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1 Introduction
In this lab, we will explore discrete-time convolution and its various properties, in order to lay a better
foundation for material to be presented later in the course. Convolution is an ubiquitous operation in
signal processing, not least because it provides an elegant way to represent linear, time-invariant systems.
The convolution of two signals x and y, in discrete-time, is defined as CONVOLUTION

(x ∗ y)(n) =

∞∑
k=−∞

x(k)y(n− k) =

∞∑
k=−∞

y(k)x(n− k).

In the case of LTI systems, the output signal of a system, y(n), can be determined merely by convolving the
input signal x(n) with the impulse response h(n) of that system:

y(n) = (x ∗ h)(n).

Furthermore, as you shall see later in Fourier analysis, convolution in the time domain translates directly
into multiplication in the frequency domain. In this lab session, we will try several different approaches of
implementing convolution in LabVIEW.

Finally, we will see our first special-purpose discrete-time system, known as a discrete-time low-pass filter.
We will analyze its behavior in the frequency domain and discover where it gets its name.

1.1 Lab Goals

• Explore the properties of discrete-time convolution.

• Implement discrete-time convolution in LabVIEW through different methods.

• Implement basic discrete-time filters in LabVIEW in both time and frequency domains.
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2 Pre-Lab Section

2.1 LTI Systems and Impulse Responses

We consider any system F, which takes in an input signal x(n) and produces the corresponding output
signal y(n); in other words, y(n) = (F (x))(n)1. We say that the system is linear if it satisfies the following LINEAR

properties:

1. Scaling Property. If we were to scale any input signal x(n) by a scalar α, the corresponding output
signal should also be scaled by α. Formally, if x̂(n) = αx(n), and ŷ(n) = (F (x̂))(n), then ŷ(n) = αy(n)
as well.

1Note the notational subtlety: F is the name of the system, while F represents the system as a function that operates on an input
signal. When writing, it is not always possible to maintain this distinction, so we do not usually worry about it, as long as we
understand that there is, in fact, a distinction.
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2. Additivity. Consider any two input signals x1(n) and x2(n), and let

y1(n) = (F (x1))(n), y2(n) = (F (x2))(n).

If we define a new signal
x(n) = x1(n) + x2(n),

then the corresponding output signal y(n) = (F (x))(n) is also

y(n) = y1(n) + y2(n).

In simpler words, if we were to add together two input signals and feed the resultant signal through a
system, the output signal should be the same as if we fed the two input signals separately, and added
the corresponding output signals together.

We say that the system is time-invariant if, for any input signal x(n), shifting the signal in time also TIME-
INVARIANTshifts the corresponding output signal in time. Formally, for any input signal y(n) = (F (x))(n), if x̂(n) =

x(n−n0), where n0 is an integer, and ŷ(n) = (F (x̂))(n), then ŷ(n) = y(n−n0) if the system is time-invariant.

A system that satisfies the linear and time-invariant properties described above is referred to as a linear,
time-invariant (LTI) system2. LTI systems have several interesting features and properties, which will be LTI SYSTEM

the basis of much of our future study in this class. One of these interesting properties is the existence of an
impulse response.

2.2 Echo Method

Based on the definition of convolution, we can describe two methods to graphically convolve two signals.
The first method is known as the echo method, and is derived from the properties of an LTI system. We
will describe the idea behind it here.

Consider any LTI system H. If we provide the Kronecker delta signal (or the discrete-time impulse) as an
input signal, then the corresponding output signal is known as the impulse response of the system. It is IMPULSE

RESPONSEdenoted by h(n). Since the impulse response is defined for an LTI system, we can deduce that

δ(n)→ H → h(n)

αδ(n)→ H → αh(n)

δ(n− k)→ H → h(n− k)

We also know that x(n) can be expressed as

x(n) =

∞∑
k=−∞

x(k)δ(n− k).

In simpler terms, every input signal can be expressed as the summation of several shifted Kronecker delta
functions (δ(n− k)), each one scaled by x(k). As a result, the output signal y(n) must be described by

y(n) =

∞∑
k=−∞

x(k)h(n− k) = (x ∗ h)(n).

