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1 Introduction
In this lab session, we will use LabVIEW to help us explore the functioning of various discrete-time filters.
Filters are ubiquitous in various disciplines, and are used to remove or to amplify different aspects of either
a signal or a medium, such as water. While water filtration removes dirt and other particles, a filter in
electrical engineering may remove noise or boost a certain frequency, as is done by a bass boost on a CD
player. In electrical engineering, filters are represented by complex functions, whose magnitude and phase
show the differences between the original signal and the filtered signal. Using these complex functions, we
can analyze the frequency responses of the corresponding filters; from these frequency responses, we can
extrapolate the behavior of these filters. Finally, we will analyze the performance of the discrete-time filters
in the time domain, using dataflow programming.

1.1 Lab Goals

• Learn how to plot the magnitude and the phase of the frequency responses of different filters.

• Use LabVIEW to verify magnitude and phase response plots of filters.

• Use LabVIEW to emulate discrete-time filters and verify their properties.

1.2 Checkoff Points

2. In-Lab Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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2 In-Lab Section

2.1 With Great Power Comes Great Frequency Response

In lab 04, we explored the concept of the impulse response of a discrete-time LTI system, which was defined
to be the response of the system to the Kronecker delta signal, δ(n). We then deduced that if an LTI system
H has an impulse response h(n), then the input signal x(n) and the output signal y(n) are related by

y(n) = (x ∗ h)(n) =
∞∑

k=−∞

x(k)h(n− k) =
∞∑

k=−∞

h(k)x(n− k).

The impulse response can thus be used to completely specify and characterize a system. In other words,
the impulse response encapsulates everything that we need to know about a system and its responses to
various inputs.

Since the signal x(n) = eiω0n has only one frequency (at ω0), we can determine how a discrete-time LTI
system acts on signals containing different frequencies by determining its response to the complex expo-
nential signals at those frequencies. We thus consider another, special kind of response: the response of the
discrete-time LTI system H to the input signal x(n) = eiωn at any arbitrary frequency ω. From the discussion
above, we conclude that

y(n) =

∞∑
k=−∞

h(k)x(n− k)

=

∞∑
k=−∞

h(k)eiω(n−k)

=

∞∑
k=−∞

h(k)eiωn · eiω(−k)

= eiωn
∞∑

k=−∞

h(k)e−iωk

= H(ω)eiωn,

where

H(ω) =

∞∑
n=−∞

h(n)e−iωn.

H is a function of ω and is known as the frequency response. In order to plot the frequency response FREQUENCY
RESPONSE
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against ω, we would need three axes (why?). Nonetheless, we recall that any complex number z can be
written in the form

z = |z|ei]z,

where |z| is the magnitude of z, a nonnegative real number, and ]z is the phase of z, a real number. Since MAGNITUDE
PHASEH is a complex-valued function of ω, we can accomplish something similar. At any value of ω,

H(ω) = |H(ω)|ei]H(ω).

We can then examine the behavior of H(ω) merely by examining the behavior of its components, |H(ω)|
and ]H(ω). Notice that |H(ω)| and ]H(ω) are also functions of ω, and since these functions are real-valued,
we can plot them against ω on a two-dimensional surface.

2.2 Discrete-Time Filters, Reloaded

In the post-lab of lab 04, you analyzed the input-output relationships of three discrete-time filters: the two-
point moving average filter, the two-point moving difference filter, and a three-point filter that was simply
the cascade of the moving average and moving difference filters. Recall that you observed the relationships
between the inputs and outputs of each filter, and saw that the two-point moving average filter was a
low-pass filter, the two-point moving difference filter was a high-pass filter, and the three-point filter was
a mid-pass, or band-pass, filter. In this lab, you will attempt to more fully understand why the filters
have these effects on input signals at certain frequencies by analyzing them in the frequency domain, via
their frequency responses. You will also experiment with variations on these basic filters by incorporating
feedback terms in the implementation of these filters.

