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1 Introduction
Some of the most popular applications of digital signal processing occur in the growing field of image
processing. Unlike audio signals, however, image signals exist in two dimensions, as opposed to one:
this fact makes their processing more complicated. In this lab session, we will implement basic image
processing in LabVIEW; specifically, we will focus on generating image signals in LabVIEWand extrapolate
to generating two-dimensional periodic patterns. We will also employ the two-dimensional variants of
several well-known one-dimensional filters on images, and explore and tweak their effects.

1.1 Lab Goals

• Extend various filters and concepts in digital signal processing to image processing.

• Explore the analogies and the connections between temporal signals and spatial signals, such as im-
ages.

• Use the file processing mechanisms available in LabVIEW.

• Use and optimize image processing algorithms.

1.2 Checkoff Points

1. Pre-Lab Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) Hexadecimal Number System: A Primer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) There’s an Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(c) All the Pretty Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(d) RGB Ain’t Got Nothin’ On Me . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (2.5%)

(e) Phantom of the Colormap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (7.5%)

(f) Submission Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(g) Submission Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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2. In-Lab Section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(a) Do You Have Your 2D Glasses? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b) It’s a Sine of Things to Come . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (45 minutes, 20%)

(c) Image Processing 101 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

i. Living on the Edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ii. 2D Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

iii. Getting an Edge Start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
iv. All a Bit of a Blur . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (45 minutes, 15%)
v. Playing Detective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (45 minutes, 15%)

3. Parting Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

4. Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5. References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2 Pre-Lab Section

2.1 Hexadecimal Number System: A Primer

We live our daily lives in the decimal number system: we do all of our mathematical operations using DECIMAL

the digits 0 through 9. However, for several other purposes, other number systems are much more useful.
For example, you might have seen the binary number system before, where all mathematical operations BINARY

are done using the digits 0 and 11. In the case of image processing, the hexadecimal number system is HEXADECIMAL

the most useful number system, where digits go from 0 to 9, and then from A to F: A would represent the
number 10 in the decimal system, while F would represent the number 15 in the decimal system.

A number written in the decimal number system is evaluated based on the following rule: the ith digit
(from the right) Ai contributes Ai×10(i−1) to the final value. For example, the number 12345 is equivalent
to

(1 · 104) + (2 · 103) + (3 · 102) + (4 · 101) + (5 · 100).

Analogously, a number written in the hexadecimal number system is evaluated based on the following
rule: the ith digit (from the right) Ai contributes Ai × 16(i−1) to the final value. For example, the number
C0FF3E is equivalent to

(C · 165) + (0 · 164) + (F · 163) + (F · 162) + (3 · 161) + (E · 160).

This allows us to convert from the hexadecimal number system to the decimal number system.

Moving from the decimal number system to the hexadecimal number system is slightly trickier: we will
need to represent that number using a linear combination of appropriately scaled powers of 16. Thus, for
example, the number 23456, represented in the decimal number system, can be broken up as

23456 = (5 · 163) + (B · 162) + (A · 161) + (0 · 160).

As a result, 23456, when represented in the hexadecimal number system, turns out to be 5BA0. (Verify that
this is true!)

1There is a well-known joke that goes, “There are 10 types of people in this world: people who can count in binary, and people
who cannot.”
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For the rest of this lab guide, we will follow the convention that numbers in the decimal number system
will be suffixed with the subscript 10: for example, 1234510, while numbers in the hexadecimal number
system will be suffixed with the subscript 16: for example, C0FF3E16.

Convert the following numbers between the decimal and hexadecimal number systems, as appropriate:

1. FF16.

2. D3AD16.

3. 1516.

4. 1510.

5. 1610.

6. 51210.

It turns out that numbers represented in the binary number system can be succinctly represented in the
hexadecimal number system, since a collection of four bits (or binary digits) in the binary number system BITS

can be replaced by one digit in the hexadecimal number system. As a result, the number 10012 can be
expressed as 916, the number 11112 can be expressed as F16, and the number 100111112 can be expressed
as 9F16.

