
ECG SIGNAL FILTERING 6
Electrical Engineering 20N

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

HSIN-I LIU, JONATHAN KOTKER, HOWARD LEI, AND BABAK AYAZIFAR

1 Introduction
In this lab session, we will use LabVIEW to explore a practical application of the discrete-time filters that
we have been studying in lectures, lab sessions, and discussion sections. Used in the medical fields, an
electrocardiogram (ECG) is generated by an electrocardiograph, which measures electrical activity in the
heart. ECGs are highly useful in studying heart behavior and in diagnosing potential heart problems. A
common and well-documented problem in generating ECGs, however, is power line interference, which
has a frequency of 60 Hz and arises due to the power lines connected to an electrocardiograph. There are
other kinds of interferences in generating ECGs, such as white noise, but we shall only concern ourselves
with the power line interference and white noise in the course of this laboratory session. Since power line
interference occurs at a frequency of 60 Hz, a good choice to filter out this interference would be a notch
filter, whose notch occurs at that frequency. We will use LabVIEW to simulate an ECG signal with the 60 Hz
interference and operate upon that signal with a notch filter, and we will design this filter ourselves from
scratch.

1.1 Lab Goals

• Implement a practical application of discrete-time filters in LabVIEW.

• Employ geometric reasoning to design a filter with the proper parameters to satisfy the required
specifications.

• Analyze the magnitude and the phase of the frequency responses of practical discrete-time filters, and
use LabVIEW to verify this analysis.

• Get acquainted with waveform manipulation, shift registers, and feedback nodes in LabVIEW.

• Get acquainted with the modularity of LabVIEW; more specifically, the usage of subVIs and LabVIEW
LLBs.

1

1.2 Checkoff Points

2. Pre-Lab Section .

1. Delay-Adder-Gain Block Diagrams .

2. Geometric Interpretation of Frequency Responses .

i. Low-Pass Filter .
ii. Notch Filter .

3. Submission Instructions .

4. Submission Rules .

3. Acknowledgments .

4. References .

2 Pre-Lab Section

2.1 Delay-Adder-Gain Block Diagrams

We have learned in lab 05 that discrete-time filters can be represented using linear, constant-coefficient dif-
ference equations, also known as LCCDEs. Given an LCCDE, we can construct a visual representation of
a discrete-time filter through a delay-adder-gain block diagram that, as the name implies, employs delay
elements, adder elements, and gain elements. We have achieved prior experience of this in lab 05 for simple
LCCDEs. However, as we move onto systems with more complicated LCCDEs, we will now explore a more
general method to draw delay-adder-gain block diagrams.

Consider the generalized LCCDE

y(n) =

M∑
k=0

αkx(n− k) +

N∑
l=1

βly(n− l), (1)

where αk and βl represent scalar gains for the corresponding delayed signals. Note that the gain on the
output signal is unity; it is possible for the y(n) term to be preceded by a scalar nonzero gain, say β0, but in
that case, the entire LCCDE can be divided by β0 to obtain an equivalent LCCDE.

One possible delay-adder-gain block diagram for this generalized LCCDE is shown in Figure 1. However,
it assumes the existence of delay elements that can delay a signal by multiple samples. A more efficient
delay-adder-gain block diagram is shown in Figure 2, born of the observation that delaying a signal by
k(> 1) samples is equivalent to delaying a signal by one sample, and then delaying that signal by one more
sample, and so on. The newer delay-adder-gain block diagram assumes that we have, at our disposal, only
delay elements that can delay a signal by one sample. This version has the added advantage of being easily
implemented in LabVIEW: instead of using the specialized Y[i] = X[i-n] PtByPt block, we can use
regular shift registers to implement the newer delay-adder-gain block diagram; more specifically, we can
use shift registers with cascading delays, as was seen in lab 04, the lab on discrete-time convolution.

