
GUITAR STRING SIMULATION 2
Electrical Engineering 20N

Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

HSIN-I LIU, JONATHAN KOTKER, HOWARD LEI, ANDREW LEE, AND BABAK AYAZIFAR

1 Introduction
In this mini-project, we will bolster the functionality of the guitar string simulation that we created in lab
06, by using several filters in series to construct a system that can delay its input signal by any arbitrary
fractional amount. With this in hand, we will be able to construct a model of a guitar string that can vibrate
at any real frequency we provide, thus allowing us to produce the guitar version of any song we choose.
Along the way, we will learn about, and discover the uses of, systems with linear phase responses [1].

1.1 Mini-Project Goals

• Understand the concept and the applications of linear phase responses.

• Explore relationships between filters and delays, both integer and real.

1.2 Checkoff Points

1. Delay Elements and Linear Phases .

2. Fractional Delays .

3. Finally A-440 . (20%)

4. Shall We Play a Song? . (30%)

5. Generate Your Own Song .

6. Submission Rules .

7. Submission Instructions .

8. Acknowledgments .

9. References .

1

https://bspace.berkeley.edu/access/content/group/e2ca3b13-f595-4136-b18c-7f193bed7cc1/Labs/LAB06-EE20-S10/Lab%2006.pdf
https://bspace.berkeley.edu/access/content/group/e2ca3b13-f595-4136-b18c-7f193bed7cc1/Labs/LAB06-EE20-S10/Lab%2006.pdf

2 Delay Elements and Linear Phases
Consider a system that delays its input by N samples. In other words, consider the system DN with LCCDE
y(n) = x(n−N). We know that the frequency response of this system is given by DN (ω) = e−iωN (Why?)
The phase of delay elements is thus a linear function of ω. Since any LTI system is uniquely determined by
its frequency response function, we deduce that every system with a frequency response of the form e−iωN

must be a delay element.

However, in our analysis, we made no assumptions as to what type of numberN was: the fact that we were
in discrete-time implied that N should be an integer, but this analysis is equally applicable if N were any
real number. Of course, it does not make much intuitive sense to talk about delaying a discrete-time signal
by a non-integer number of samples, so we should expect that, if any system induces a non-integer delay,
the output may not look like a shifted version of the input. In fact, we have already seen one such system
before; we just called it a low-pass filter. (Woah.)

The LCCDE of the particular low-pass filter used in the in-lab section was

∀n ∈ Z, y(n) =
1

2
(x(n) + x(n− 1)),

also known as the moving average filter. We know that its frequency response is

FL(ω) =
1

2
(1 + e−iω).

Simplifying this further, we see that

FL(ω) =
1

2
(1 + e−iω)

= e−iω/2

(
1

2
e−iω/2 +

1

2
eiω/2

)
= e−iω/2 cos

(ω
2

)
= cos

(ω
2

)
e−iω/2

Notice that the phase of a low-pass filter is linear with slope −1/2. Based on our prior analysis, we deduce
that a low-pass filter ‘delays’ its input by half a sample. Again, it may not make too much intuitive sense
as to what a half-sample delay implies in discrete-time, so we can stipulate that the moving average filter
provides a good demonstration of what a half-sample delay does to a signal. The extra factor of cos

(
ω
2

)
provides the filtering effect that allows the low-pass filter to attenuate higher frequencies.

3 Fractional Delays
During the in-lab sections of lab 06, we realized that an integer delay could not represent the basic tone
A-440. In order to produce this tone, we will look at the slightly more complex all-pass filter to create the
fractional delay that we need to produce the tone A-440. For the purposes of this mini-project, we will
denote the total delay needed to produce A-440 by D, where D is a real number. The analysis involves a
considerable amount of mathematics. If you have been studying for a while, we suggest you take a break
and get a cup of hot chocolate, listen to some music, play a short game of your favorite sport, or do all of
these simultaneously, before you proceed.