2.2 There’s an Image

Figure 1 An image where the intensity varies sinusoidally in the vertical direction.

A two-dimensional image is represented in LabVIEW as a two-dimensional array, where element (i, j)
stores information about the element of the picture, or the pixel (pics + element), at location (i, j). Figure PIXEL

1 shows a grayscale image, with dimensions 200 pixels by 200 pixels (under a zooming factor of 100%),
where the intensity of the image varies sinusoidally. The top row of pixels in the image is white. As we
move down the image, it gradually changes to black and then back to white, completing one cycle. Hence,
we can state that the vertical frequency is 1

200 cycles per pixel2. Similarly, the image is constant horizontally, VERTICAL
FREQUENCYand so it has a horizontal frequency of 0 cycles per pixel.
HORIZONTAL
FREQUENCY

2.3 All the Pretty Colors

Colors can be represented by a hexadecimal triplet: three hexadecimal pairs (which is equivalent to 24 bits;
why?) that are arranged in the order red, green and blue. Thus, a color of FF000016 is entirely red, while
0000FF16 is blue. The number FF16 corresponds to 25510, which is 28 − 1. An image is then simply a grid
of these color values. This hexadecimal triplet representation is known as TrueColor and is shown for a TRUECOLOR

2Notice that this is a different kind of frequency than the one we normally discuss: when we talk about signals in the time domain,
we are talking about temporal frequency; here, we are talking about spatial frequency.

3



few common colors in Figure 2. An illustration showing the TrueColor representations for a few pixels in
an image is shown in Figure 3. This representation is also the standard for webpages: HTML, for example,
utilizes the hexadecimal triplet.

Figure 2 The TrueColor representation of a few colors.

Figure 3 The TrueColor representation of a few pixels in an image. (Note that the color values are not
precise and are only present for demonstrative purposes.) [1]

Color 
Hexadecimal 

Representation

Pixel

While the image blocks in LabVIEW use TrueColor by default, usually not all the colors are used. Hence,
in order to conserve memory, colormaps are used. Colormaps provide a very simple form of image com- COLORMAPS

pression. A colormap is simply a table of color values. Images will thus no longer need to hold the entire
color representation, but a smaller number that references a location in the colormap. This smaller number
can then be used to index into the colormap to obtain the actual color representation. This representation
is called the bitmap representation; image files with the extension BMP are represented in this fashion: a BITMAP

two-dimensional array along with a colormap. An illustration of this representation is shown in Figure 4;
contrast this with the basic TrueColor representation illustrated in Figure 3.
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Figure 4 The bitmap representation of a few pixels in an image. (Note that the color values are not precise
and are only present for demonstrative purposes.) [1]
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2.4 RGB Ain’t Got Nothin’ On Me

Download the ColorRepresentation VI from the course lab page and run the VI. This VI obtains the
corresponding TrueColor representation for a given color. Click on the color in Color to Number to
change the color and see its TrueColor representation. Ignore the Luminance value.

For each of the colors below, determine the RGB values, and also explain briefly why the RGB values re-
turned by the VI are intuitively the correct values. For example, green has the hexadecimal value 00FF0016;
this makes intuitive sense because only the green component is present in the color.

1. White

2. Black

3. Orange

4. Purple

2.5 Phantom of the Colormap

The color black has no contribution from either red, green, or blue. If we increase the contribution of all of
the colors equally, we will get progressively lighter shades of gray. While the hexadecimal triplet notation
provides us with the ability to represent many colors, the in-lab session will utilize a grayscale colormap.

Grayscale images use an 8-bit colormap, which can store a maximum of 256 mappings (why?) between
array locations and colors. In each location in a grayscale colormap, the red, green and blue components
are all equally intense. The three components each vary from 010 (or 016) to 25510 (or FF16), representing
256 variations of gray. As a result, the grayscale colormap will be a mapping between the ith index and the
ith variation of gray.

