audio.

The first parameter assumes you have set the current working directory to the
directory containing the voice.wav file. The second indicates to Simulink that
it should produce audio samples one at a time, rather than collecting them into
vectors to produce many at once.

Next, find the To Workspaceblock in the Simulink block library, under Sinks.
Create an instance of that block in your model. Edit its parameters to change the
“Save format” to “Array” (or “Matrix,” depending on your MATLAB version). You
can leave other parameters at their default values.

Connect the blocks as shown in figure L.10.
Assuming the simulation parameters have been set as explained in “Sim-

ulation Parameters” on page 52, you can now run the model by invoking the
Start command under the Simulation menu. This will result in a new variable
called simout appearing in the MATLAB workspace. In the MATLAB command
window, do

soundsc(simout)

to listen to the voice signal.
Note that the DSP Sinks library has a block called To Wave Device, which

in theory will produce audio directly to the audio device. In practice, however, it
seems much easier to use the To Workspace block and the soundsc command.
For one thing, soundsc scales the audio signal automatically. It also circumvents
difficulties with real-time performance, platform dependence problems, and
ideosyncrasies with buffering. However, if you wish to try the To Wave Device

block, and can figure out how to get it to work, feel free to use it.

L.8.2 In-lab section

1. Consider the equation

∀ n ∈ Integers, y(n) = x(n) + αy(n − N) (L.8)

for some real constant α < 1and integer constant N > 0. Assume the sample
rate is 8,000 samples per second. The input is x(n) and the output is y(n). The
equation describes an LTI system where the output is delayed, scaled, and
fed back. Such a system is called a comb filter, for reasons that will become
apparent in this lab. The filter can be viewed as a feedback structure, as

L.8 Comb filters 55

S2

S

x y

z

F I G U R E L . 1 1 : Comb filter modeled as a feedback system.

shown in figure L.11, where S2 is a system with input y and output z. Give a
similar equation describing S2, relating y and z.

2. Implement in Simulink the comb filter from part (a). Provide as input the file
voice.wav (see page 52). Send the output to the workspace, just like figure
L.10, so that you can use soundsc to listen to the result. You will probably
need the Gain and Sum blocks, which you can find in the Simulink, Math
library. The delay in the feedback path can be implemented by the Integer

Delay block, which you can find in the DSP Blockset, General DSP, Signal
Operations library.

Experiment with the values of N . Try N = 2,000 and N = 50 and describe
qualitatively the difference. With N = 50, the effect is called a sewer pipe
effect. Why? Can you relate the physics of sound in a sewer pipe with our
mathematical model? Hint: The speed of sound in air is approximately

331.5 + 0.6T meters/second

where T is the temperature in degress celcius. Thus, at 20 degrees, sound
travels at about 343.7 meters/second. A delay of N = 50 samples at an 8,000
samples/second sample rate is equal to the time it takes sound to travel
roughly 2 meters, twice the diameter of a 1-meter sewer pipe.

Experiment with the value of α. What happens when α = 0? What hap-
pens when α = 1? When α > 1? You may wish to plot the output in addition
to listening to it.

3. Modify your Simulink model so that its output is the first second (the first
8,001 samples) of the impulse response of the system defined by (L.8), with
α = 0.99 and N = 40.

The simplest approach is to provide an impulse as an input. To do that,
use the Discrete Pulse Generator block, found in the Simulink, Sources.
This block can be (sort of) configured to generate a Kronecker delta func-
tion. Set its amplitude to 1, its period to something longer than the total

56 Laboratory Manual

number of samples (i.e., larger than 8,001), its pulse width to 1, its phase
delay to 0, and its sample time to 1/8,000.

You will also want to change the simulation parameters to execute your
system for 1 second instead of 4.

Listen to the impulse response. Plot it. Can you identify the tone that
you hear? Is it a musical note? Hint: Over short intervals, a small fraction of
a second, the impulse response is roughly periodic. What is its period?

4. In the next lab, you will modify the comb filter to generate excellent musical
sounds resembling plucked strings, such as guitars. As a first step toward
that goal, we can make a much less mechanical sound than the impulse
response by initializing the delay with random data. Modify your Simulink
model so that the comb filter has no input, and instead of an input, the
Integer Delay block is given random initial conditions. Use α = 0.99 and
N = 40, and change the parameters of the Integer Delay block so that its
initial conditions are given by

randn(1,40)

The MATLAB randn function returns a vector of random numbers (try help
randn in the MATLAB command window).

Listen to the result. Compare it to the sound of the impulse response. It
should be richer, and less mechanical, but should have the same tone. It is
also louder (even though soundsc scales the sound).