Consider a filter given by the following difference equation,

∀n ∈ Z, y(n) + cy(n− 1) = cx(n) + x(n− 1), (1)

2

https://bspace.berkeley.edu/access/content/group/e2ca3b13-f595-4136-b18c-7f193bed7cc1/Labs/LAB06-EE20-S10/Lab%2006.pdf

for some constant 0 < c ≤ 1. As we determined in lab 05, the frequency response of this filter is given by

FA(ω) =
c+ e−iω

1 + ce−iω
.

We could immediately proceed to plot the magnitude and phase of the frequency response FA(ω) using
MathScript, but instead, we will first manipulate the response formula further to get some insight. Being
slightly tricky, we will multiply the numerator and the denominator by eiω/2 to obtain

FA(ω) =
ceiω/2 + e−iω/2

eiω/2 + ce−iω/2
.

Now, notice that the numerator and the denominator are complex conjugates of one another. In other
words, let

b(ω) = ceiω/2 + e−iω/2 (2)

and notice that

FA(ω) =
b(ω)

b∗(ω)
.

Since the numerator and denominator have the same magnitude, we find that

|FA(ω)| = 1.

The filter is an all-pass filter!

The phase response, however, is more complicated, but more interesting. Notice that

∠FA(ω) = ∠b(ω)− ∠b∗(ω).

Since for any complex number z, ∠(z∗) = −∠z, we have

∠FA(ω) = 2∠b(ω).

Thus, in order to find the phase response, we simply need to determine ∠b(ω). Plugging Euler’s relation
into Equation 2, we get

b(ω) = (c+ 1) cos
(ω
2

)
+ i(c− 1) sin

(ω
2

)
.

Since the phase of a complex number z is tan−1
(

Im{z}
Re{z}

)
, we deduce that

∠FA(ω) = 2 tan−1
(
(c− 1) sin(ω2)

(c+ 1) cos(ω2)

)
,

or alternatively,

∠FA(ω) = 2 tan−1
(
c− 1

c+ 1
tan

(ω
2

))
.

In this form, the formula for the phase response yields insight for small ω. In particular, when ω is small
(compared to π),

tan
(ω
2

)
≈ ω

2
,

and so

∠FA(ω) ≈ 2 tan−1
(
c− 1

c+ 1
· ω
2

)
.

3

https://bspace.berkeley.edu/access/content/group/e2ca3b13-f595-4136-b18c-7f193bed7cc1/Labs/LAB05-EE20-S10/Lab%2005.pdf

Since 0 < c ≤ 1, the argument to the arctangent is small if ω is small. Hence, for low frequencies,

∠FA(ω) ≈ 2

(
c− 1

c+ 1
· ω
2

)
=
c− 1

c+ 1
ω = −dω,

where d is defined by

d = −
(
c− 1

c+ 1

)
. (3)

Thus, at low frequencies, this all-pass filter has a linear phase with slope −d, which means that at low
frequencies, the filter behaves exactly like a delay element. However, unlike theN sample delay, the amount
of delay is d, which, depending on c, can be any real number between 0 and 1. Hence, amazingly, the all-pass
filter gives us a way to get fractional sample delays in a discrete time system, at least for low frequencies.

4 Finally A-440
In this section, we will use the all-pass filter analyzed in section 3 to finally generate that elusive A-440 tone,
which has a fundamental frequency of 440 Hz. We will do this by splicing the filter into the feedback loop
of the comb filter, as shown in Figure 1.1

Figure 1 Low-Pass Filter and All-Pass Filter embedded into a Comb Filter.

N
LOW-PASS

FILTER
pALL-PASS

FILTER
qr

1. Determine the LCCDE that represents the block diagram shown in Figure 1, solely in terms of the
input signal x(n) and the output signal y(n).
You may find the intermediate signals p(n), q(n), and r(n), defined as in Figure 1, useful. Also, note
that x(n) + αr(n) = y(n), or that r(n) = (1/α)(y(n)− x(n)); this relationship may be useful as well.

2. Recall that the comb filter produces an integer delay N , the low-pass filter produces a delay of 0.5,
and the all-pass filter produces a fractional delay d that lies between 0 and 1.