1. Create an 8-bit grayscale colormap in a VI called Colormap. In order to accomplish this, create an
array of 256 elements. Each element should contain a color, whose hexadecimal representation has the
same red, green and blue values, such as 00000016, 01010116, 02020216, and so on. These colors
should go up to FFFFFF16. You may find the RGB to Color block, located under Programming
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→ Graphics and Sound → Picture Functions, useful; this block accepts the red, green and
blue components separately, and concatenates them to produce the corresponding color. Call this
array Colormap.
You will want to create an indicator for this array on the front panel. However, the indicator will,
by default, choose to display the values in the array in the decimal number system. To change this,
we need to first change the datatype of the array elements to be unsigned 32-bit integers. Right-
click on an element, select Representation, and then change the datatype to U32. Following this,
right-click again on an element in the array and select Display Format.... Play around with
the options under the Display Format tab, as shown in Figure 5 so that finally, the front panel
representation of each element in the array resembles a hexadecimal triplet.

Figure 5 The Display Format dialog box.

2. Convert this VI into a sub-VI with no inputs, but with the array generated in step 1 as the sole output.

3. Create a new VI called Phantom. In this VI, create a two-dimensional array of arbitrary intensities
of gray. The array should have dimensions 200 × 200 and have values ranging from 0 to 255. If
you implement this array using MathScript, you may find the function rand useful. You can also
choose to generate this two-dimensional array using other blocks that involve matrix operations.

4. The Draw Unflattened Pixmap block converts a two-dimensional array into a picture, using a
colormap to determine what color each element in the two-dimensional array corresponds to. We
will now convert the two-dimensional array that we created in step 3 to an image using the colormap
that we generated in step 2. Bring a Draw Unflattened Pixmap block to the block diagram, and
feed this array in to the data terminal of the Draw Unflattened Pixmap block.
Make use of the in-built search functionality to determine where the Draw Unflattened Pixmap
block is located.

5. Set the Draw Unflattened Pixmap block to an 8-bit representation (under Select Type on the
right-click menu) and wire the grayscale colormap to the color table port on the block.
The colormap should be explicitly specified as 8-bit, or else LabVIEW will assume that the colormap
contains more values than it actually does.
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6. Create an indicator for the image port on the front panel, and run the virtual instrument. You may
need to change the size of the picture indicator to show the entire image.

2.6 Submission Rules

1. Submit your files no later than 10 minutes after the beginning of your next lab session, during the week
of April 25, 2011.

2. Late submissions will not be accepted, except under unusual circumstances.

3. If the pre-lab exercises are not performed, you will get an immediate zero for the entire lab.

4. These exercises should be done individually.

5. Keep your work safe for further usage in the in-lab sections.

2.7 Submission Instructions

1. Log on to bSpace and click on the Assignments tab.

2. Locate the assignment for Lab 9 Pre-Lab corresponding to your section.

3. Attach the following files to the assignment:

(a) A text document called Responses, containing your responses to the questions in section 2.1
and section 2.4.

(b) The Colormap VI.

(c) The Phantom VI.

Figure 6 Love in hex. [3]
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3 In-Lab Section
In the pre-lab sections, we had a chance to retrieve the RGB values for different colors and we also had a
little taste of creating an image. For the most part, this lab guide relies on your creativity in implementation,
so go crazy and perform the tasks in whatever manner you please, but do not forget to maintain clarity and
optimality.

3.1 Do You Have Your 2D Glasses?

As we move through the lab, we will take advantage of an important and exciting idea: if we consider one
row (or equivalently, one column) of an image, we are essentially looking at a discrete-time signal having
various values at different points in time! Of course, we are not working in the discrete-time domain at
all, but we are working in a discretized domain, where the domain is the set of integers; in this case, the
domain consists of pixels. As a result, we can utilize the ideas that we have learned through our excursions
in digital signal processing to implement solutions to interesting image processing problems.

