CAL - An actor language

Jorn W. Janneck

The Ptolemy Group
University of California, Berkeley

5th Biennial Ptolemy Miniconference
Berkeley, CA, May 9, 2003

CAL people

* Chris Chang

- Johan Eker (now Ericsson Mobile Platforms, Research)
* Ernesto Wandeler (ETH zurich)

Lars Wernli (then ETH Zurich)

Ed Willink (Thales Research)

Yang Zhao

Ptolemy Miniconference 2

Why another language?

* Writing simple actors should be simple.
- Ptolemy IT APT very rich
- actor writing requires considerable skill
- BUT: Actors have a lot of common structure.
» Models should allow efficient code generation.
- actor descriptions contain a lot of "admin" code

* local precedent:
- ptlang in Ptolemy Classic (J. Buck)

Ptolemy Miniconference 3

Why another language?

We should generate actors from a more
abstract description.

reduces amount of code to be written
makes writing actors more accessible
reduces error probability

makes code more versatile

* retargeting (other platforms, new versions of the
Ptolemy APT)

+ analysis & composition

Ptolemy Miniconference 4

Simple actors

actor ID ()@J
act i on\[iw_ end
end

actor A (k) Inputl, Input2 ==> Qutput:

action [a], [b] ==> [k*(a + b end
end \—/ll

actor Merge ()
Inputl, Input2 ==> Qutput:

nput 1:
action N\nput 2:

==> [x] end
==> [x] end

xX X
AN

en

actor firing = execution of one enabled action

Ptolemy Miniconference 5

An actor with state

actor Sum () | nput ==> Qutput:

action [a] ==> [sun]
do
sum:= sum + a;

end
end

Ptolemy Miniconference 6

Action guards

actor FairMerge ()
Inputl, Input2 ==> Qutput:
s =0 action
action Inputl: [x] ==> [X] " input Paﬂ'ems .
guard s = 0 declaring variables
do - guard
s 1= 1 specifying enabling conditions
end * output expressions
computing output tokens
action Input2: [x] ==> [x] + body
guar ds =1 modifying the actor state
0
s :=0;
end
end

Ptolemy Miniconference 7

Action schedules

actor FairMerge ()

Inputl, Input2 ==> Qutput:
actolrnFﬁltrlNE:'geuf)z —=> Output : A action Inputl: [x] ==> [x] end
put L, P - put: B: action Input2: [x] ==> [x] end
s =0 schedul e fsm St at e0:

. State0 (A) --> Statel;
action Inputl: [x] ==> [x] St at el EB; --> State0;
guard s = 0 end '
do end

s 1= 1
end actor FairMerge ()

) Inputl, |nput2 ==> Qutput:
action Input2: [x] ==> [X]
guard s =1 A action Inputl: [x] ==> [x] end
do B B: action Input2: [x] ==> [x] end

s 1= 0;
end schedul e regexp

end (A B)*
end

end

Ptolemy Miniconference 8

First-class functions

actor Sieve (predicate) |nput ==> Qutput:
filter := lanbda (a) : false end

action [a] ==> []
guard filter(a) end

action [a] ==> [a]

guard not filter(a)

var f = filter

do
filter := lanbda(b) :

f(b) or predicate(b, a)

end;
end

end

Ptolemy Miniconference 9

Programming language features

- optionally typed
- generic polymorphic type system
» full functional sub-language
» everything first-class citizen wei, amost
- functions
- procedures
- NOT actors or actions (yet)
+ lexically scoped
* no aliasing of stateful structures
- useful for handling concurrency

Ptolemy Miniconference 10

Executing CAL: Interpreter

* Ptolemy actor
- configured by CAL script
- smooth embedding into Ptolemy IT
- first version in current release
+ domain-dependent interpretation
(Chris Chang)
- interpreter adapts to domain
- making actors more domain-polymorphic
- What's a model of computation?

T =

Ptolemy Miniconference 11

Executing CAL: Translators

XML for representing actors (CALML)
persistent format

- CAL + infrastructure for checking, fransformation

XSLT as implementation language

* analysis

CALML + program fransformation

code generation

Canonical CALML

generic
Java

A !)’
Palsjo/Koala Pt/Java JGrafChart
(Lund) (ucB) (Lund)

Ptolemy Miniconference 12

Executing CAL: Composer/Translator

N

-~

a Ptolemy IT model

model of computation

CALML
composition

2pod

Q
o
3
o
-
Q
=h
o
=1

Ptolemy Miniconference 13

Executing CAL: Discovering concurrency

v
v,

)
O

s : = <sonet hi ng>;

acti 0 v]
gcti o[v]
o

s := h(v,
end
end

s);

actor B () a, b ==> x, y:

=y Hlg(V)]

==@f(v, s)]

end

Ptolemy Miniconference 14

Conclusion

» CaL is a Ptolemy scripting language
- simple, portable description of actors

- can be analyzed, interpreted, compiled,
composed

* new research directions

- composers as models of computation
* composer languages?

- infrastructure for executing actors
+ component models, execution environments

- fransformations/analyses of actor networks
+ distribution
- efficient translation

Ptolemy Miniconference 15

Thank you.

resources: www.gigascale.org/caltrop
contact: janneck@eecs.berkeley.edu

Ptolemy Miniconference 16