(a) Given a sampling frequency of 44.1 kHz, what is the total delay D needed to generate the A-440
signal? You will need the relationship between f0, fs, and N that you determined in the pre-
lab section of lab 06, where f0 is the fundamental frequency of the signal that we are trying to
generate. Note that we are using a different sampling frequency this time!

1If you are doing this post-lab on a computer with a Mac operating system, the LabVIEW version for Mac, unfortunately, does not
have a Play Waveform block of its own. The efforts of Hsin-I, however, have led to a sub-VI that functions very well for this post-lab
section, and is available on the course website, as part of the resources for this lab. In contrast to the version for Windows, this block
can only support a finite number of sampling frequencies. Use a control or a constant to set the sampling frequency among the ones
available; for the purposes of this post-lab, you will use a sampling frequency of 44.1 kHz.

4

https://bspace.berkeley.edu/access/content/group/e2ca3b13-f595-4136-b18c-7f193bed7cc1/Labs/LAB06-EE20-S10/Lab%2006.pdf

(b) Determine the best values of N and d that will cause the overall system shown in Figure 1 to
generate the A-440 signal. We will do this by recognizing that the total delay of all of the filters
is given by N + d + (1/2), with the delay of 1/2 due to the low-pass filter. This total delay is
equal to the delay D that you derived in the previous step. Then, determine values for N and d,
remembering the restrictions on N and d.

(c) From the value of d you determined, what is the corresponding value of c? c is the constant
used in the LCCDE for the all-pass filter, as seen in Equation 1, and is related to d as shown in
Equation 3.

3. Copy the contents of the Guitar String folder, created in lab 06, into a new folder called Guitar
A440. You may need to temporarily convert the Guitar String LLB file back into a folder along
the way.

4. Create a new VI called APF for CF in the Guitar A440 folder; this VI will be the sub-VI that
represents the all-pass filter inserted into the feedback loop of the comb filter. The specifications for
this VI are shown in Table 1.

Table 1 Specifications for the APF for CF VI.

Terminal Type Function
Input Signal Sample Scalar Input Value of q at a given sample.
c Scalar Input Constant c for the all-pass filter.
Output Signal Sample Scalar Output Value of r at a given sample.

5. Create a descriptive icon to represent your all-pass filter.

6. Create a new VI called Guitar A440, using the Guitar String VI as a template. Insert the APF
for CF sub-VI into the For Loop representing the comb filter with the low-pass filter, in the Guitar
String VI, as shown in Figure 1, and make the proper connections. Also, the input c should have a
numeric control.

7. Run your VI with α = 0.99, p = 22050 and the values of N and c that you determined in step 2. If done
correctly, your VI should now produce a sound of frequency 440 Hz. For comparison, you can go to
http://www.onlinetuningfork.com/ and play the 440 Hz sound (the middle tuning fork).

5 Shall We Play a Song?
You have created a very close approximation to an actual guitar pluck sound, and you have even tuned it
to a particular frequency. The next step is thus to generalize your guitar string model to a wider range of
frequencies, and from this generalization, create and finally play a simple song in LabVIEW.

Since we have come this far in LabVIEW, the following exercises are not strictly guided, and you can do
them in whichever manner you feel most appropriate and most comfortable. However, 10% of your grade
for this lab will be based on the style of the block diagrams of the VIs you will be creating in this section, to
encourage clean and well-commented VIs. As far as possible, please also use as many sub-VIs as you can,
all with appropriate and well-labeled icons.

1. As a first step, we must generalize our guitar string model to handle any (low) frequency that we
throw at it. Using the Guitar A440 VI as a template, create a sub-VI called Guitar Variable
Frequency, whose specifications are described in Table 2.

Several points of note:

5

https://bspace.berkeley.edu/access/content/group/e2ca3b13-f595-4136-b18c-7f193bed7cc1/Labs/LAB06-EE20-S10/Lab%2006.pdf
http://www.onlinetuningfork.com/

(a) The output of this subVI will be an array, not a waveform, so you need not convert the array
output of the For Loop block, representing the comb filter, into a waveform. You will perform
this step later.