There is, however, an added complexity that comes with working with images: the whole image (and not
just one row/column) is actually a signal that works in two dimensions, not one. Nonetheless, as we shall
see, concepts in one-dimensional signal processing extend neatly into two-dimensional signal processing.

3.2 It’s a Sine of Things to Come

1. Make a new copy of the Phantom VI that you created in step 3 of pre-lab section 2.5, and save it as
the Sinusoids VI.

2. Modify the arbitrary 200 × 200 pixel image that you generated to produce an image exactly as that
shown in Figure 1.

• We know that the value of each pixel varies from 0 to 255, reflecting the number of colors rep-
resented in the grayscale colormap. Which value corresponds to white and which value corre-
sponds to black?

• If done correctly, your image should match Figure 1. If the middle patch of black is too wide,
this might be because the values for some of the pixels are either going below 0 or above 255, in
which case such pixels are rendered as completely black.

• We observed that the intensities of the pixels in Figure 1 vary sinusoidally in the vertical direction
from white to black, and then back to white. Using this fact, determine the mathematical function
I(i) that best relates row i to the intensity I of the pixels in that row. This will be the signal that
you have to implement.

• There are, of course, several ways to approach this question. However, as in previous labs,
we encourage you to consider not using For Loops, either as structures or as constructs in
MathScript Nodes. There are more elegant (and faster!) methods that exploit the matrix op-
erations present in LabVIEW.

• Again, you may find the repmat function useful. Also, A’ produces the transpose of matrix A.

3. Duplicate the vertically varying image that you created in step 2 and modify it so that the sinusoidal
variations are horizontal rather than vertical. Additionally, vary the frequency so that there are four
cycles of the sinusoidal variations instead of one.

4. Duplicate the horizontally varying image that you created in step 3, and add the necessarily logic that
enables a horizontal slider on the front panel to vary the frequency of the image, such that the number
of cycles of sinusoidal variations can be set to any real value from 1 to 20. Label this horizonal slider
Cycles.
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3.3 Image Processing 101

Now that we have created custom images, the next step is to manipulate images, and along the way, obtain
a taster of basic image processing.

3.3.1 Living on the Edge

Continuing with our analogy of images as two-dimensional signals, we now attempt to analyze the “fre-
quency content” of an image, although in the case of images, we talk about spatial frequency, instead of
temporal frequency. We make the observation that parts of an image where pixel intensities vary gradually
are regions of “low frequency”, since the image does not vary much in these regions, whereas parts where
pixel intensities vary suddenly are regions of high frequency. With this in hand, we then have the stunning
idea that we can apply filters to images to extract images of different frequency contents, just as we apply
filters to discrete-time signals to extract signals of different frequency contents!

In particular, we can apply these ideas on to the sharp edges in an image, which are, by their very nature,
areas that are rich in the high frequencies. In this section, we will see that, depending on the kind of filter
we use, we can either blur an image or perform basic edge detection.

3.3.2 2D Convolution

For one-dimensional signals, we know that every LTI system can be uniquely represented by its impulse
response. We also know the impulse response proves useful in determining the output signal of the system,
because the output signal is merely the input signal convolved with the impulse response.

Very similar concepts arise in the analysis of two-dimensional signals. For instance, we define the two-
dimensional impulse (Kronecker delta) as the signal δ(m,n) that is 1 when m and n are both zero, and 0 2D IMPULSE

otherwise. A three-dimensional plot of the two-dimensional Kronecker delta is shown in Figure 7.

Figure 7 The two-dimensional Kronecker delta.
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The impulse response of an LTI system H operating on two-dimensional signals is then defined as its re-
sponse to the two-dimensional Kronecker delta, denoted by h(m,n). Indeed, we can now go so far as to
define two-dimensional convolution. If we have two 2D signals, x(m,n) and h(m,n), then the convolution 2D

CONVOLUTIONof the two signals is defined as
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(x ∗ h)(m,n) =
∞∑

k=−∞

∞∑
`=−∞

h(k, `)x(m− k, n− `) =
∞∑

k=−∞

∞∑
`=−∞

x(k, `)h(m− k, n− `).

