SPE Workshop

October 15-18, 2000

DESIGNING A RELEVANT LAB FOR INTRODUCTORY SIGNALSAND SYSTEMS

Edward A. Lee

eal @eecs.berkeley.edu
Electrical Engineering & Computer Science
University of California, Berkeley

Proc. of the First Sgnal Processing Education Workshop,
Hunt, Texas, October 15 - 18, 2000

ABSTRACT

Contemporary reality inadigital, networked, computational
world suggests a different approach to the hands-on com-
ponent of an engineering curriculum. At Berkeley, we have
introduced a new course that introduces signals and systems
to EECS majors. A major objective of the courseisto intro-
duce applications early, well before the students have built
up enough theory to fully analyze the applications. This
helps to motivate the students to learn the theory. Indeed,
a major theme of this course is the connection between
a mathematical (declarative) and a computational (imper-
ative) view of systems. In particular, we avoid using soft-
ware as merely a more convenient way to do calculations
that could otherwise be done by hand. Instead, we empha-
size the use of software to perform operationsthat could not
possibly be done by hand, operationson real signals such as
soundsand images. We use Matlab and Simulink, and intro-
duce them as complementary tools with distinct models of
computation. Simulink, however, has some distinct limita-
tionsthat compromiseits utility. We offer some suggestions
for future tools that would better match our objectives.

1. INTRODUCTION

We have developed a set of laboratory exercises based on
Matlab and Simulink for anew introductory signalsand sys-
tems course at Berkeley. The purpose of these exercisesisto
help reconcile the declarative (what is) and imperative (how
to) points of view on signals and systems. The mathemat-
ical treatment that dominates in the lecture and textbook is
declarative, in that it asserts properties of signals and stud-
iestherelationships between signalsthat areimplied by sys-
tems. The labs focus on an imperative style, where signals
and systems are constructed proceduraly. The labs are in-
cluded in aforthcoming text [2].

Matlab and Simulink, distributed by The MathWorks,
Inc., are chosen as the basis for these exercises because they
are widely used by practitioners in the field, and because
they are capable of realizing interesting systems. Why use
both Matlab and Simulink? Although they are integrated

into asingle package, Matlab and Simulink aretwo very dif-
ferent pieces of softwarewith radically different approaches
to modeling of signals and systems. Matlab is an imper-
ative programming language, whereas Simulink is a block
diagram language. In Matlab, one specifies the sequence of
steps that construct a signal or operate on a signal to pro-
duce a new signal. In Simulink, one connects blocks that
implement elementary systems to construct more interest-
ing systems. The systems we construct are aggregates of
simpler systems.

Matlab fundamentally operates on matrices and vec-
tors. Simulink fundamentally operates on discrete and
continuous-time signals. Discrete-time signals, of course,
can be represented as vectors, as long as they are fi-
nite. However, the signals of interest in this course are
rarely finite, so Simulink provides a closer approximation.
Continuous-time signals, of course, can only be approxi-
mated in software. Simulink approximates continuous-time
signals by discretizing timein an adaptive and largely trans-
parent way. The user (the model builder) can pretend that
he or she is operating directly on continuous-time signals.

There is considerable value in becoming adept with
these software packages. Matlab and Simulink are often
used in practice for “quick-and-dirty” prototyping of con-
cepts, and increasingly, with code generation, to produce
production embedded software. In a matter of afew hours,
very elaborate models can be constructed. This contrasts
with the weeks or months that would often be required to
build a hardware prototype to test the same concept.

Of course, a conventional programming language such
as C++ or Java could a so be used to construct prototypes of
systems. However, these languages|ack therich libraries of
built-in functionsthat Matlab and Simulink have. A task as
conceptually simple as plotting a waveform can take weeks
of programming in Java to accomplish well. Algorithms,
such as the FFT or filtering agorithms, are also built in,
saving considerable effort.

One hindrance to using these software environmentsfor
beginning students is that Matlab and Simulink both have
capabilities that are much more sophisticated than anything
coveredin the course. Thismay be abit intimidating at first,

SPE Workshop

particularly with Simulink, where it is hard to avoid stum-
bling across facilities much more sophisticated than what
the students need. Their reaction is likely to be “what the
heck is singular-value decomposition! 2121 ?". Students need
to learn to ignore what they don’t understand, and focus on
building up their abilities gradually.

For students with no background in programming, these
exercises are difficult at first. Matlab, at its root, is afairly
conventionally programming language, and it requires a
clear understanding of programming concepts such as vari-
ables and flow of control (for loops, while loops). As pro-
gramming languagesgo, it isan especially easy onetolearn,
however. Its syntax is straightforward and close to that
of the mathematical concepts that it emulates. Moreover,
since it is an interpreted language (in contrast to a com-
piled language), students can easily experiment by just typ-
ing in commands at the console and seeing what happens.
At Berkeley, only atiny percentage of the studentswho take
this class have no programming background, so thereis not
much of a problem.