2

https://bspace.berkeley.edu/access/content/group/e2ca3b13-f595-4136-b18c-7f193bed7cc1/Labs/LAB05-EE20-S10/Lab%2005.pdf
https://bspace.berkeley.edu/access/content/group/e2ca3b13-f595-4136-b18c-7f193bed7cc1/Labs/LAB05-EE20-S10/Lab%2005.pdf
https://bspace.berkeley.edu/access/content/group/e2ca3b13-f595-4136-b18c-7f193bed7cc1/Labs/LAB04-EE20-S10/Lab%2004.pdf

Figure 1 Delay-adder-gain block diagram for LCCDE 1.

D1

+

+
x y

α1

D2 α2

DM αM

D1β1

D2β2

DNβN

+

+
α0

Figure 2 Another delay-adder-gain block diagram for LCCDE 1.

D1

+

+
x y

α1

D1 α2

D1 αM

D1β1

β2

βN

+

+
α0

D1

D1

2.2 Geometric Interpretation of Frequency Responses

In this class, and in a lot of real-life applications, we concern ourselves with discrete-time filters whose
frequency responses are rational in eiωn. This means that both the numerator and the denominator of the
frequency response (for, say, a system F) are polynomials in eiωn. In fact, it can be shown that such a
frequency response is of the form

F (ω) =
(eiω − z1)(eiω − z2) · · · (eiω − zN)

(eiω − p1)(eiω − p2) · · · (eiω − pM)
. (2)

We are interested in plotting such frequency responses; through these plots, we can understand, among
other things, which frequencies are favored, which are attenuated, and which are amplified, allowing us
to tweak necessary parameters to get the filter that we need. Unfortunately, since frequency responses are
complex functions in general, we cannot plot these responses on paper, since we would require three axes
(why?). As a result, we plot the magnitude and the phase of the frequency responses separately, and in do-
ing so, we get a better idea as to how systems affect the magnitudes and the phases of signals with different
frequencies.

Providing such plots, however, is not a trivial task. If we needed to generate a precise plot, we would look
to a computer to do the plotting for us. For relatively simple frequency responses, however, we can sketch

3

out the general shape of these plots, which is usually enough to afford us an idea of how our filter works.

2.2.1 Low-Pass Filter

For example, we consider the frequency response of a low-pass filter,

FL(ω) =
eiω

eiω − α
, 0 < α < 1.

Rewriting the function slightly differently,

FL(ω) =
eiω − 0

eiω − α
, 0 < α < 1. (3)

Our main aim now is to draw vectors for each of the terms in the numerator and in the denominator. Now,
comparing Equation 3 with Equation 2, we find that z1 = 0 and that p1 = α. On the unit circle in the
complex plane, we mark an O for every zi, 1 ≤ i ≤ N and we mark an X for every pi, 1 ≤ i ≤ M 1. We
then draw the vector eiω , whose tip rotates on the unit circle (why?). We draw vectors for the other terms,
starting from each X and O and ending at the tip of the vector eiω . Using laws of vector addition, we know
that each of these vectors represents one term in Equation 3. A potential final result is shown in Figure 3.

Figure 3 Geometric Interpretation of a Low-Pass Filter.

Awesome! With this in hand, we can provide a qualitative sketch of the magnitude and phase responses of
a low-pass filter. We know, for instance, that the magnitude of the frequency response is given by

|FL(ω)| =
∣∣∣∣ eiω − 0

eiω − α

∣∣∣∣ =
|eiω − 0|
|eiω − α|

=
1

|eiω − α|
.

Then, as the vector eiω moves about the unit circle, we need only determine how the magnitude (or length)
of the vector eiω − α changes. By looking at our diagram, we find that the length of the vector eiω − α

1In technical terms, the points we mark as O are called zeros, while the points we mark as X are called poles. However, in this class,
we will not use these terms; for this class, we use the Xs and Os merely to keep track of points, allowing us to remember which points
are in the numerator, and which points are in the denominator.

4

is minimum when ω = 0, and is maximum when ω = ±π. As a result, the magnitude of the frequency
response is maximum when ω = 0, and is minimum when ω = ±π. A quick evaluation tells us that

|FL(ω)||ω=0 =
1

1− α
, |FL(ω)||ω=±π =

1

1 + α
.