(b) Set α to be 0.99, so that you no longer need an input for α.

(c) Hard-code the Samping Frequency to be 44100 samples per second.

(d) The VI is only provided with the frequency of the output signal that it needs to generate. How-
ever, the values ofN and d can be easily derived from Frequency and Sampling Frequency:
how? You may find the Round Toward -Infinity block, located under Mathematics →
Numeric, useful.

(e) Once you obtain the value of d, do not forget to determine the proper value of c, since the all-pass
filter needs the constant c, and not d.

(f) If you will be using the Y[i] = X[i - n] PtByPt block, this point is especially important.
As per the implementation of the block, the information for the delay N is collected and fixed
at the beginning of the execution of the whole program, unless other initialization criteria are
stated. Since we will be dealing with the same VI multiple times, each time with a different delay,
this property is undesirable. To avoid this, set the initialize terminal to be true whenever
the iteration count i is zero; this causes the block to re-initialize with a new value of N every
time the program is rerun.

(g) Remove any surrounding While Loops, or else the sub-VI could run forever!

Table 2 Specifications for the Guitar Variable Frequency VI.

Terminal Type Function
Frequency Scalar Input Frequency of signal to be generated.
Samples Scalar Input Number of samples to be generated.
Output Signal Array Output Output signal generated based on the input parame-

ters. If the frequency required is 0 Hz, then the out-
put signal should merely be an array of zeros.

2. From step 1, you have obtained a sub-VI that can produce an output signal with any (low) frequency
you need, for however long you need it to be. In this part of the mini-project, we will provide you
with an intuitive framework with which you can play any set of notes in sequence using your Guitar
Variable Frequency sub-VI.

3. From the course website, download the MusicFrameworkWithGuitar LLB, and examine the block
diagram of the Player VI. The Player VI takes as an input a .lv file that specifies a set of notes,
durations, and loudnesses, and plays them in sequence. Note that it currently uses the SineNote
sub-VI to generate the sound that corresponds to a particular frequency and duration. The sound that
it generates does not sound guitar-like (quite boring, actually): we will fix that.

4. Before plugging in your Guitar Variable Frequency sub-VI, we will run Player.vi with the
SineNote sub-VI and a .lv file input to make sure that the VI works. Download the file test.lv
from the course website. The .lv file can be read by any simple text-editor, such as WordPad. It
holds the tones, number of samples, and velocities (loudnesses) of a set of notes, and has the following
format:

6

Total Samples

Tone Samples Velocity
Tone Samples Velocity
Tone Samples Velocity
...

...
...

The first line specifies the total number of samples included in the entire duration of the set of notes
to be played. Each row specifies a separate note, and the notes are read by the Player VI from top to
bottom in sequence. The tone of each note corresponds to its relative position on the chromatic musical
scale. The Player VI automatically converts the tone to its corresponding frequency.

A chromatic musical scale is a musical scale where each octave is divided equally into 12 tones. In
general, a note is said to be an octave below another note with twice its frequency. Here, however,
the word ‘octave’ is used in another sense: as a range of notes between a pair of notes that are
separated an octave apart. The same tone from different octaves correspond to either a doubling
(for higher tones) or halving (for lower tones) of frequencies. For the .lv file format, each tone
is represented by an integer, where consecutive integers represent adjacent tones on the chromatic
scale. Wikipedia provides supplemental discussion.

Note that the duration of each note is determined by the number of samples of that note, along with
the preset sampling frequency of 44100 samples per second. Hence, 44100 samples of one note would
last exactly 1 second.

5. If the total number of samples of all the notes exceeds the total samples specified on the top line, an
additional track will be formed starting from the note where the number of samples exceeds the total
samples specified. This can be repeated an infinite number of times, so as many tracks as needed can
be included. Note that in test.lv there are three tracks, as the total number of samples correspond-
ing to all the notes (1920000) is three times the total samples specified on the top line (640000). Hence,
the set of notes comprising the first 640000 samples comprise the first track, the set of notes compris-
ing the next 640000 samples comprise the second track, and so on. The PlayerVI will generate music
containing all tracks simultaneously.