2.3 Filter Represent!: LCCDEs and DAG Block Diagrams

Each filter that we explore in this class can be characterized by a linear equation that shows the relationships
between consecutive values of the input and output signals. The scaling coefficients of the terms in the linear
equation are constant. Stringing these properties together, we call such equations linear constant-coefficient
difference equations (LCCDEs). For the low-pass filter HL, for example, we have the LCCDE LCCDE

∀n ∈ Z, y(n) =
1

2
(x(n) + x(n− 1)) .

The corresponding LCCDE of the high-pass filter HH is

∀n ∈ Z, y(n) =
1

2
(x(n)− x(n− 1)) .

Finally, for the mid-pass, or band-pass filter HM, we have the LCCDE

∀n ∈ Z, y(n) =
1

2
(x(n)− x(n− 2)) .

LCCDEs thus serve as one way to describe a filter. Another convenient way to describe a filter is to draw
its delay-adder-gain (DAG) block diagram, such as the one for the low-pass filter as shown in Figure 1. DAG BLOCK

DIAGRAM

Notice that the diagram shows the input signal x entering the filter and getting manipulated to produce the
output signal y leaving the filter. This manipulation uses delay elements, DN , which delay their inputs by
N samples. For instance, the DAG block diagram of the low-pass filter uses a delay element that delays its
input by 1 sample. We also use adder elements that add their inputs and gain elements that scale their inputs.
Can you construct similar DAG block diagrams for the other filters?
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Figure 1 Delay-Adder-Gain Block Diagram of the Low-Pass Filter

1

LOW-PASS FILTER

2.4 Frequency Domain Analysis

In this lab, we will use the LCCDEs to derive and implement the frequency responses HL(ω), HH(ω), and
HM (ω) for the low-pass, high-pass, and mid-pass filters respectively. To do so, we need to begin with the
impulse responses hL(n), hH(n), and hM (n) for the three filters. If you do not recall what the impulse
responses are, you can derive them by matching the LCCDEs with the convolution sum.

1. On a separate sheet of paper, determine expressions for frequency responses HL(ω), HH(ω), and
HM (ω) for the low-pass, high-pass, and mid-pass filters, respectively. Each should be a function of the
discrete-time frequency variable ω, which has units of radians per sample. Using these expressions,
extract the magnitudes and phases of the frequency responses.

For each filter, your magnitude response expression should involve no more than the absolute value
of one trigonometric function, with no additional terms. Your phase response expressions should
involve no more than a linear function of ω. However, you should be careful of phase-shifts, where
your linear phase functions may shift by π at certain values of ω. This is usually caused by sign-
changes in the trigonometric expressions for the magnitudes.

2.5 Radians Per ... Sample?

Notice that the unit of discrete-time frequency ω is radians per sample. Remember that in discrete-time,
we concern ourselves with samples (n), not seconds (t), where a sample is defined to be the value of a signal
at a certain point in time, and samples are numbered with the integers.

The unit of radians per sample denotes the rate at which successive samples of a discrete-time signal ad-
vance through a period of 2π radians. For instance, if ω were 2π radians per sample, such as with the signal
ei2πn = 1, then each sample advances through a whole period by itself, implying that the period of the
discrete-time signal is only 1 sample. If ω were π radians per sample, then the period becomes two sam-
ples, because each sample only covers half the period. Recall your experiences with the signal eiπn = (−1)n.
Here, the discrete-time frequency is π, and the signal simply repeats every two samples.

2. Create a new VI called DT Frequency Responses.vi. Use a MathScript Node to model the
frequency responses of each of the three discrete-time filters.

(a) There will be no input for your MathScript Node.
(b) Inside your MathScript Node, define an array w that represents the angular frequency ω

sweeping from −π to π.

In order to achieve as accurate a plot as possible, use a small step size: we recommend 0.03,
but you are free to experiment.
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(c) The MathScript Node should have four outputs:

• Hl, which stores the array for the frequency response of the low-pass filter HL(ω).
• Hh, which stores the array for the frequency response of the high-pass filter HH(ω).
• Hm, which stores the array for the frequency response of the mid-pass filter HM (ω).
• The array of angular frequencies w.

