9.1 Exercises 6 and 7 in Chapter 8 of Lee \& Varaiya.
9.2 Two complex numbers z_{1} and z_{2} are described below:

$$
z_{1}=1+i \sqrt{3} \quad z_{2}=\exp \left(i \frac{2 \pi}{3}\right)
$$

(a) Identify each of the following complex numbers as points (or vectors) on the complex plane, using a well-labeled sketch: $z_{1}, z_{2}, z_{1}^{*}, z_{2}^{*}, 1 / z_{1}, 1 / z_{2}, 1 / z_{1}^{*}$, and $1 / z_{2}^{*}$.
(b) Determine each of the sums $z_{1}+2 z_{2}, z_{1}^{2}+z_{2}$, and $\frac{1}{2} z_{1}+z_{2}^{*}$.
(c) Determine each of the magnitudes $\left|z_{1} z_{2}\right|,\left|z_{1} z_{2}^{*}\right|,\left|z_{1} / z_{2}\right|$, and $\left|z_{2} / z_{1}\right|$.
(d) Determine each of the following powers of z_{1} and z_{2} :
(i) z_{1}^{2}
(ii) z_{1}^{3}
(iii) z_{1}^{6}
(iv) z_{2}^{4}.
(e) Determine $z_{2}^{1 / 4}$. Be mindful of how many fourth roots z_{2} has and identify each of them graphically on a well-labeled sketch of the complex plane.

Express each of your answers in Cartesian form ($a+i b$), in polar form ($r e^{i \theta}$, where $r>0$), as a real number, as an imaginary number, or graphically in a well-labeled complex-plane diagram, whichever form is less cluttered and more appropriate.
9.3 With little algebraic manipulation, determine each of the following sums:
(i) $\sum_{n=0}^{N} \cos (n \theta)$
(ii) $\sum_{n=1}^{N} \sin (n \theta)$

Hint: You may find geometric series useful.
9.4 Consider the following sixth-order equation:

$$
z^{6}-2 \sqrt{3} z^{4}+4 z^{2}=0
$$

Determine the six solutions (roots) of the equation, and express each root in both a simple rectangular and a simple polar form. Explain your work succinctly, but clearly and convincingly. Also, plot these solutions on a single, well-labeled diagram of the complex plane.
9.5 For each set defined below, provide a well-labeled diagram identifying all the points on the complex plane that belong to it. \mathbb{C} refers to the set of complex numbers, \mathbb{R} refers to the set of real numbers, and \mathbb{Z} refers to the set of integers.
(a) $\{z \in \mathbb{C}||z-i|=|z+i|\}$
(b) $\{z \in \mathbb{C} \mid \operatorname{Im}(z)>\operatorname{Re}(z)\}$
(c) $\{z \in \mathbb{C} \mid 0<\angle z<\pi / 4\}$
(d) $\{z \in \mathbb{C}|1<|z-2 i|<3\}$
(e) $\left\{z \in \mathbb{C} \mid z+z^{*}=0\right\}$
(f) $\left\{z \in \mathbb{C} \mid z=e^{i(2 \pi / 3) t}, t \in \mathbb{R}\right\}$
(g) $\left\{z \in \mathbb{C} \mid z=e^{i(2 \pi / 3) n}, n \in \mathbb{Z}\right\}$
(h) $\left\{z \in \mathbb{C} \mid \operatorname{Re}(z)>\operatorname{Re}\left(i^{i}\right)\right\}$