This is a very important (and cute) observation: when we feed a system with an input signal, we can deter-
mine the output signal simply by convolving the input signal with the impulse response of the system!

2No duh.
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Be particularly wary here, though: this only applies to LTI systems in general. Why? What assumptions
have we made to reach this conclusion? Also, note that whenever we speak of an impulse response,
there is an implict assumption that the system must be LTI. Non-LTI systems may have responses to the
Kronecker delta, but we do not label these responses as ‘impulse responses’; the term is reserved for LTI
systems alone.

Conversely, if we wanted to convolve the impulse response with an input signal, we would break the input
signal up into its constituent impulses, find the (scaled and shifted) response to each of these impulses, and
then add the responses together. This is referred to as the echo method of interpreting convolution. We will
explore this in further detail during the lab.

2.3 Flip-and-Shift Method (Using the Toolkit)

The second method to graphically convolve two signals is known as the flip-and-shift method, which we
have explored in lecture and in the problem sets. The following exercises are meant to help you understand
this method of convolution better, by means of a visual LabVIEW tool.

Download Convolution Tool.exe from bSpace and run it3.

To run this tool, you will need the LabVIEW 8.6 runtime engine.4

Alternately, you may use the online Joy of Convolution web app, by Steve Crutchfield at John Hopkins
University. However, we will not provide instructions or support for this app.5

The following are a few salient features of the LabVIEW Convolution Tool.exe tool:

1. x[n]:

This input represents the input signal to an LTI system. It can be manipulated by clicking on the signal
and changing the heights of different impulses. There are also preset signals; from left to right, these
signals are a finite five-impulse train, a finite five-impulse train followed by a negative five-impulse
train, a decaying exponential signal, a Kronecker delta, and the zero signal.

Note that at the time of this writing (Oct 1, 2010), the preset Kronecker delta in the Convolution
Tool.exe has magnitude 3. I’m working on fixing this. You can manually adjust the magnitude

3We have not tested the tool with the Mac and Linux operating systems. If you are working on machines with these systems,
consider working on a Windows machine, such as through a Remote Desktop Connection, just for this pre-lab. Alternately, consider
using the online Joy of Convolution web app. See footnote below.

4PC LabVIEW 8.6 RTE: http://joule.ni.com/nidu/cds/view/p/id/1244/lang/en
Mac LabVIEW 8.6 RTE: http://joule.ni.com/nidu/cds/view/p/id/1245/lang/en
5Joy of Convolution web app: http://www.jhu.edu/signals/discreteconv/index.html
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back to 1 for the exercises in this pre-lab.

2. h[n]:

This input represents the impulse response of that LTI system. It can be manipulated in the same
ways that x[n] can.

3. h[k], x[n− k]:

This window allows you to drag the time-reversed version of x over h. The h[k]x[n − k] and y[n] =∑∞
k=−∞ h[k]x[n − k] windows update as x[n − k] is dragged above h[k]. Note that the axis is the

k-axis.

4. Use the STOP button, followed by the Run button, to reset the signals.

2.4 Exercises

With the help of the convolution tool, answer the following questions. Supplement your answers with the
necessary screenshots.
If you’re not familiar with how to take screenshots on a Windows machine, see this helpful guide. Note
that ALT-PrintScreen copies only the active window! For Mac machines, see this Mac screenshot guide.

1. In mathematics, the identity element (e) of an operation (∗) satisfies the property that a ∗ e = e ∗ a = a
for any element a for which the operation ∗makes sense.

In the discrete-time convolution tool, set the impulse response (h[n]) of the system to the Kronecker
delta. Using various signals as input (x[n]), explain why the Kronecker delta is known as the identity
element of convolution.
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2. Select any one preset signal as h[n] and another preset signal as x[n], and observe the result (h ∗ x)[n].
Reverse the roles of h[n] and x[n], and determine if the observations still remain the same. Do your
observations support the commutativity of convolution?