Note that you do not need MathScript Node outputs for the magnitude and phase responses
of the filters separately. As you will see, LabVIEW allows you to extract the magnitude and
phases of arrays of complex numbers.

Remember a common source of errors in LabVIEW VIs: the data types for all inputs and outputs
to any MathScript Node should be correctly assigned. In this case, the data type for Hl, Hh,
and Hm should be a 1-D array of complex numbers (CDB 1D), instead of the usual 1-D array of
real numbers.

(d) Employ MathScript functionality in the MathScript Node to generate Hl, Hh, and Hm for the
array of frequencies w used, based on the expressions for their respective frequency responses
that you derived by hand in step 1. Note that you are not using the magnitude and phase re-
sponse expressions that you derived separately. Rather, you only need to use the unsimplified
expressions for the frequency responses.

Recall from lab 03 that it is possible to perform operations on an entire array at once. As a
result, the command exp(x) will generate an array whose ith element is the value exi , xi being
the ith element of the array x. Again, the command x .* y will pointwise multiply arrays x
and y together. Be careful of the difference between using the regular multiplication operator
(*) and the pointwise multiplication operator (.*), when working with arrays.

3. Use the outputs of the MathScript Node from step 2 to determine the magnitude and the phase of
the frequency response of each of the filters.

(a) Since the Mathscript Node outputs complex arrays, we can use the Complex to Polar
block, as shown in Figure 2, available under the Programming → Numeric → Complex
subpalette. This block breaks complex numbers into its polar components.

Figure 2 Complex to Polar block

(b) Connect the outputs Hl, Hh, and Hm to separate Complex to Polar blocks.

4. Plot the magnitude and the phase plots of HL(ω), HH(ω), and HM (ω) against frequency ω.
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(a) Recall from lab 04 that you can use either the XY Graph or the Express XY Graph, present
under the Graph subpalette of the Modern palette, and available only on the front panel.

(b) In all, you should have six (6) XY Graph blocks on your front panel (one for each of the magni-
tude and phase plots of the three filters).

(c) Make sure to edit the labels on the x-axis to read Frequency and the labels on the y-axis to read
either Magnitude or Phase.

Use the behaviors of the plots at frequencies 0, ±π/2, and ±π to confirm the expressions you derived
by hand in step 1.

5. Based on the magnitude and phase plots, can you see why the low-pass, high-pass, and mid-pass
filters are given their respective names? What is your prediction of the effect of each of the filters on
the signals cos(0πn), cos(π2n), and cos(πn)?

2.6 Variations on a Discrete-Time Filter

We will consider the following variations of our three discrete-time filters, which also depend on past values
of the output signal y(n). This is an example of a system with feedback. These filters are also LTI (can you
verify this?), with LCCDEs given as follows:

For the low-pass filter, we have

∀n ∈ Z, y(n) =
1

2
(x(n) + x(n− 1)) +

1

2
y(n− 1). (1)

For the high-pass filter, we have

∀n ∈ Z, y(n) =
1

2
(x(n)− x(n− 1)) +

1

2
y(n− 1). (1)

For the mid-pass filter, we have

∀n ∈ Z, y(n) =
1

2
(x(n)− x(n− 2)) +

1

2
y(n− 1). (1)

Let us denote the frequency response of the variations of the discrete-time low-pass, high-pass, and mid-
pass filters as HLV (ω), HHV (ω), and HMV (ω), respectively.

1. Draw DAG block diagrams corresponding to the systems that implement these filters.

2. Derive expressions for the frequency responses HLV (ω), HHV (ω), and HMV (ω).

Hint: Recall that if we set our input signal x(n) to be eiωn, then our output signal y(n) from the
discrete-time LTI system is H(ω)eiωn. Then, to determine the frequency response expressions, sub-
stitute eiωn as the input signals and H(ω)eiωn as the output signals into the LCCDEs for the filters.
Now, solve for H(ω). Your final expressions should be functions involving powers of eiω . If you
have any term involving eiωn, you may want to recheck your derivation, because H(ω) should be a
function of ω alone.