6. In Player VI, click on the folder icon corresponding to the Open .lv file dialog box to load
test.lv. Click Synthesize! to generate the audio, and then click the Play button once the Ready
indicator is turned on. You should hear the music corresponding to the sequence of notes specified in
test.lv. What song do you hear?

7. Convert the MusicFrameworkWithGuitar LLB into a directory, and add your Guitar Variable
Frequency sub-VI into the directory. In the block diagram of the Player VI, replace the SineNote
sub-VI with your Guitar Variable Frequency subVI, noting that both VIs should have the same
input and output terminals.

8. Run the Player VI just as you did before. If your Guitar Variable Frequency sub-VI imple-
mentation is correct, you should hear the same set of notes, but sounding as if generated by a guitar.

9. Congratulations! You have just created a music-playing framework that allows you to play a given
set of notes, simulating a musical instrument whose sound you have digitally re-created, merely by
employing principles of signal processing and design.

6 Generate Your Own Song
Now that you have become familiar with the framework for inputting and playing a set of notes corre-
sponding to a .lv file, generate a simple song using a separate .lv file, and play it using Player.vi.

7

It can be as simple or complicated as you want it to be, with either one or multiple tracks. However,
it should be something that is easily recognizable with a certain title. We recommend that the length of
the song be less than four minutes, or else your computer may run out of memory before it can finish
synthesizing the song. Andrew Lee, a former student of the class, has designed a MIDI to LV converter,
which you may find useful. It converts pre-existing MIDI files into their LV equivalents. It is located at
http://inst.eecs.berkeley.edu/˜alee/EE20/Instructions.html.

When you are done, convert the MusicFrameworkWithGuitar directory back into an LLB file. Be sure
to submit both the LLB and the .lv file that you created for this mini-project.

7 Submission Rules
1. Submit your files no later than 10 minutes after the beginning of the lab session the week of April 18th,

2011.

2. Late submissions will not be accepted, except under unusual circumstances.

3. These exercises are recommended to be done in groups of two. Only one person need submit the
required files, however.

8 Submission Instructions
1. Log on to bSpace and click on the Assignments tab.

2. Locate the assignment for Mini-Project 2 corresponding to your section.

3. Attach the following files to the assignment:

(a) A text file called PARTNERS.txt, containing a list of the students who worked together.

(b) Your answer to step 1 of section 4 as a comment in the Guitar A440 VI.

(c) The Guitar A440 LLB.

(d) The Music Framework With Guitar LLB that includes the Guitar Variable Frequency
sub-VI.

(e) The .lv file that you created in step 6.

9 Acknowledgments
Special thanks go out to Vinay Raj Hampapur, Miklos Christine, Sarah Wodin-Schwartz, and Andrew Lee
for providing suggestions, ideas, and fixes to this mini-project guide. We especially thank Andrew Lee
for also providing the MusicFrameworkWithGuitar LabVIEW framework. This mini-project guide was
based on, although substantially modified from, the “Plucked string instrument” laboratory exercise as
presented in the book Structure and Interpretation of Signals and Systems, written by Ed-
ward A. Lee and Pravin Varaiya (ISBN 0201745518). The A440 sound sample was obtained from the A440
entry on Wikipedia, under the Creative Commons license.

References
[1] K. Karplus and A. Strong. Digital Synthesis of Plucked-String and Drum Timbres. Computer Music

Journal, 7(2):43–55, Summer 1983.

8

http://inst.eecs.berkeley.edu/~alee/EE20/Instructions.html
http://bspace.berkeley.edu
http://en.wikipedia.org/wiki/A440
http://en.wikipedia.org/wiki/A440

	Introduction
	Mini-Project Goals
	Checkoff Points

	Delay Elements and Linear Phases
	Fractional Delays
	Finally A-440
	Shall We Play a Song?
	Generate Your Own Song
	Submission Rules
	Submission Instructions
	Acknowledgments