3. Set h[n] to an impulse shifted to the right by certain units; in other words, set h[n] = δ[n − n0] for
any integer value of n0. Before conducting the exercise, predict the output signal if the input signal
is the finite five-impulse train. Again, predict the output signal if the input signal is the decaying
exponential signal. Test your predictions using the tool. From your observations, extrapolate what
the result of (x ∗ h)[n] might be, where h[n] = δ[n − n0], for any x[n]. Confirm your conjecture using
the other kinds of input signals, and prove it using the definition of discrete-time convolution.

4. Determine, first on paper and then using the LabVIEW tool, the convolution of which two preset
signals will yield the following signal6:

Figure 1 The output signal y[n] of the mystery convolution.

Describe the process by which you determined your answer. (Hint: “I tested all 25 possible pairs of
preset input signals” is not the greatest of answers.)

2.5 Submission Rules

1. Late submissions will not be accepted, except under unusual circumstances.

2. If the pre-lab exercises are not performed, you will get an immediate zero for the entire lab.

3. These exercises should be done individually.

2.6 Submission Instructions

1. Log on to bSpace and click on the Assignments tab.

2. Locate the assignment for Lab 4 Pre-Lab corresponding to your section.

3. Attach your answers to the questions presented in section 2.4. Templates for this assignment are
available, in DOC and TEX formats, as part of the lab 4 resources on bSpace, but you need not use
them.

4. This assignment is due 10 minutes after the beginning of your lab session during the week of October
4, 2010. Please do not wait until (literally) the last minute to submit your work though; bSpace stops
allowing submissions precisely on the minute, and since it takes a while to upload and submit your
work, you may not be able to complete your submission.

6Note that if you used the online Joy of Convolution app, you will need to create the signals manually, as there are no two presets
which give you the signal shown here
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3 In-Lab Section

3.1 Objective

Our main objective in this lab is to convolve two signals, using an important property of LTI systems: Con-
sider any LTI system H with impulse response h(n). We know, from the pre-lab, that if we feed the system
with an input signal x(n), then the system produces the output signal (x ∗ h)(n).

We use this to our advantage: if we wanted to convolve any two signals, we name one of the signals as x(n)
and the other signal as h(n). Then, we construct an LTI system H whose impulse response is h(n), and feed
the other signal x through this system H. From the above discussion, the output signal of this system must
be (x ∗ h)(n), which is what we want.

Our sole concern then becomes actually creating the system, which is where LabVIEW proves useful. In this
lab, we will attempt three different ways to construct an LTI system H with a particular impulse response.

We will use the mystery signal in pre-lab section 2.4, step 4 as our example. Recall that you had to determine
which two preset signals generated that mystery signal. In order to make the implementation simpler, we
denote the signal with the longer nonzero sequence as x(n), and the other signal as h(n). At this point,
you may want to look back at your pre-lab solutions and recall what x(n), h(n), and y(n) were. Note that
y(n) will be longer than x(n) and h(n). Throughout this lab we will use l to represent the length of the
longest signal y(n).

3.2 Dataflow Implementation

Our first method of implementing the system H employs dataflow programming. Here, you will implement
the convolution sum using the echo method, where the output y(n) is represented as a weighted sum of
delayed versions of the input x(n):

y(n) =

∞∑
k=−∞

h(k)x(n− k) (1)

= · · ·+ h(−1)x(n+ 1) + h(0)x(n) + h(1)x(n− 1) + h(2)x(n− 2) + . . . (2)

For our particular choice of impulse response h, we know that h(n) = 0 for n < 0, so the terms comprising
y(n) will only consist of the current and delayed versions of x(n). First, we need to prepare the front panel
to display our input and output signals.

You may find the Context Help (Ctrl-H) useful for this lab and the following labs. When you hover
over a block, the Context Help displays a brief summary of what the block does; when you hover over
a wire, the Context Help displays the type of the data flowing through the wire.

1. Create a new VI called Convolution Data Flow.vi.

2. Use the Array subpalette (under Programming) in the block diagram to generate an array repre-
senting the signal x(n) for n > 0. Pad the array with enough zeros so that the length of the signal is l.
Also, display its stem plot on the front panel.