L.8.3 Independent section

The comb filter is an LTI system. Figure L.11 is a special case of the feedback
system considered in section 8.5.2, which is shown there to be LTI. Thus, if the
input is

x(n) = ejωn

then the output is

y(n) = H (ω)ejωn

where H : Reals → Complex is the frequency response. Find the frequency re-
sponse of the comb filter. Plot the magnitude of the frequency response over
the range 0 to 4 kHz using MATLAB. Why is it called a comb filter? Explain the
connection between the tone that you hear and the frequency response.

Instructor Verification Sheet for Lab L.8

Name: Date:

1. Found an equation for S
2
, relating y and z.

Instructor verification:

2. Constructed Simulink model and obtained both sewer pipe effect and echo
effect.

Instructor verification:

3. Constructed the impulse response and identified the tone.

Instructor verification:

4. Created sound with random values in the feedback delay.

Instructor verification:

57L . 8 Comb filters

58 Laboratory Manual

L.9 Plucked string instrument

The purpose of this lab is to experiment with models of a plucked string in-
strument, using it to deeply explore concepts of impulse response, frequency
response, and spectrograms. The methods discussed in this lab were invented
by Karplus and Strong, and first reported in

K. Karplus and A. Strong, “Digital Sythesis of Plucked-String and Drum Timbres,”
Computer Music Journal, vol. 7, no. 2, pp. 43-55, Summer 1983.

The lab uses Simulink, like lab L.8. It assumes you have understood that lab and
the techniques it uses in detail.

L.9.1 Background

In the previous lab, you constructed in Simulink the feedback system shown in
figure L.11, where S2 was an N sample delay. In this lab, you will enhance the
model by replacing S2 with slightly more complicated filters. These filters will
consist of the same N sample delay in cascade with two other filters, a lowpass
filter and an allpass filter. The objective will be to get truly high-quality plucked
string sounds.

Delays
Recall from example 8.9 that the N sample delay system has frequency response

H (ω) = e−iωN .

This same frequency response was obtained in example 9.10 by calculating the
DTFT of the impulse response. Note that the magnitude response is particularly
simple,

|H (ω)| = 1.

Recall that this is an allpass filter.
The phase response is

� H (ω) = −ωN .

The phase response is a linear function of frequency, ω, with slope −N . A filter
with such a phase response is said to have linear phase. A delay is particularly
simple form of a linear phase filter. Notice that the amount of delay is the negative
of the derivative of the phase response,

d � H (ω)

dω
= −N .

L.9 Plucked string instrument 59

This fact will be useful when we consider more complicated filters than this
simple delay.

Allpass filters
We will need a slightly more complicated allpass filter than the N sample delay.
Consider a filter given by the following difference equation,

∀ n ∈ Integers, y(n) + ay(n − 1) = ax(n) + x(n − 1) (L.9)

for some constant 0 < a ≤ 1. This defines an LTI system, so if the input is x(n) =
eiωn, then the output is H (ω)eiωn, where H is the frequency response. We can
determine the frequency response using this fact by plugging this input and
output into (L.9),

H (ω)eiωn + aH (ω)eiω(n−1) = aeiωn + eiω(n−1).

This can be rewritten as

H (ω)eiωn(1+ ae−iω) = eiωn(a + e−iω).

Eliminating eiωn on both sides we get

H (ω)(1+ ae−iω) = a + e−iω.

Solving for H (ω) we get

H (ω) = a + e−iω

1+ ae−iω
. (L.10)

We could immediately proceed to plotting the magnitude and phase response
using MATLAB, but instead, we will first manipulate this further to get some
insight. Being slightly tricky, we will multiply top and bottom by eiω/2 to get

H (ω) = aeiω/2 + e−iω/2

eiω/2 + ae−iω/2
.

Now notice that the top and bottom are complex conjugates of one another. For
example, let

b(ω) = aeiω/2 + e−iω/2 (L.11)

and note that

H (ω) = b(ω)

b∗(ω)
.

60 Laboratory Manual

Since the numerator and denominator have the same magnitude,∗

|H (ω)| = 1.

The filter is allpass!
The phase response, however, is more complicated. Note that

� H (ω) = � b(ω) − � b∗(ω).

But since for any complex number z, � (z∗) = −� (z),

� H (ω) = 2� b(ω).

Thus, to find the phase response, we simply need to find � b(ω). Plugging Euler’s
relation into (L.11) we get

b(ω) = (a + 1) cos(ω/2) + i(a − 1) sin(ω/2).