3. Repeat the procedure in section 2.4 to create frequency response plots for the variations of the discrete-
time filters using Mathscript Node.

4. How do the magnitude and phase plots of the filter variations qualitatively differ from the plots of the
original filters? In other words, how does introducing a delayed version of the output y(n−1) change
the magnitude and phase of the frequency responses qualitatively?
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2.7 Time Domain Analysis

We now move into the time domain, where we observe the effects of the discrete-time filters on actual
signals of varying frequencies. However, we will only work with the low-pass filter variation described in
section 2.6.

1. Create a new LabVIEW VI called DT Low-Pass Filter Variation.vi. We will model this VI on
the VIs you created in the lab 04 post-lab, where you fed the inputs cos(0πn), cos(π2n), and cos(πn)
into discrete-time filters.

2. Use a For Loop to implement the block diagram for the low-pass filter variation that you saw in
section 2.6.

Note that in addition to delaying the input x(n), you must also delay the output y(n). Hence, you
must use a separate set of shift registers for the input and the output. Recall that you can add
delay elements to your shift registers to access values from beyond the previous iteration of the For
Loop. How many delay elements will you need for the input? How many delay elements will you
need for the output?

If LabVIEW begins to introduce Feedback Nodes into your VI, do not be concerned: you are, after
all, building a system with feedback.

3. This time around, we will not be feeding in signals with pre-designated frequencies. We will allow
the user to determine the frequency of the input signal. To this end, create a Horizontal Pointer
Slide on the front panel, available in the Controls palette under Programming → Numeric.
Label this slide w0 and edit its range to span from -5 to 5.

You can edit the range of the slider by editing the values on either end, as shown in Figure 3.

Figure 3 Editing the Range of a Slider

4. We will use 30 samples of cos(ω0n) as our discrete-time input signal, where the argument ω0 will be
adjusted using the control w0 from the previous step. Feed this input signal into your For Loop just
as you did in the lab 04 post-lab.

5. Use either the XY Graph or the Express XY Graph to plot the output of your filter for particular
values of ω0. Be sure to use the correct labels for the axes of the graphs in the front panel.

6. Enclose the input signal, the For Loop, and the output XY Graph or Express XY Graph all in a
While Loop, with a front panel control to stop the loop. This ensures that your VI runs continuously
so that you can instantaneously observe changes in the output relating to changes in the input. Also,
use a Wait(ms) block with a delay of 100 milliseconds to ensure that the CPU is not constantly
occupied.

7. Run the VI that you created, while adjusting your ω0 parameter. What happens as you sweep the
parameter from −π to π? What happens if the parameter moves outside the range of −π to π? You
should be able to relate your observations with your plot of HLV (ω) in the previous exercise.
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3 Post-Lab Section
In the post-lab section, we will continue our exploration of discrete-time filters by examining a comb filter
and an all-pass filter.

3.1 Comb Filter

3.1.1 Theory

Consider a discrete-time system described by the following linear constant-coefficient difference equation:

∀n ∈ Z, y(n)− αy(n−N) = x(n).

The DAG block diagram representation of this system is shown in Figure 4.

Figure 4 A basic discrete-time comb filter.

N

COMB FILTER

This system is commonly used to model echo effects in sound signals. The parameter α ∈ R is used to
model the attenuation or amplification of the sound signal with each echo. The parameter N is a positive
integer used to model the amount of time delay in every echo.

3.1.2 Exercises

1. Suppose that we define the frequency response of this system byHC(ω). Show that the corresponding
frequency response HC is

∀ω ∈ R, HC(ω) =
eiωN

eiωN − α
·

2. By performing a graphical analysis in the complex plane, using the ‘tic-tac-toe’ method that you have
seen in lecture, provide well-labeled sketches of the magnitude response values |FC(ω)| and phase
response values ∠FC(ω), ∀ω ∈ [−π, π), and α = 1

2 .

