Ptolemy II Codegen Tutorial 2007

Exercise #1: The SimpleALU Actor + Helper
1. Update the ptII tree so that the actor class definitions (SimpleALU.java, StaticALU.java) appear under the $PTII/ptolemy/actor/lib/tutorial/ directory.
2. Open SimpleALU.java under $PTII/ptolemy/actor/lib/tutorial/. Try to understand the semantics of the actor (what the actor does).
3. Open SimpleALU.c under $PTII/ptolemy/codegen/c/actor/lib/tutorial/. This is the helper C code template file for the SimpleALU actor. It contains a fire code block (/***fireBlock***/) that would be included into the generated code.
4. ToDo: Let’s add a new modulo (%) operation for the SimpleALU actor and have its codegen helper supports the new operation as well. Let its opcode be 5. (Hints: There are two files you have to modify)
5. To test the helper, start up Vergil (the Ptolemy GUI). Open the testSimpleALU.xml model under $PTII/ptolemy/codegen/c/actor/lib/tutorial/test/. By invoking code generator, a C file, along with the executable and make files, would be generated for the model under your $HOME/codegen/ directory.
6. Find the SimpleALU’s fire code block in the generated code (testSimpleALU.c) and look at how it is included (using macro substitutions).
So, now, we know how to reference actor ports in the helper semantics (using $ref())…
Question: How do you deal with actor parameters?
Exercise #2: The SimpleALU Actor + Helper (using parameterized code block)
1. Open StaticALU.java under $PTII/ptolemy/actor/lib/tutorial/. Again, try to understand the semantics of the actor first.

2. Open StaticALU.c and StaticALU.java under $PTII/ptolemy/codegen/c/actor/lib/tutorial/. Look at how the Java helper class uses the code blocks (in the .c file).
3. ToDo: Add the same modulo operation for the StaticALU actor and helper. Again, let its opcode be 5. (Hints: There are also just two files you have to modify)
4. Open the testStaticALU.xml model under $PTII/ptolemy/codegen/c/actor/lib/tutorial/test/. Modify the model, so it would test the new added operation.
5. Find the StaticALU’s fire code in the generated code (testStaticALU.c)? How is the generated fire code for StaticALU different from SimpleALU?
Question: How would you write a helper for an actor that maintains states (e.g. Counter)?
Hint: $actorSymbol()
General Instruction on Creating a Codegen Helper:

1. Choose a PT actor you want to create a helper for (e.g. $PTII/ptolemy/actor/lib/AddSubtract.java)
2. Create the helper java file

a. Create a new .java file under the Ptolemy codegen directory (i.e. $PTII/Ptolemy/codegen/) that mirrors the PT actor file path.

b. Override the generate methods if needed. By default, the CodeGeneratorHelper class returns a set of specific code strings using the default code block names (e.g. “preinitBlock”, “initBlock”, “fireBlock”, “*shared*” (regex), and “wrapupBlock”). Each specific helper class can either inherit the behavior from its parent class or override any method to read code blocks with non-default names, read code blocks with arguments, or do any special processing it deems necessary.

public String generateFireCode() throws IllegalActionException {

if (condition) {

 List args = new ArrayList();

 args.add(object);
 return _generateBlockCode("codeBlock1", args);

} else {

 return _generateBlockCode("codeBlock2");

}

}
c. Include header files. This is done by overriding the getHeaderFiles() method. For example, if <math.h> is needed to be included in the output program, this is how to override the method:

public Set getHeaderFiles() throws IllegalActionException {
Set files = new HashSet();
 files.add("<math.h>");
 return files;
}
3. Create the helper .c file

a. Create a new .c file under the same directory as the helper java file.

b. Specify code blocks in the file. Every code block has a header and footer. The header and footer tags serve as code block separators. The footer is simply the tag “/**/”. The header starts with the tag “/***” and ends with the tag “***/”. Between the header tags are the code block name and optionally an argument list. The argument list is enclosed by a pair of parentheses “()” and multiple arguments in the list are separated by commas “,”. A code block may have arbitrary number of arguments. Each argument is prefixed by the dollar sign “$” (e.g., $value, $width). For example,

/***codeBlockName($arg1, $arg2)***/

...

/**/
The Macro Language Reference:

$ref(name)

Returns a unique reference to a parameter or a port in the global scope. For a multiport

which contains multiple channels, use $ref(name#i) where i is the channel number.

During macro expansion, the name is replaced by the full name resulting from the

model hierarchy.

$ref(name, offset)

Returns a unique reference to an element in an array parameter or a port with the indicated offset in the global scope. The offset must not be negative. $ref(name, 0) is

equivalent to $ref(name). Similarly, for multiport, use $ref(name#i, offset).

$val(parameter-name)

Returns the value of the parameter associated with an actor in the simulation model.

The advantage of using $val() macro instead of $ref() macro is that no additional

memory needs to be allocated. $val() macro is usually used when the parameter is constant during the execution.

$actorSymbol(name)

Returns a unique reference to a user-defined variable in the global scope. This macro

is used to define additional variables, for example, to hold internal states of actors

between firings. The helper writer is responsible for declaring these variables.

$size(name)

If the given name represents an ArrayType parameter, it returns the size of the array. If

the given name represents a port of an actor, it returns the width of that port.
Man-Kit Leung &
4
2/12/2007
Gang Zhou