• Use any of the available functions to construct your version of x(n). We recommend the Initalize
Array and Build Array blocks. Do not make a control on the front panel and manually type
in x[n].
If you will be using the Build Array block, you will probably be using it to concatenate
several arrays into one. In order to achieve this, you will have to bring the Build Array into
the Concatenate Inputs mode: right-click on the block and select Concatenate Inputs.
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• In order to plot your signal, use the Express XY Graph present under the Graph subpalette
of the Modern palette, available on the front panel. x[n] will go on the y axis, and 0 through l− 1
will go on the x-axis.

Note that you’ll need to generate an array of integers between 0 and l− 1 to represent your vari-
able n. You can do this, for example, by wiring the index out of an empty for loop.

• The indicator will not plot a stem plot by default. As shown in Figure 2, click on the plot legend
in the upper-right corner of the XY Graph, go to Common Plots and change the plot to a stem
plot. In addition, go to Point Style to make the points more obvious.

Figure 2 Plot Legend Menu

3. Now, we need to generate the Kronecker delta signal, otherwise referred to as the ‘impulse’, in order
to feed it through the system H and to confirm its impulse response. In other words, create a one-
dimensional array with the sole nonzero element at the beginning of the array. Pad the array with
enough zeros so that the length of the Kronecker delta signal is l.

From lab 02, recall that if the For Loop only has one input array, the upper bound of iterations N
will be the length of the array.

4. It is time to create our system H with impulse response h[n]! In other words, we want to make a
LabVIEW function such that if we feed it our Kroenecker delta, it will give us h[n].

Remember that our impulse respnse (and indeed) any signal is merely a linear combination of shifted
and scaled Kronecker delta signals, as shown in Figure 3. As a result, in order to create H, we need
to be able to take our impulse signal from step 3 and delay it by several time steps. We do so using a
For Loop and shift registers. See Figures Figure 3 and Figure 4 below for more exposition.
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Figure 3 An impulse response (and indeed, any discrete-time signal) is merely a summation of shifted and
scaled Kronecker deltas.
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delay 

delay 

Figure 4 The LabVIEW program below implements the system H where impulse response h[n] = δ[n] +
δ[n− 1].

3.3 Shift Registers and Multiple Delays

Recall that shift registers can be used to store and access array values from previous iterations of loops.
This is precisely what delay elements do! By accessing array values from previous iterations of the loop
during the current iteration, you are accessing values of the array that have been delayed.

Using multiple pairs of shift registers, you can access not only array values from the previous loop
iteration, but values from the past several iterations. In the simplest case, the value from the left shift
register is the value from the last iteration of the For Loop. If you were to delay this value as well, by
sending the value received from a left shift register unchanged into a different right shift register, then the
value in the next loop iteration appearing from the left shift register, corresponding to this different right
shift register, would represent the array value delayed by two samples instead of one. Examine the left
block diagram shown in Figure 5.

This operation is so common that it has a shortcut in LabVIEW: now, instead of using multiple pairs
of shift registers to accomplish delays of multiple samples, we can use just one pair of shift regis-
ters. When we create one pair of shift registers, we right-click on either shift register, and select Add
Elements to add multiple delays. This mimics having a stream of shift registers, each having their
right end connected to the left end of the previous one, without all of the messy wires in between.
The result is shown in the right block diagram of Figure 5. Note that you will create a stack of shift
registers on the left side of the loop structure. The top shift register in the stack stores the array value from
the previous iteration, the next shift register down stores the array value from two iterations ago, and so on.

You can also think of the multiple shift-registers as a data pipeline. Note that all of the shift-registers point
downward. With each iteration, the values in the shift registers move downwards. What goes in to the top
one? Well, whatever is wired to the shift register on the right hand side of the for loop.
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Figure 5 Multiple shift registers can be combined into one.

5. With the help of the discussion in section 3.3, create a For Loop that would take the impulse from
step 3 and generate h(n). Confirm your answer by actually feeding the impulse signal into the For
Loop and producing a stem plot for the output h(n).

• How many delay elements will you need?

• Use the Compound Arithmetic block under the Programming → Numeric subpalette to
add all of the delayed signals together, and draw the combined signal out of the For Loop.

• Do not forget to create a stem plot for h(n)!