This is, of course, the output of the LTI system H in response to the input x(m,n). However, we will not
attempt to manually perform 2D convolution; the details are beyond the scope of the course. We will use
functionality already present in LabVIEW to perform 2D convolution. Nonetheless, we need to determine
what signals we need to convolve, as we will shortly.

3.3.3 Getting an Edge Start [2]

1. Download the ImgData VI from the lab 9 resources on the course lab page. This VI will provide the
image data (the two-dimensional 8-bit array) you will be using.

2. Create a new VI called Image Processing. In the block diagram, place the ImgDataVI as a sub-VI.

3. At the Data output port of the ImgData sub-VI, you can retrieve the byte array representing an
image. Using this array output, show the image on the front panel and label it as the Original
Image. Resize the picture indicator on the front panel to be about 250 pixels by 250 pixels. (Make
sure that you are using your Colormap VI with a Draw Unflattened Pixmap block, and also
make sure that the Draw Unflattened Pixmap block is specified as 8-bit, or else your image will
appear blue.)

If everything is done correctly, the image should display a message. Try following what it says.

3.3.4 All a Bit of a Blur

Since sharp edges have rich content in the high frequencies, we can blur these edges simply by amplifying
the lower frequency content of the image and diminishing its higher frequency content. If we perform this
across all pixels in the image, every pixel with content in higher frequencies should be affected, not just
edges, resulting in the entire image becoming blurred. The filter that should now spring to mind is the
low-pass filter, whose one-dimensional variant we have already seen:

y(n) =
1

2
(x(n) + x(n− 1)) .

Another Way of Looking at a Low-Pass Filter Notice that, from the LCCDE for a low-pass filter, the
value of the output signal at every point in time is the average of the value of the input signal at that point
in time, and the value of the input signal at the previous point in time; in other words, the low-pass filter
essentially performs a moving average. With this observation, we realize that we can blur an image simply
by performing a moving average over that image. For this lab, we will perform a 5×5 moving average
on a given image, with the result that the intensity of each pixel in the output image is the average of the
intensities of the (at most) 25 pixels in the 5×5 square centered at the corresponding pixel in the input
image. Intuitively, a moving average smoothens out sharp changes in the intensities of different pixels.

How To Perform the Moving Average We will perform this moving average through 2D convolution: we
will convolve our two-dimensional signal (the image) with a two-dimensional impulse response to produce
another two-dimensional signal (the blurred image). The task is now to create this impulse response.

As discussed previously, the value of the output signal at any given point (m,n) is the average of the
surrounding pixels in the original image within a 5×5 window:

y(m,n) =
1

25

2∑
k=−2

2∑
`=−2

x(m− k, n− `),
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and in general, for an N ×N window, where N is odd:

y(m, n) =
1

N2

∞∑
k=−∞

∞∑
`=−∞

x(m− k, n− `)

=
1

N2

bN2 c∑
k=−bN2 c

bN2 c∑
`=−bN2 c

x(m− k, n− `).

where b·c is the flooring function.

So What Did You Want Me To Do? Determine the impulse response hL(m,n) of a system HL that performs
the 5×5 moving average of its input, with the help of the equations from the previous paragraph. As a
hint, remember how you would often find the impulse response of LTI systems acting on one-dimensional
signals: what special signal would you set x(n) to be? If derived correctly, a plot of the resulting impulse
response should match the one shown in Figure 8.