We collate all of this information and make a rough sketch of the magnitude response, similar to the
computer-generated plot shown in Figure 4. Notice that the decrease in the plot, as ω goes from 0 to
±π, is not a linear decrease. If we refer back to our diagram, we find that this is because the length of the
eiω − α vector does not change linearly either; initially, its length increases quickly, but later on, its length
increases relatively slowly. We can use either calculus or a computer to figure out at precisely which point
this change in concavity happens, but since we only care about the qualitative shape of the graph, we will
not bother. However, we can now clearly see why this filter is a low-pass filter.

Figure 4 Magnitude of the Frequency Response of a Low-Pass Filter.

Correspondingly, the phase of the frequency response is given by

∠FL(ω) = ∠

(
eiω − 0

eiω − α

)
= ∠(eiω − 0)− ∠(eiω − α).

This implies that we should look at the difference between the angles that the vectors eiω and eiω−α make,
respectively, with the real axis. We find that, as ω goes from 0 to π, the angle made by eiω − α is always
greater than the angle made by eiω . Thus, the difference is negative, as ω goes from 0 to π, and by symmetry,
the difference is positive, as ω moves from 0 to −π. A quick evaluation tells us that

∠FL(ω)|ω=0 = 0, ∠FL(ω)|ω=±π = 0.

Again, as ω goes from 0 to π, we notice that the angle made by the vector eiω changes at a steady rate (how
much?), but the change in the angle made by the vector eiω − α is really fast initially, but slows down as
ω approaches π. As a result, the phase of the frequency response starts off at 0 and decreases fast, but it
eventually evens out and starts to increase as it goes back to 0. A computer-generated plot for the phase of
the frequency response is shown in Figure 5.

5

Figure 5 Phase of the Frequency Response of a Low-Pass Filter.

2.2.2 Notch Filter

As another example more relevant to this lab, we consider a different kind of filter, known as a notch filter.
The motivation behind a notch filter is to attenuate several singular frequencies while preserving the rest.
The frequency response of one such filter is given by

FN (ω) =
eiω − 1

eiω − α
,

where α is really close to, but not equal to, 1. Following the algorithm presented in section 2.2, we draw the
relevant geometric interpretation of the frequency response, as shown in Figure 6.

Figure 6 Geometric Interpretation of a Notch Filter, notching out the Zero Frequency.

We notice that, for angles beyond a certain neighborhood around 0, the vectors eiω − 1 and eiω − α are ap-
proximately the same length; this approximation holds better as α gets closer to 1. However, in that small
neighborhood around 0, the vector eiω − 1 is of negligible length; in fact, at ω = 0, the vector eiω − 1 is
precisely zero. As a result, the magnitude of the frequency response FN (ω) is approximately 1 for all angles
except around zero, where the magnitude is negligible. This filter is said to notch out the zero frequency. A

6

computer-generated plot for the magnitude of the frequency response is shown in Figure 7.

Figure 7 Magnitude of the Frequency Response of a Notch Filter.

What would you have to do if you wanted to notch out another frequency – say, Ω – instead of the zero
frequency? Where would you place the X and the O? Extrapolating from the case for zero frequency, we
deduce that the O should be placed on the unit circle and at angle Ω. Thus, the O should be placed on the
complex number eiΩ. Again, the X should be placed slightly away, but not too far away, from the O, and
should also be at angle Ω. Thus, the X should be placed on the complex number αeiΩ, where |α| < 1, but α
is very close to 1. The relevant geometric interpretation is shown in Figure 8.

Figure 8 Geometric Interpretation of a Notch Filter, notching out the Frequency Ω.

7

What would the frequency response be of such a filter? Recall, from section 2.2.1, that if the frequency
response is of the form

F (ω) =
(eiω − z1)(eiω − z2) · · · (eiω − zN)

(eiω − p1)(eiω − p2) · · · (eiω − pM)
,

we mark an O for every zi, 1 ≤ i ≤ N and we mark an X for every pi, 1 ≤ i ≤M .