1.1. Mechanicsof the Labs

The labs are divided into two distinct sections, in lab and
independent. This organization is inspired by that of the
(excellent) laboratory exercises in DSP First[4]. The pur-
pose of the in-lab section is to introduce concepts needed
for later parts of the lab. Each in-lab section is designed to
be completed during a scheduled lab time with an instructor
present to clear up any confusing or unclear concepts. The
in-lab section is completed by obtaining the signature of an
instructor on a verification sheet.

Theindependent section beginswhere thein-lab section
leaves off. It can be completed within the scheduled lab pe-
riod, or may be completed on the students’ own time. They
write a brief summary of their solution, following a sup-
plied template, and turn it in at the beginning of the next
scheduled lab period.

2. LAB CONTENT

Thereare 11 lab exercises, each designed to be completedin
oneweek. Inal5week semester, thisleavesoneweek at the
beginning devoted to purely organizational issues (setting
up computer accounts, meeting the lab instructors, etc.),
one week for gaining familiarity with the technology of
the course (starting Matlab and Simulink, finding the tuto-
rias, finding and printing the lab assignments, finding the
lab report templates), and two weeks in the middle of the
semester for midtermreview. Thelab exercisesare designed
to not require external instruction in Matlab or Simulink,
nor use of supplementary materials such as books on Mat-
lab or Simulink. The lab instructions and the on-line help
are sufficient. We briefly describe each of the labs. The
reader may wish to consult [3] to evaluate the alignment of
the lab topics with those of the rest of the course.

October 15-18, 2000

2.1. Arraysand Sound (week 3)

The purpose of the first lab (which is assigned in week 3)
is to explore arrays in Matlab and to use them to construct
sound signals. Thelab is designed to help students become
familiar with the fundamentals of Matlab, while applying it
to synthesis of sound. In particular, it introducesthe vector-
ization feature of the Matlab programming language.

The lab consists of explorations with sinusoidal sounds
with exponential envelopes, relating musical notes with fre-
guency, and introducing the use of discrete-time (sampled)
representations of continuous-time signals (sound).

By the time the students do this lab, the course has dis-
cussed using sets and functions to represent signals, focus-
ing on defining the domain and range of the functions. Note
that there is some potential confusion because Matlab uses
the term “function” somewhat more loosely than the course
does when referring to mathematical functions. Any Mat-
lab command that takes argumentsin parenthesesis called a
function. And most have a well-defined domain and range,
and do, in fact, define a mapping from the domain to the
range. These can be viewed formally as a (mathematical)
functions. Some, however, such as plot and sound are
a bit harder to view this way. The last exercise in the lab
exploresthis relationship.

2.2. Images (week 4)

The second lab explores the representation of images in
Matlab, relating the Matlab use of color maps with a for-
mal functional model. It discusses the file formats for im-
ages, and explores the compression that is possible with
colormaps and with more sophisticated techniques such as
JPEG. The students construct a ssmple movie, reinforcing
the notions of sampling introduced in the previouslab. They
aso blur an image and create a simple edge detection algo-
rithm for the same image, getting results like those shown
infigure 1.

This lab aso reinforces the theme of the previous one
by asking students to define the domain and range of mathe-
matical models of the relevant Matlab functions. Moreover,
it begins an exploration of the tradeoffs between vectorized
functions and lower-level programming constructs such as
for loops. The edge detection algorithm is challenging (and
probably not practical) to design using only vectorized func-
tions.

2.3. State Machines (week 5)

The third lab uses Matlab as a low-level programming lan-
guage to construct state machines according to a systematic
design pattern that will allow for easy composition. The
theme of the lab is establishing the correspondence between
pictorial representations of finite automata, mathematical
functions giving the state update, and software realizations.

Themain project inthislab exerciseisto construct avir-
tual pet. This problem isinspired by the Tamagotchi virtual

SPE Workshop

50

100

150

200

250

300

50!
100},
150} e
2001 i

250

300~

Figure 1: Blurred image constructed with a 5 x 5
moving average (above), and simple edge detec-
tion (below).

October 15-18, 2000

pet made by Bandai in Japan. Tamagotchi pets, which trans-
late as " cute little eggs,” were extremely popular in the late
1990's, and had behavior considerably more complex than
that described in this exercise. The pet is cat that behaves as
follows:

It starts out happy. If you pet it, it purrs. If
you feed it, it throws up. If time passes, it gets
hungry and rubs against your legs. If you feed
it when it is hungry, it purrs and gets happy. If
you pet it whenitishungry, it bitesyou. If time
passes when it is hungry, it dies.

The italicized words and phrases in this description should
be elements in either the state space or the input or output
alphabets. Students define the input and output alphabets
and give a state transition diagram. They construct a func-
tionin Matlab that returnsthe next state and the output given
the current state and the input. They then write aprogramto
execute the state machine until the user types’ quit’ or ’exit.

Next, the students design an open-loop controller that
keeps the virtual pet alive. This illustrates that systemati-
cally constructed state machines can be easily composed.