6. Congratulations! You have just created a system H with impulse response h(n); the For Loop with
shift registers is the system. (Woah!) We can now perform the convolution (x ∗ h)(n); all we need to
do is replace the input signal to the system. Currently, the input signal is an impulse signal. Make a
copy of the system H and replace its input signal with x(n).

7. Display the result y(n) on the front panel. This should be the same as the mystery signal in the pre-lab
section 2.4, step 4. The front panel of the finished VI should look similar to that shown in Figure 6.

Figure 6 Convolution Data Flow.vi Front Panel
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3.4 MathScript Nodes Implementation

Since we know how convolution is defined mathematically, we should be able to implement convolution
in a Mathscript Node.

1. Create a new VI called Convolution MathScript.vi.

2. Create a MathScript Node with three outputs: x, h, and y, each output representing the corre-
sponding signal.

3. Generate the signals x(n), y(n), and h(n) inside the MathScript Node and display them using stem
plots. Your program must be able to handle arbitrary h(n) of length less than x(n). In other words,
your code should actually use h(n).

• Remember that, in MathScript, the first element in an array has an index of 1, not 0. Also, the
signals themselves do not exist before index 1. As a result, the convolution formula becomes

y(n) =

∞∑
k=1

x(k)h(n− k + 1).

• In order to achieve the convolution (x ∗ h)(n), ensure that all the signals have the same length; pad
the signals at the end with enough zeros to give them the same length.

• You may find the zeros and ones commands useful. Note that you probably want to generate
row vectors instead of column vectors (e.g. zeros(1,5) instead of zeros(5))
From lab 03, use the help command to read the LabVIEW Help file on any command. Yes,
including help itself.

• You can concatenate several arrays, such as A, B, and C, into one array using the following com-
mand: D = [A B C]. Notice the whitespace in between the names of the arrays.

• Do not forget to initialize the array for the signal y(n) with zeros before doing the convolution.
As a debugging tip, always ensure that your MathScript code works in the MathScript
Window before using it in a MathScript Node.

4. The front panel of the resulting VI should again look similar to that shown in Figure 6.

5. Upon completing your implementation, make sure that your convolution output matches that of your
data-flow implementation.

3.5 Using Built-In MathScript Libraries

As you may be noticing by now, implementing operations in MathScript with nested for loops can be
time-consuming, both in coding and executing. However, this does not mean that you should not use
MathScript to implement convolution. In this section, we will introduce yet another, more efficient, way
to perform convolution in MathScript.

1. Create a new VI called Convolution MathScript Conv.vi.

2. Use the help command in the MathScript Window to read the LabVIEW Help file on the conv
command.

3. Create a MathScript Node with three outputs: x, h, and y, each output representing the corre-
sponding signal.

4. Generate the signals x(n), y(n), and h(n) inside the MathScript Node, this time using the conv
command, and display them using stem plots. Do not use For loops for this exercise.
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MathScript provides a rich library for general signal processing. In the future, try to utilize this library as
much as possible by searching through the LabVIEW help files. Remember this general rule of thumb: Do
not use for loops unless you really have to! MathScript is optimized for whole matrix operations, and using
for loops that iterate through a matrix tends to produce a slower VI. As far as possible, utilize methods
that operate on an array or on a matrix as a whole, as opposed to treating each element one-by-one.

4 Post-Lab Section
Now that we have gained a little bit of intuition regarding convolution, we will now focus on, and experi-
ment with, specific LTI systems. In this section, we will use LabVIEW to help us explore the functioning of
certain special discrete-time filters.

4.1 Discrete-Time Low-Pass and High-Pass Filters

Filtering can be found in various disciplines, from water filtration to audio amplification. It simply means
to remove or to amplify different aspects of a signal or a medium, such as water. While water filtration
removes dirt and other particles, a filter in electrical engineering may remove noise or boost a certain fre-
quency, as is done by a bass boost on a CD player.