Figure 8 Impulse response of the two-dimensional 5×5 low-pass filter HL.
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Then, create a matrix that represents this impulse response. Note that even though the impulse response is
theoretically infinite in span, you only need to create a matrix for its support, the region where the impulse SUPPORT

response is nonzero; the zeros elsewhere are implied. In this case, for example, you will only need to create
a 5×5 matrix, where the value of the impulse response at (0, 0) is at the center:

hL(−2, 2) hL(−1, 2) hL(0, 2) hL(1, 2) hL(2, 2)

hL(−2, 1) hL(−1, 1) hL(0, 1) hL(1, 1) hL(2, 1)

hL(−2, 0) hL(−1, 0) hL(0, 0) hL(1, 0) hL(2, 0)

hL(−2,−1) hL(−1,−1) hL(0,−1) hL(1,−1) hL(2,−1)

hL(−2,−2) hL(−1,−2) hL(0,−2) hL(1,−2) hL(2,−2)


When creating your matrix, replace the entries in the matrix above with the corresponding actual values.
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Finally, blur the image that you obtained in section 3.3.3 by convolving it with this impulse response, and
display the output image as the Blurred Image. The output image should have the same dimensions as
the input image.

When done, explore the blurring effect with different window sizes: 3×3, 7×7, and 9×9. You can be ambi-
tious and include a slider that changes N , the size of the blurring window, although bear in mind that the
operation becomes slower with larger blurring windows.

Helpful Tools We recommend using MathScript Nodes to achieve the intended result, although there
are blocks under Programming → Array available that are equally capable of performing the job. You
may find the following MathScript constructs and functions useful. Use LabVIEW Help to get familiar
with the functions:

1. The conv2d function.

2. The zeros and ones functions.

3. Recall from lab 04 that if we have n one-dimensional arrays A1, A2, . . ., An, we can concatenate these
arrays into one one-dimensional array A using the construct

A = [ A1 A2 A3 ... An ];

Alternatively, if all of the one-dimensional arrays are of the same dimension, then we can stack these
arrays one above another to create a matrix A using the construct

A = [ A1; A2; A3; ... An ];

In this context, the ; character separates the different rows of the matrix.

3.3.5 Playing Detective

Since sharp edges have rich content in the high frequencies, we can detect these edges simply by amplifying
the higher frequency content of an image and diminishing its lower frequency content3. If we perform this
across all pixels in the image, every pixel with content in higher frequencies should be affected, not just
edges, resulting in an output image where only the edges are visible. The filter that should now spring to
mind is the high-pass filter, whose one-dimensional variant we have already seen:

y(n) =
1

2
(x(n)− x(n− 1)) .

Another Way of Looking at a High-Pass Filter Notice that, from the LCCDE for a high-pass filter, the
value of the output signal at every point in time is merely the difference between the value of the input
signal at that point in time, and the value of the input signal at the previous point in time; in other words,
the high-pass filter essentially performs a moving difference. With this observation, we realize that we
can detect the edges in an image simply by performing a moving difference over that image: we determine
the difference between two adjacent pixels, and if the absolute difference exceeds a certain (changeable)
threshold, we ‘let that pixel through’. This is the approach that we will be following in this section.

3Déjà vu?
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How To Perform the Moving Difference We will compare the intensity of each pixel to the intensity of
the pixels to its east and to its north (where applicable), and if either of the absolute differences (either the
difference between the current pixel and the pixel to its east, or the difference between the current pixel
and the pixel to its north) exceeds a certain threshold, the corresponding pixel should be made black; else,
it will be set to be white. We will also need to use a slider on the front panel to determine the threshold to
be used: what are the bounds on this slider?

So What Did You Want Me To Do? Perform the basic edge detection algorithm presented above on the
image that we obtained in section 3.3.3. Again, we recommend using MathScript Nodes to achieve
the intended result, although there are blocks under Programming → Array available that are equally
capable of performing the job. Please be careful when performing the steps below; each step depends on
the correctness of the previous.

1. Determine the impulse response hHN(m,n) of a system HHN that, for each pixel, determines the dif-
ference in intensities of that pixel and of the pixel to its north. In other words, determine the impulse
response of the system

y(m,n) = x(m,n)− x(m,n+ 1).

Also, determine the impulse response hHE(m,n) of a similar system HHE that, for each pixel, deter-
mines the difference in intensities of that pixel and of the pixel to its east. In other words, determine
the impulse response of the system

y(m,n) = x(m,n)− x(m+ 1, n).