Since the angle of a complex number z is tan−1(Im{z}/Re{z}),

� H (ω) = 2 tan−1
(

(a − 1) sin(ω/2)
(a + 1) cos(ω/2)

)
.

Since tan(w) = sin(w)/ cos(w),

� H (ω) = 2 tan−1
(

a − 1
a + 1

tan(ω/2)
)

.

This form yields insight for small ω. In particular, when ω is small (compared to
π),

tan(ω/2) ≈ ω/2,

so

� H (ω) ≈ 2 tan−1
(

a − 1
a + 1

ω/2
)

.

Since 0 < a ≤ 1, the argument to the arctangent is small if ω is small, so for low
frequencies,

� H (ω) ≈ a − 1
a + 1

ω = −dω.

∗ For any two complex numbers z and w, note that |z/w| = |z|/|w| and � (z/w) = � (z) − � (w).

L.9 Plucked string instrument 61

where d is defined by

d = −a − 1
a + 1

. (L.12)

Thus, at low frequencies, this allpass filter has linear phase with slope −d. At
low frequencies, therefore, it is an allpass with linear phase, which means that it
behaves exactly like a delay! However, unlike the N sample delay, the amount of
delay is d, which depending on a can be any real number between 0 and 1. Thus,
this allpass filter gives us a way to get fractional sample delays in a discrete-time
system, at least at low frequencies.

L.9.2 In-lab section

1. The lowpass filter we will use is a simple, length two moving average. If
the input is x and the output is y, then the filter is given by the difference
equation,

∀ n ∈ Integers, y(n) = 0.5(x(n) + x(n − 1)). (L.13)

Find an expression for the frequency response of the lowpass filter given
by (L.13). Use MATLAB to plot the magnitude and phase response over the
frequency range 0 to π radians/sample. Is this a linear phase filter? If so, what
is its delay?

2. In part 4 of the previous lab, you initialized a comb filter with random noise
and produced a sound that reasonably well approximates a plucked string
instrument, such as a guitar. We can improve the sound.

Real instrument sounds have more dynamics in their frequency struc-
ture. That is, the spectrum of the sound within the first few milliseconds of
plucking the string is different from the spectrum a second or so later. Physi-
cally, this is because the high frequency vibrations of the string die out more
rapidly than the low frequency vibrations.

We can approximate this effect by modifying the comb filter by insert-
ing the lowpass filter given by (L.13) into the feedback loop. This can be
accomplished by realizing the following difference equation:

∀ n ∈ Integers, y(n) = x(n) + 0.5α(y(n − N) + y(n − N − 1)).

Modify your Simulink model you constructed in part 4 of the previous
lab so that it uses a lowpass filter in the feedback loop, implementing this
difference equation. Listen to the resulting sound, and compare it against
the sound from the previous lab. Use α = 0.99 and N = 40, as before. Can
you hear the improvement?

62 Laboratory Manual

3. In the last lab, you found that the tone of the sound generated by the comb
filter had frequency 8,000/N , where N was the delay in the feedback loop,
and 8,000 was the sampling frequency. You used N = 40 to get a fundamental
frequency of 200 Hz. Now, you have added an additional lowpass filter, which
introduces additional delay in the feedback loop. You have determined that
additional delay in part 1 above. What is the fundamental frequency now?

The comb filter delay can only delay by an integer number of samples.
The lowpass filter introduces a fixed delay. Consequently, there are only cer-
tain fundamental frequencies that are possible. In particular, assuming the
sample rate is 8,000 samples/second, is it possible to achieve a fundamental
frequency of 440 Hz? This would be essential to have a reasonable guitar
model, since we would certainly want to be able to play the note A-440 on
the guitar. Determine the closest achievable frequency to 440 Hz. Is it close
enough? In the independent section of this lab, you will show how to achieve
a fundamental frequency very close to 440 Hz.

L.9.3 Independent section

1. Show analytically that the lowpass filter given by (L.13) has linear phase over
the range of frequencies 0 to π radians/sample, and determine the slope.
Verify that this agrees with the plot you constructed in the in-lab section.

2. In part 2 of the in-lab section, you combined an N -sample delay with a
lowpass filter in the feedback path of a comb filter. Calculate the frequency
response of this version of the comb filter, and plot its magnitude using
MATLAB over the frequency range 0 to π . Compare it to the frequency
response you calculated for the original comb filter in the previous lab. Find
the fundamental frequency of the musical note from this plot and compare
it to the answer that you gave in part 3 of the in-lab portion. Hint: The spectral
peaks are very sharp, so you will need to calculate the magnitude frequency
at many points in the range 0 to π to be sure to hit the peaks. We recommend
calculating at least 2,000 points.