3. Repeat the steps in section 2.4 to confirm your answers in the frequency domain, in a VI called CF
Frequency Domain.vi. In addition, define the parameters α and N to be tunable by creating hori-
zontal sliders for them. The allowed ranges for these values should be −1 ≤ α ≤ 1 and 0 ≤ N ≤ 10.

4. What are the effects on the magnitude response as α approaches the values 0, 1, and −1? What
happens to the magnitude response as α changes from positive to negative?

5. What are the effects of changing N on the magnitude response? With this observation in mind, as
well as noticing the shape of the magnitude response, conjecture why the filter is called a comb filter?
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6. Moving into the time domain, make a copy of the DT Low-Pass Filter Variation.vi VI un-
der the name CF Time Domain.vi. Make the appropriate changes to the LabVIEW block diagram
to match the block diagram representation in Figure 4. You may find the Y[i] = X[i-n] PtByPt
block useful, located under Signal Processing → Point By Point → Signal Operation
PtByPt, useful. Make sure to use the Y[i] = X[i-n] PtByPt block, not the Y[i] = X[i-n]
block!

7. Run the VI by varying your ω0 parameter, and determine whether the results match your expectations.

3.2 All-Pass Filter

3.2.1 Theory

Consider a discrete-time system described by the following linear constant-coefficient difference equation:

∀n ∈ Z, y(n) + αy(n− 1) = αx(n) + x(n− 1),

where the constant α ∈ R, 0 < |α| < 1.

3.2.2 Exercises

1. Draw a DAG block diagram representation of the system, similar to the block diagram shown in
Figure 4.

2. Suppose that we denote the frequency response of this system by FA(ω). Show that the corresponding
frequency response FA is

∀ω ∈ R, FA(ω) =
α+ e−iω

1 + αe−iω
·

3. By performing a graphical analysis in the complex plane, provide a well-labeled sketch of the mag-
nitude response values |FA(ω)|, ∀ω ∈ [−π, π), and α = 1

2 . As before, in the next few steps, you will
confirm your answer in both the frequency and the time domains.

Hint: In order to make the analysis simpler, pull out a factor of e−iω from the numerator. Now, you
are left with a numerator and a denominator that are conjugates of each other. What do we know
about the relationship between the magnitude of a complex number and that of its conjugate?

4. Repeat the steps in section 2.4 to confirm your answers in the frequency domain, in a VI called APF
Frequency Domain.vi. Plot both the magnitude and the phase responses.

5. What are the effects on the magnitude response due to changes in α? With this in mind, why is this
filter called an all-pass filter? Why would such a filter be useful? As a hint, consider what you would
do if you wanted a particular signal, and you did manage to obtain that signal, but with its phase
shifted?

6. Moving into the time domain, make a copy of the DT Low-Pass Filter Variation.viVI under
the name APF Time Domain.vi. Make the appropriate changes to the LabVIEW block diagram to
match the block diagram representation that you made in step 1.

7. Run the VI by varying your ω0 parameter, and determine whether the results match your expectations.

3.3 Submission Rules

1. Late submissions will not be accepted, except under unusual circumstances.

2. These exercises are recommended to be done in groups of two. Only one person need submit the
required files, however.
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3.4 Submission Instructions

Answer the questions presented in section 3.1.2 and section 3.2.2, supplemented with appropriate screen-
shots of relevant front panels and relevant block diagrams, and turn in your answers on paper to your lab TA
(or however your TA wishes to have you turn in), labeled with the names of the students who worked to-
gether. Templates for this assignment are available, in DOC and TEX formats, as part of the lab 5 resources
on bSpace, but you need not use them.

This assignment is due 10 minutes after the beginning of your lab session during the week of April 4, 2011.
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