2. Generate two 3×3 matrices that represent these impulse responses, similar to the matrices that you
generated for the impulse response of the two-dimensional low-pass filter. Thus, each matrix should
have the form 

h(−1, 1) h(0, 1) h(1, 1)

h(−1, 0) h(0, 0) h(1, 0)

h(−1,−1) h(0,−1) h(1,−1)

 ,
where h is either hHN or hHE.

3. Convolve the input signal (the input image) with each of these impulse responses to produce two
different output signals (of the same dimensions).

4. Modify the resulting signals, remembering that we need the absolute differences in intensities. Call
these new signals yHN(m,n) and yHE(m,n).

5. Create a slider to manipulate the threshold, with the bounds that you determined in the previous
section.

6. Using the signal yHN(m,n), generate another signal zHN(m,n) that is 1 wherever yHN(m,n) is larger
than the provided threshold, and 0 otherwise. See figure 9 for an example showing the output of
MATRX > 3.

The MathScript command M > T will check whether each element in the matrix M is greater than
the scalar T: if so, the resulting matrix will have a 1 in the corresponding position; else, the resulting
matrix will have a 0 in the corresponding position.

After this point, we have a signal that is 1 wherever the intensity of the corresponding pixel in the
original image differed from the intensity of its neighboring pixel in the north by a value beyond the
selected threshold. Generate a similar signal zHE(m,n) from yHE(m,n).
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Figure 9 Thresholding: Example of how to use the greater than operator using a matrix and a scalar

7. Finally, generate a signal z which is 1 at pixel (m,n) if either zHE(m,n) or zHN(m,n) is 1.

Boolean operations can also be performed pointwise between two matrices. For example, the com-
mand M | N performs the pointwise logical OR of the two matrices M and N. The logical OR of 0
with a nonzero value is 1, while the logical OR of 0 with itself is 0.

8. We now arrive at a small technicality: the color 255 represents white, whereas the color 0 represents
black. Currently, the signal z is 0 where it should be white, and 1 where it should be black. Modify
the signal z to produce z′, such that z′(m,n) is 1 wherever z(m,n) is 0, and 0 wherever z(m,n) is 1.
You can do this by subtracting the signal z from a well-chosen scalar.

9. Finally, scale z′(m,n) by 255 to obtain the edge-detected output image. Display the output image as
the Edges in Image and find an appropriate threshold for the image provided.

Applications of Edge Detection Edge detection is often the first step in image understanding, which is
the automatic interpretation of images. A common application of image understanding is optical character
recognition or OCR, which is the transcription of printed documents into computer documents. Edge
detection for different purposes, however, is still very much an open problem and an active area of research.

4 Parting Words
Now that we are at the end of the lab-based portion of Electrical Engineering 20N (affectionately known
as “EE20N”), let us take stock of what you have managed to accomplish so far. You started the semester
learning about mathematical constructs and the basic arithmetic of complex numbers, and from that you
extrapolated into determining frequency responses. With these simple ideas, you constructed filters, and
with these filters, you did some amazing things: you filtered an ECG signal, you created a guitar string
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and even made a song, you manipulated voices and filtered frog voices, and finally, you just performed
basic image processing. You wrestled with the idea and implementation of convolution, and you wrestled
with the ideas and implementations of various filters. With simple ideas, you tackled some of the biggest
real-world problems; hopefully, we have now intrigued you, even just a teeny bit, to the power of digital
signal processing. All things considered, however, it has been a pleasure having you aboard for EE20N
this semester. The teaching staff hopes that you have learned a lot about signal processing and system
analysis through this course, and should you wish to continue in this branch of Electrical Engineering, we
suggest taking EE120 and EE123 after this course. We would also like to thank you because your input,
however small or large, was considered in an attempt to make these labs all the better, more relevant, more
interesting, and more fun for you to complete. Thank you, and good luck. ¨̂
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