In lecture, we have learned about the LTI system HL that relates an arbitrary input signal x and its corre-
sponding output signal y with the equation

∀n ∈ Z, y(n) =
1

2
(x(n) + x(n− 1)) . (3)

Thus, the system HL performs a two-point moving average. This system is called a discrete-time low-pass
filter, and we will soon discover why. DISCRETE-TIME

LOW-PASS
FILTERSimilarly, we consider an LTI system HH that relates an arbitrary input signal x and its corresponding output

signal y with the equation

∀n ∈ Z, y(n) =
1

2
(x(n)− x(n− 1)) . (4)

Thus, the system HH performs a two-point moving difference. This system is called a discrete-time high-
pass filter. Note that the change in sign produces a completely different system with different properties. DISCRETE-TIME

HIGH-PASS
FILTER

4.2 Discrete-Time Frequencies

The frequencies of discrete-time signals lie in the interval (−π, π]. It is, of course, possible for a discrete-time
signal to have frequencies beyond the bounds of the interval (−π, π], but such frequencies can be ‘folded
in’ to the interval (−π, π]. For example, consider the signal x(n) = eiΩn, where Ω > π. The frequency of this
signal is Ω, but we know that Ω = ω + 2πk, for some k ∈ Z and −π < ω ≤ π. Then, we have

x(n) = eiΩn = ei(ω+2πk)n = eiωn · ei2πkn = eiωn,

because ei2πkn = 1 if k, n ∈ Z. This is an extension of the idea that any real-valued angle can be expressed
in terms of an angle between −π and π. Since our frequencies are now restricted to the interval (−π, π],
we consider frequencies near zero to be low-frequency signals, and frequencies near ±π to be high-frequency
signals.

Note that this discussion is not necessarily true for continuous-time signals. Why not? What assumptions
have we made that only apply for discrete-time signals?
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4.3 Creating the Low-Pass Filter

We now observe the effects of the two-point moving average filter on discrete-time signals of varying fre-
quencies by modifying the Convolution Data Flow.vi you created in lab, in section 3.2.

1. Begin by examining the input-output relationship of the discrete-time low-pass filter HL described by
Equation 3, and relate it to the convolution sum. Determine the impulse response hL(n) correspond-
ing to the discrete-time low-pass filter.

2. Create a copy of the Convolution Data Flow.vi under the different name Convolution Data
Flow LPF.vi. Modify the impulse response of the system to be the impulse response hL(n) of the
low-pass filter. Note that in doing so, you have created the discrete-time LTI system HL.

3. Replace the input x(n) with the inputs cos(0n), cos(π2n), and cos(πn) of 30 samples each. Create a
separate identical system for each input by copying and pasting the system you created initially.

Hint: You must generate and store into an array the values 0 through 29, by using either a For Loop
to generate and store the values (with the help of array output indexing), or a Mathscript Node
to generate the array. Then, you will feed the array into a cos function, located in Mathematics →
Elementary and Special Functions → Trigonometric Functions.

4. Observe the outputs corresponding to each of the three inputs and determine whether the system
attenuates, magnifies or preserves its input.

5. Note that the input cos(0n) is of zero frequency, the input cos(πn) is of the highest possible discrete-
time frequency, and the input cos(π2n) is of medium frequency, halfway between the lowest and high-
est possible discrete-time frequencies. Based off of this, which frequencies does the system seem to
allow (not attenuate)?

6. Recall that the system HL performs a two-point moving average. If we feed the system a constant
signal, such as cos(0n)—a signal that does not vary at all—how does the system modify the signal?
However, if we feed the system a signal, such as cos(πn)—a signal that varies really quickly—how
does the system modify these variations in the signal, and thus the signal itself?

7. Based on your answers to previous questions, why do you think the discrete-time two-point moving
average system that you created is also called a discrete-time low-pass filter?

4.4 Creating the High-Pass Filter

We now observe the effects of the two-point moving difference filter on discrete-time signals of varying
frequencies by modifying the Convolution Data Flow.vi you created in lab, in section 3.2.

1. Begin by examining the input-output relationship of the discrete-time high-pass filter HH described by
Equation 4, and determine the impulse response hH(n) corresponding to the discrete-time high-pass
filter.

2. Create a copy of the Convolution Data Flow.vi under the different name Convolution Data
Flow HPF.vi. Modify the impulse response of the system to be the impulse response hH(n) of the
high-pass filter. Note that in doing so, you have created the discrete-time LTI system HH.