3. The reason that the comb filter with a lowpass filter in the feedback loop
yields a much better plucked string sound than the comb filter by itself is that
it more accurately models the physical phenomenon that higher frequency
vibrations on the string die out faster than lower frequency vibrations. Plot
the spectrogram using specgram of the generated sound to demonstrate this
phenomenon, and explain how your spectrogram demonstrates it.

4. Verify that the frequency response (L.10) of the allpass filter has constant
magnitude and linear phase for low frequencies by plotting it using MATLAB.
Plot it for the following values of delay: d = 0.1, 0.4, 0.7, and1.0. Plot it over the
range of frequencies 0 to π radians/sample. Discuss how your plots support
the conclusions about this filter. Hint: Use (L.12) to find a given d.

5. You determined in part 3 of the in-lab section that you could not get very
close to A-440 with a comb filter with a lowpass filter in the feedback loop.

L.9 Plucked string instrument 63

The allpass filter given by (L.10), however, can be used to achieve delays
that are a fraction of a sample period. Implement the allpass filter, modifying
your Karplus-Strong plucked string model by putting the allpass filter in the
feedback loop. Set the parameters of the allpass filter and N to get an A-440.
Show your Simulink diagram, and give the parameters of all the blocks.

Instructor Verification Sheet for Lab L.9

Name: Date:

1. Magnitude and phase of lowpass filter. Linear phase? Delay?

Instructor verification:

2. Improved plucked string sound.

Instructor verification:

3. Fundamental frequencies that are possible.

Instructor verification:

64 Laboratory Manual

L.10 Modulation and demodulation 65

L.10 Modulation and demodulation

The purpose of this lab is to learn to use frequency domain concepts in practical
applications. The application selected here is amplitude modulation (AM), a
widely used technique in communication systems, including, of course, AM ra-
dio, but also almost all digital communication systems, including digital cellular
telephones, voiceband data modems, and wireless networking devices. A sec-
ondary purpose of this lab is to gain a working knowledge of the fast Fourier
transform (FFT) algorithm, and an introductory working knowledge of filter
design. Note that this lab requires the Signal Processing Toolbox of MATLAB for
filter design.

L.10.1 Background

Amplitude modulation
The problem addressed by AM modulation is that we wish to convey a signal
from one point in physical space to another through some channel. The channel
has certain constraints, and in particular, can typically only pass frequencies
within a certain range. An AM radio station, for example, might be constrained
by government regulators to broadcast only radio signals in the range of 720 to
760 kHz, a bandwidth of 40 kHz.

The problem, of course, is that the radio station has no interest in broad-
casting signals that only contain frequencies in the range 720 to 760 kHz. They
are more likely to want to transmit a voice signal, for example, which contains
frequencies in the range of about 50 Hz to about 10 kHz. AM modulation deals
with this mismatch by modulating the voice signal so that it is shifted to the
appropriate frequency range. A radio receiver, of course, must demodulate the
signal, since 720 kHz is well above the hearing range of humans.

In this lab, we present a somewhat artificial scenario in order to maximize
the experience. We will keep all frequencies that we work with within the audio
range so that you can listen to any signal. Therefore, we will not modulate a signal
up to 720 kHz (you would not be able to hear the result). Instead, we present the
following scenario:

Assume we have a signal that contains frequencies in the range of about 100 to
300 Hz, and we have a channel that can pass frequencies from 700 to 1,300 Hz.∗
Our task will be to modulate the first signal so that it lies entirely within the
channel passband, and then to demodulate to recover the original signal.

AM modulation is studied in detail in exercise 16 of chapter 10. In that
problem, you showed that if

∗ Since Fourier transforms of real signals are symmetric, the signal also contains frequencies in the
range −100 to −300 Hz, and the channel passes frequencies in the range −700 to −1,300 Hz.

66 Laboratory Manual

y(t) = x(t) cos(ωct),

then the CTFT is

Y (ω) = X(ω − ωc)/2 + X(ω + ωc)/2.

In this lab, we will get a similar result experimentally, but working entirely with
discrete-time signals, and staying entirely within the audio range so that we can
hear (and not just plot) the results.

The FFT algorithm
In order to understand AM modulation, we need to be able to calculate and ex-
amine Fourier transforms. We will do this numerically in this lab, unlike exercise
16 of chapter 10, where it is done analytically.

In lab L.7, we used a supplied function called fourierSeries to calculate
the Fourier series coefficients Ak and φk for signals. In this lab, we will use the
built-in function fft, which is used, in fact, by the fourierSeries function.
Learning to use the FFT is extremely valuable; it is widely used in all analytical
fields that involve time series analysis, including not just all of engineering, but
also the natural sciences and social sciences. The FFT is also widely abused by
practitioners who do not really understand what it does.