2.3 So You Think You Can Design a Notch Filter

For all of the in-lab sections, we will be concerned with the following problem: we have a signal x(n), which
in this case is a pure ECG signal. However, the signal that we obtain, x′(n), is not a pure ECG signal; it is an
ECG signal corrupted with a noise signal, η(n). In other words,

x′(n) = x(n) + η(n),

and we are interested in filtering out η(n).

For the purposes of this problem, we consider η(n) to be the functionA cos(Ωn) (A ∈ R), for several reasons:
this noise signal simulates the actual problem well, and is a real-valued signal. Now, we know that the
cosine function contains two frequencies – ±Ω – and in order to remove the error signal from x′(n), we
need to notch out these frequencies. Thus, a notch filter will satisfy the requirements of this problem. Let
us flesh out this notch filter, which we will call N.

1. We know, from section 2.2.2, how to create a filter that can notch out one frequency. Then, in order to
notch out two frequencies, we should consider each frequency separately and notch it out separately.
With this in mind, generate the necessary frequency response, N(ω), for the filter N. It should have
the form

N(ω) =
(eiω − z1)(eiω − z2)

(eiω − p1)(eiω − p2)

for some complex values of z1, z2, p1, p2.

2. Once we have the frequency response that we require, we need to determine the corresponding LC-
CDE, so that we can implement the filter in the time domain. We first consider the general case:
determine the frequency response of a system F, which is specified by the general LCCDE

y(n) =

M∑
k=0

αkx(n− k) +

N∑
l=1

βly(n− l).

3. Based on your responses to step 1 and step 2, determine the LCCDE for the notch filter N. A few tips:

(a) You may find it useful to bring N(ω) to the following form:

N(ω) =
1 +D1e

−iω +D2e
−2iω

1 +D3e−iω +D4e−2iω
,

for some complex constants D1, D2, D3, D4.

(b) Try and simplify your LCCDE as much as possible, so that the coefficients of each term are real;
use any identities that you may know.

(c) The final LCCDE should have the form

y(n) = [x(n) + C1 cos(Ω)x(n− 1) + C2x(n− 2)] + [C3 cos(Ω) y(n− 1) + C4y(n− 2)], (4)

where C1, C2, C3, C4 are constants that may, or may not, depend on α.

8

4. Draw the delay-adder-gain block diagram for your notch filter, based on the LCCDE 4 that you created
in step 3.

Woah. What did you just do? You have not just designed a notch filter to notch out a particular signal, but
you have also generated its LCCDE! Keep this LCCDE safe; the rest of the lab will be devoted to testing
whether or not your notch filter does its job correctly.

2.4 Submission Rules

1. Submit your files no later than 10 minutes after the beginning of your next lab session.

2. Late submissions will not be accepted, except under unusual circumstances.

3. If the pre-lab exercises are not performed, you will get an immediate zero for the entire lab.

4. These exercises should be done individually.

5. Keep your work safe for further usage in the in-lab sections.

2.5 Submission Instructions

1. Log on to bSpace and click on the Assignments tab.

2. Locate the assignment for Lab 6 Pre-Lab corresponding to your section.

3. Answer the questions presented in section 2.3, and show your work. Templates for this assignment
are available, in DOC and TEX formats, as part of the lab 6 resources on bSpace, but you need not
use them.

3 Acknowledgments
Special thanks go out to the teaching assistants (TAs) of the Spring 2009 semester (Vinay Raj Hampapur,
Miklos Christine, Sarah Wodin-Schwartz), of the Fall 2009 semester (David Carlton, Judy Hoffman, Mark
Landry, Feng Pan, Changho Suh), and of the Spring 2010 semester (Xuan Fan, Brian Lambson, Kelvin So)
for providing suggestions, ideas, and fixes to this lab guide.

References

9

http://bspace.berkeley.edu
http://bspace.berkeley.edu

	Introduction
	Lab Goals
	Checkoff Points

	Pre-Lab Section
	Delay-Adder-Gain Block Diagrams
	Geometric Interpretation of Frequency Responses
	Low-Pass Filter
	Notch Filter

	So You Think You Can Design a Notch Filter
	Submission Rules
	Submission Instructions

	Acknowledgments