3. Replace the input x(n) with the inputs cos(0n), cos(π2n), and cos(πn) of 30 samples each. Create a
separate identical system for each input by copying and pasting the system you created initially.

4. Observe the outputs corresponding to each of the three inputs and determine whether the system
attenuates, magnifies or preserves its input.
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5. Note that the input cos(0n) is of zero frequency, the input cos(πn) is of the highest possible discrete-
time frequency, and the input cos(π2n) is of medium frequency, halfway between the lowest and high-
est possible discrete-time frequencies. Based off of this, which frequencies does the system seem to
allow (not attenuate)?

6. Recall that the system HH performs a two-point moving difference. If we feed the system a constant
signal, such as cos(0n)—a signal that does not vary at all—how does the system modify the lack of
variations in the signal, and thus the signal itself? However, if we feed the system a signal, such
as cos(πn)—a signal that varies really quickly—how does the system modify these variations in the
signal, and thus the signal itself?

7. Based on your answers to previous questions, why do you think the discrete-time two-point moving
difference system that you created is also called a discrete-time high-pass filter?

4.5 Cascading Filters

We can create more complicated filters by cascading pre-existing filters. In the configuration shown in Fig-
ure 7, LTI systems A (with impulse response a(n)) and B (with impulse response b(n)) have been cascaded
in series to produce another LTI system C (with impulse response c(n)).

Figure 7 Two LTI systems A and B cascaded in series to produce a third filter C.

We can derive a relationship between a, b, and c as follows: Consider the input signal x(n) = δ(n), the
Kronecker delta. If we feed it into the system C, we expect the impulse response c(n), by definition. Now,
we decompose the system C into its constituent systems A and B. The output of the system A in response to
x(n) is a(n) (why?). This output is the input to the system B. We know that, for any arbitrary input signal,
the output signal of an LTI system is the convolution of its impulse response with the input signal. This
implies that the output of the system B corresponding to the input a(n) must be (a ∗ b)(n). But, the output
of the system B is the output of the system C.

1. From the above discussion, generate a relationship between a, b, and c.

2. Now, we will cascade the discrete-time low-pass filter HL with the discrete-time high-pass filter HH.
What is the impulse response hM (n) of the resulting overall filter HM?

3. Does the order in which you convolve the two impulse responses matter? In other words, does the
order of the individual systems in a cascade make a difference in the impulse response of the cascaded
system?

4. Create a copy of the Convolution Data Flow.vi under the different name Convolution Data
Flow MPF.vi. Modify the impulse response of the system to be the impulse response hM (n) of the
filter HM. Note that in doing so, you have created the discrete-time LTI system HM.

5. Replace the input x(n) with the inputs cos(0n), cos(π2n), and cos(πn) of 30 samples each. Create a
separate identical system for each input by copying and pasting the system you created initially.

6. Observe the outputs corresponding to each of the three inputs and determine whether the system
attenuates, magnifies or preserves its input.
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7. Based on your answers to previous questions, why do you think the filter that you just created is also
called a discrete-time mid-pass filter or a discrete-time band-pass filter?

4.6 Submission Rules

1. Late submissions will not be accepted, except under unusual circumstances.

2. These exercises are recommended to be done in groups of two. Only one person need submit the
required files, however.

4.7 Submission Instructions

1. Log on to bSpace and click on the Assignments tab.

2. Locate the assignment for Lab 4 Post-Lab corresponding to your section.

3. Attach the following files to the assignment:

(a) The VIs Convolution Data Flow LPF, Convolution Data Flow MPF, and Convolution
Data Flow HPF.

(b) Your answers to the questions in section 4.2 through section 4.5.

(c) A text file called PARTNERS.txt containing the names of the students in the pair.

4. Templates for this assignment are available, in DOC and TEX formats, as part of the lab 4 resources
on bSpace, but you need not use them.

5. This assignment is due 10 minutes after the beginning of your lab session during the week of October
11, 2010. Please do not wait until (literally) the last minute to submit your work though; bSpace stops
allowing submissions precisely on the minute, and since it takes a while to upload and submit your
work, you may not be able to complete your submission.
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