The FFT algorithm operates most efficiently on finite signals whose lengths
are a power of 2. Thus, in this lab, we will work with what might seem like a
peculiar signal length, 8,192. This is 213. At an 8,000 samples/second sample rate,
it corresponds to slightly more than one second of sound.

Recall that a periodic discrete-time signal with period p has a discrete-time
Fourier series expansion

x(n) = A0 +
(p−1)/2∑

k=1

Ak cos(kω0n + φk) (L.14)

for p odd and

x(n) = A0 +
p/2∑
k=1

Ak cos(kω0n + φk) (L.15)

for p even, where ω0 = 2π/p, the fundamental frequency in cycles/sample. Recall
further that we can alternatively write the Fourier series expansion in terms of
complex exponentials,

x(n) =
p∑

k=0

Xkeikω0n. (L.16)

L.10 Modulation and demodulation 67

Note that this sum covers one cycle of the periodic signal. If what we have is a
finite signal instead of a periodic signal, then we can interpret the finite signal
as being one cycle of a periodic signal.

In chapter 10, we describe four Fourier transforms. The only one of these
that is computable on a computer is the DFT, or discrete Fourier transform.
For a periodic discrete-time signal x with period p, we have the inverse DFT,
which takes us from the frequency domain to the time domain,

∀ n ∈ Integers, x(n) = 1
p

p−1∑
k=0

X ′
keikω0n, (L.17)

and the DFT, which takes us from the time domain to the frequency domain,

∀ k ∈ Integers, X ′
k =

p−1∑
m=0

x(m)e−imkω0. (L.18)

Comparing (L.17) and (L.16), we see that the DFT yields coefficients that are just
scaled versions of the Fourier series coefficients. This scaling is conventional.

In lab L.7, we calculated Ak and φk. In this lab, we will calculate X ′
k. This can

be done using (L.18). The FFT algorithm is simply a computationally efficient
algorithm for calculating (L.18).

In MATLAB, you will collect 8,192 samples of a signal into a vector and then
invoke the fft function. Invoke help fft to verify that this function is the right
one to use. If your 8,192 samples are in a vector x, then fft(x) will return a
vector with 8,192 complex numbers, representing X0, . . . , X8,191.

From (L.18) it is easy to verify that Xk = Xk+p for all integers k (see part 1 of
the following in-lab section). Thus, the DFT X is a periodic, discrete function with
period p. If you have the vector fft(x), representing X0, . . . , X8,191, you know all
Xk. For example,

X−1 = X−1+8,192 = X8,191.

From L.17, you can see that each Xk scales a complex exponential com-
ponent at frequency kω0 = k2π/p, which has units of samples/second. In order
to interpret the DFT coefficients Xk, you will probably want to convert the fre-
quency units to Hertz. If the sampling frequency is fs samples/second, then you
can do the conversion as follows (see Basics: Frequencies in Hertz and radians
on page 248 of the text):

(k2π/p)[radians/sample]fs[samples/second]

2π[radians/cycle]
= kfs/p[cycles/second] (L.19)

68 Laboratory Manual

Thus, each Xk gives the DFT value at frequency kfs/p Hz. For our choices of
numbers, fs = 8,000 and p = 8,192, so Xk gives the DFT value at frequency k ×
0.9766 Hz.

Filtering in MATLAB
The filter function can compute the output of an LTI system given by a differ-
ence equation of the form

a1y(n) = b1x(n) + b2x(n − 1) + · · · + bN x(n − N + 1)

− a2y(n − 1) − · · · − aMy(n − M + 1). (L.20)

To find the output y, first collect the (finite) signal x into a vector. Then collect the
coefficients a1, . . . , aN into a vector A of length N , and the coefficients b1, . . . , bM
into a vector B of length M . Then just do

y = filter(B, A, x);

Example L.1: Consider the difference equation

y(n) = x(n) − 0.95y(n − 1).

We can find and plot the first 100 samples of the impulse response by letting
the vector x be an impulse and using filter to calculate the output:

x = [1, zeros(1,99)];

y = filter([1], [1, 0.95], x);

stem(y);

which yields the plot shown in figure L.12. The natural question that arises
next is how to decide on the values of B and A. This is addressed in the next
section. ❒

Filter design in MATLAB
The signal processing toolbox of MATLAB provides a set of useful functions that
return filter coefficients A and B given a specification of a desired frequency
response. For example, suppose we have a signal sampled at 8 kHz and we wish
to design a filter that passes all frequency components below 1 kHz and removes
all frequency components above that. The following MATLAB command designs
a filter that approximates this specification:

[B, A] = butter(10, 0.25);

The first argument, called the filter order, gives M and N in (L.20) (a constraint
of the butter function is that M = N). The second argument gives the cutoff
frequency of the filter as a fraction of half the sampling frequency. Thus, in the
above, the cutoff frequency is 0.25 ∗ (8,000/2) = 1,000 Hertz. The cutoff frequency

L.10 Modulation and demodulation 69

0 10 20 30 40 50 60 70 80 90 100
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

F I G U R E L . 1 2 : Impulse response of a simple filter.

is by definition the point at which the magnitude response is 1/
√

2. The returned
arrays B and A are the arguments to supply to filter to calculate the filter output.

The frequency response of this filter can be plotted using the freqz function
as follows:

[H,W] = freqz(B,A,512);

plot(W*(4000/pi), abs(H));

xlabel(’frequency’);

ylabel(’magnitude response’);

which yields the plot shown in figure L.13. (The argument 512 specifies how
many samples of the continuous frequency response we wish to calculate.)

This frequency response bears further study. Notice that the response tran-
sitions gradually from the passband to the stopband. An abrupt transition is not
implementable. The width of the transition band can be reduced by using an
order higher than 10 in the butter function, or by designing more sophisticated
filters using the cheby1, cheby2, or ellip functions in the signal processing tool-
box. The Butterworth filter returned by butter, however, will be adequate for our
purposes in this lab.

70 Laboratory Manual

0 500 1000 1500 2000 2500 3000 3500 4000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Frequency

M
ag

ni
tu

de
 r

es
po

ns
e

cutoff frequency

stopband

transition band

passband

F I G U R E L . 1 3 : Frequency response of a 10th order Butterworth lowpass filter.

Using a higher order to get a narrower transition band can be an expen-
sive proposition. The function filter works by implementing the difference
equation (L.20). As M and N get larger, each output sample y(n) requires more
computation.

The first 50 samples of the impulse response of the filter can be plotted using
the following MATLAB code:

x = [1, zeros(1,49)];

y = filter(B, A, x);

stem(y);

This yields the plot shown in figure L.14.

L.10.2 In-lab section

1. Use (L.18) to show that X ′
k = X ′

k+p for all integers k. Also, show that the DFT
is conjugate symmetric (i.e., X ′

k = (X ′
−k)

∗ for all integers k, assuming x(n) is
real for all integers n).

2. In part 2 of the in-lab portion of lab L.7, we studied a chirp signal. We use a
similar signal here, although it varies over a narrower range of frequencies.
Construct the signal x defined by:

L.10 Modulation and demodulation 71

0 5 10 15 20 25 30 35 40 45 50
0.1

0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

F I G U R E L . 1 4 : Impulse response of a 10th order Butterworth lowpass filter.

t = [0:1/8000:8191/8000];

x = sin(2*pi*100*t + 2*pi*100*(t.*t));

This is a chirp that varies from about 100 Hz to about 300 Hz. Listen to it.
Calculate its DFT using the fft function, and plot the magnitude of the DFT.
Construct your plot in such a way that your horizontal axis is labeled in Hertz,
not in the index k of Xk. The horizontal axis should vary in frequency from
0 to 8,000 Hz.

3. Your plot from part 2 should show frequency components in the range 100 Hz
to 300 Hz, but in addition, it shows frequency components in the range 7,700
to 7,900. These extra components are the potentially the most confusing
aspect of the DFT, but in fact, they are completely predictable from the
mathematical properties of the DFT.

Recall that the DFT of a real signal is conjugate symmetric. Hence,

|X ′
k| = |X ′

−k|.

Thus, if there are frequency components in the range 100 to 300 Hz, then
there should also be frequency components with the same magnitude in the

72 Laboratory Manual

range −100 to −300 Hz. These do not show up on your plot simply because
you have not plotted the frequency components at negative frequencies.

Recall that the DFT is periodic with period p. That is, Xk = Xk+p for all
integers k. Recall from (L.19) that the k − th DFT coefficient represents a
frequency component at kfs/p Hertz, where fs is the sampling frequency
8,000 Hertz. Thus, a frequency component at some frequency f must be
identical to a frequency component at f + fs. Therefore, the components
in the range −100 to −300 Hertz must be identical to the components in the
range 7,700 to 7,900 Hertz! The image we are seeing in that latter range is a
consequence of the conjugate symmetry and periodicity of the DFT!

Since the DFT is periodic with period 8,000 Hertz (when using units of
Hertz), it possibly makes more sense to plot its values in the range −4,000
to 4,000 Hertz, rather than 0 to 8,000 Hertz. This way, we can see the symme-
try. Since the DFT gives the weights of complex exponential components,
the symmetry is intuitive, because it takes two complex exponentials with
frequencies that are negatives of one another to yield a real-valued sinusoid.

Manipulate the result of the fft function to yield a plot of the DFT of the
chirp where the horizontal axis is −4,000 to 4,000 Hertz. It is not essential
to include both endpoints, at −4,000 and at 4,000 Hertz, since they are
constrained to be identical anyway by periodicity.

L.10.3 Independent section

1. For the chirp signal as above, multiply it by a sine wave with frequency 1
kHz, and plot the magnitude of the DFT of the result over the frequency
range −4,000 to 4,000 Hz. Verify that the resulting signal will get through the
channel described in the scenario on page 65. Listen to the modulated chirp.
Does what you hear correspond with what you see in the DFT plot?

2. The modulated chirp signal constructed in the previous part can be demod-
ulated by multiplying it again by a sine wave with frequency 1 kHz. Form that
product, and plot the magnitude of the DFT of the result over the frequency
range −4,000 to 4,000 Hz. How does the result differ from the original chirp?
Listen to the resulting signal. Would this be an acceptable demodulation by
itself?

3. Use the butter function to design a filter that will process the result of the
previous part so that it more closely resembles the original signal. You should
be able to get very close with a modest filter order (say, 5). Filter the result
of the previous part, listen to the result, and plot the magnitude of its DFT in
the frequency range −4,000 to 4,000 Hz.

The modulation and demodulation method you have just implemented
is similar to what is used many communication systems. A number of prac-
tical problems have to be overcome in practice, however. For example, the
receiver usually does not know the exact frequency and phase of the carrier
signal, and hence it has to somehow infer this frequency and phase from the

L.10 Modulation and demodulation 73

signal itself. One technique is to simply include the carrier in the modulated
signal by adding it in. Instead of transmitting

y(t) = x(t) cos(ωct),

we can transmit

y(t) = (1+ x(t)) cos(ωct),

in which case, the transmitted signal will contain the carrier itself. This can be
used for demodulation. Another technique is to construct a phase locked
loop, a clever device that extracts the carrier from the transmitted signal
without it being explicitly present. This method is used in digital transmission
schemes. The details, however, must be left to a more advanced text.

In the scheme we have just implemented, the amplitude of a carrier wave
is modulated to carry a signal. It turns out that we can also vary the phase of
the carrier to carry additional information. Such AM-PM methods are used
extensively in digital transmission. These methods make more efficient use
of precious radio bandwidth than AM alone.

Instructor Verification Sheet for Lab L.10

Name: Date:

1. Verify periodicity and conjugate symmetry of the DFT.

Instructor verification:

2. Plot the magnitude of the DFT, correctly labeled, from 0 to 8,000 Hz.

Instructor verification:

3. Plot of the magnitude of the DFT, correctly labeled, from –4,000 to 8,000 Hz.

Instructor verification:

74 Laboratory Manual

L.11 Sampling and aliasing 75

L.11 Sampling and aliasing

The purpose of this lab is to study the relationship between discrete-time and
continuous-time signals by examining sampling and aliasing. Of course, a com-
puter cannot directly deal with continuous-time signals. So instead, we will
construct discrete-time signals that are defined as samples of continuous-time
signals, and then operate entirely on them, downsampling them to get new sig-
nals with lower sample rates, and upsampling them to get signals with higher
sample rates.

Note that this lab has no independent part. Therefore, no lab writeup needs
to be turned in. The instructor verification sheet is sufficient.

L.11.1 In-lab section

1. Recall from lab L.7 that a chirp signal given by

x(t) = sin(2π ft2)

has instantaneous frequency

d

dt
2π ft2 = 4π ft

in radians per second, or

2ft

in Hertz. A sampled signal y = SamplerT (x) with sampling interval T will be

y(n) = sin(2π f (nT)2).

Create in MATLAB a chirp sampled at 8,000 samples/second that lasts 10
seconds and sweeps from frequency 0 to 12 kHz. Listen to the chirp. Explain
the aliasing artifacts that you hear.

2. For the remainder of this lab, we will work with a particular chirp signal
that has a convenient Fourier transform for visualizing and hearing aliasing
effects. For efficient computation using the FFT algorithm, we will work
with 8,192 = 213 samples, giving slightly more than 1 second of sound at an
8,000 samples/second sample rate. You may wish to review lab L.10, which
explains how to create well-labeled plots of the DFT of a finite signal using
the FFT algorithm.

The chirp signal we wish to create is given by

∀ t ∈ [0, D], x(t) = f (t) sin(2π ft2)

76 Laboratory Manual

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

0.8

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

1

Time

F I G U R E L . 1 5 : Chirp signal with a triangular envelope.

where D is the duration of the signal and f (t) is a time-varying amplitude
given by

f (t) = 1− |t − D/2|/(D/2).

This chirp starts with amplitude 0, rising linearly to peak at the midpoint of
the duration, and then falls again back to zero, as shown in figure L.15. Thus,
it has a triangular envelope.

Generate such a chirp that lasts for 8,192 samples at an 8-kHz sample
rate and sweeps from a frequency of zero to 2,500 Hz. Listen to the resulting
sound. Are there any aliasing artifacts? Why or why not?

3. Use the FFT algorithm, as done in lab L.10, to create a plot of the magnitude
of the DFT of the chirp signal from the previous part over the frequency range
−4 kHz to 4 kHz. Make sure the horizontal axis of your plot is labeled in Hertz.
Does your plot look like a sensible frequency-domain representation of this
chirp?

4. Modify your chirp so that it sweeps from 0 to 5 kHz. Listen to it. Do you hear
aliasing artifacts? Plot the magnitude of the DFT over −4 kHz to 4 kHz. Can

L.11 Sampling and aliasing 77

you see the aliasing artifacts in this plot? Explain why the plot has the shape
that it does.

5. Return to the chirp that you generated in part 2, which sweeps from 0 to
2,500 Hz. Create a new signal with sample rate 4,000 samples/second by
downsampling that chirp. That is, create a vector in MATLAB that has half
the length by selecting every second sample from the original chirp. For
example, if y(n) is the original chirp, define w by

w(n) = y(2n).

Now plot the magnitude DFT of this signal.∗ Since the sampling rate is lower
by a factor of 2, you should plot over the frequency interval −2 kHz to 2 kHz.
Is there aliasing distortion? Why?

6. Return again to the chirp that you generated in part 2, which sweeps from
0 to 2,500 Hz. Create a new signal with sample rate 16,000 samples/second
by upsampling that chirp. That is, create a vector in MATLAB that has twice
the length by inserting zero-valued samples between each pair of samples
from the original chirp. For example, if y(n) is the original chirp, define z by

z(n) =
{

y(n/2) if n is even
0 otherwise.

Now plot the magnitude DFT of this signal. Since the sampling rate is higher
by a factor of 2, you should plot over the frequency interval −8 kHz to 8
kHz. Explain this plot. Listen to the sound by giving a sampling frequency
argument to soundsc as follows:†

soundsc(w, 16000);

How does the sound correspond with the plot?
7. Design a Butterworth filter using the butter function in MATLAB to get back

a high quality rendition of the original chirp, but with a sample rate of 16,000
Hz. Filter the signal with your filter and listen to it.

Note that this technique is used in most compact disc players today. The
signal on the CD is sampled at 44,100 samples/second. The CD player first up-
samples it by a factor of 4 or 8 to get a sample rate of 176,400 samples/second
or 352,800 samples/second. The upsampling is accomplished by inserting
zero-valued samples. The resulting signal is then digitally filtered to get a

∗ Unfortunately, MATLAB does not document what actually happens when you give a sampling
frequency of 4,000 to the sound or soundsc functions. On at least some computers, the sound that
results from attempting to do this is difficult to interpret. Thus, we do not recommend attempting to
listen to this downsampled chirp.

† The audio hardware on many computers directly supports a sample rate of 16,000 samples/second,
so at least on such computers, MATLAB seems to correctly handle this command.

78 Laboratory Manual

high sample rate and accurate rendition of the audio. The higher sample
rate signal is then converted to a continuous-time signal by a digital to ana-
log converter that operates at the higher sample rate. This technique shifts
most of the difficulty of rendering a high-quality audio signal to the discrete-
time domain, where it can be done with digital circuits or microprocessors
(such as programmable DSPs) rather than with analog circuits.

Instructor Verification Sheet for Lab L.11

Name: Date:

1. Explain the aliasing artifacts that you hear.

Instructor verification:

2. Generate chirp with triangular envelope.

Instructor verification:

3. Generate a frequency-domain plot of the chirp with a triangular envelope.

Instructor verification:

4. Show a frequency-domain plot with aliasing distortion and explain the distor-
tion.

Instructor verification:

5. Show a frequency-domain plot with double chirp and explain the sound.

Instructor verification:

6. Give a reasonable filter design.

Instructor verification:

79L . 1 1 Sampling and aliasing