Thislab builds on the flow control constructs (for loops)
introduced in the previouslabs and introduces string manip-
ulation and the use of M files.

2.4. Control Systems (week 6)

In the previous|ab, students were able to construct an open-
loop controller that would keep their virtual pet alive. Inthis
|ab, they modify the pet so that its behavior is nondetermin-
istic. In particular, they modify the cat’s behavior so that if
it is hungry and they feed it, it sometimes gets happy and
purrs (as it did before), but it sometimes stays hungry and
rubs against your legs. They then attempt to construct an
open-loop controller that keeps the pet alive, but of course
no such controller is possible without some feedback in-
formation. So they are asked to construct a state machine
that can be composed in a feedback arrangement such that
it keepsthe cat aive.

The semantics of feedback in this course are consistent
with tradition in signals systems. Computer scientists call
this style " synchronous composition,” and define the behav-
ior of the feedback system asa (least or greatest) fixed point
of a monotonic function on a partial order. In a course at
this level, we cannot go into this theory in much depth, but
we can use this example to explore the subtleties of syn-
chronous feedback.

In particular, the controller composed with the virtual
pet does nat, at first, seem to have enough information avail -
ableto start the model executing. Theinput to the controller,
which isthe output of the pet, is not available until the input
to the pet, which is the output of the controller, is avail-
able. Thereis a bootstrapping problem. The (better) stu-
dents learn to design state machines that can resolve this
apparent paradox.

SPE Workshop

Most students find this lab quite challenging, but also
very gratifying when they figureit out. The concepts behind
it are deep, and the better students realize that. The weaker
students, however, just get by, getting something working
without really understanding how to do it systematically.

2.5. Difference Equations (week 8)

After aone week break to prepare for the first midterm, the
lab reconvenes after the course has shifted themes towards
linear time invariant systems. In this lab, the students build
on the previous exercise by constructing state machine mod-
els (now with infinite states and linear update equations).
They build stable, unstable, and marginally stable state ma-
chines, describing them as difference equations.

The prime example of astable systemyieldsasinusoidal
signal with a decaying exponentia envelope. The corre-
sponding state machine is a simple approximate model of
the physics of a plucked string instrument, such as a guitar.
It is also the same signal that the students generated in the
first lab by more direct (and more costly) methods. They
compare the complexity of the state machine model with
that of the sound generatorsthat they constructed in thefirst
lab, finding that the state machine model yields sinusoidal
outputswith considerably fewer multiplies and addsthan di-
rect calculation of trigonometric and exponential functions.

The prime example of a marginally stable system is an
oscillator. The students discover that an oscillator is just a
boundary case between stable and unstable systems.

2.6. Differential Equations (week 9)

The purpose of this lab is to experiment with models of
continuous-time systems that are described as differential
equations. The exercises aim to solidify state-space con-
ceptswhile giving some experience with software that mod-
els continuous-time systems.

The lab uses Simulink, a companion to Matlab. Thelab
is self contained, in the sense that no additional documenta-
tion for Simulink is needed. Instead, we rely on the on-line
help facilities. However, these are not as good for Simulink
as for Matlab. The lab exercise have to guide the students
extensively, trying to steer clear of the more confusing parts.
As aresult, this lab is bit more “cookbook-like” than the
others.

Simulink is a block-diagram modeling environment. As
such, it has a more declarative flavor than Matlab, which
is imperative. You do not specify exactly how signals are
computed in Simulink. You simply connect together blocks
that represent systems. These blocks declare a relationship
between the input signal and the output signal. One of the
reasons for using Simulink is to expose students to this very
different style of programming.

Simulink excels at modeling continuous-time systems.
Of course, continuous-time systems are not directly realiz-
able on acomputer, so Simulink must discretize the system.
Thereis quite abit of sophistication in how thisis done, but

October 15-18, 2000

the students are largely unaware of that. The fact that they
do not specify how it is done underscores the observation
that Simulink has a declarative flavor.

2.7. Spectrum (week 10)

The purpose of thislab isto learn to examine the frequency
domain content of signals. Two methods are used. Thefirst
method is to plot the discrete Fourier series coefficients of
finite signals. The second is to plot the Fourier series coef-
ficients of finite segments of time-varying signals, creating
a spectrogram.

The students have, by this time, done quite a bit with
Fourier series, and have established the relationship be-
tween finite signals and periodic signals and their Fourier
series.

Matlab does not have any built-in function that directly
computes Fourier series coefficients, so an implementation
using the FFT is given to the students. The students con-
struct a chirp, listen to it, study its instantaneous frequency,
and plot its Fourier series coefficients. They then compute
atime-varying discrete-Fourier series using short segments
of the signal, and plot the result in awaterfall plot. Finally,
they render the same result as a spectrogram, which lever-
ages their study of color mapsin lab 2. The students also
render the spectrogram of a speech signal.

The lab concludes by studying beat signals, created by
summing sinusoids with closely spaced frequencies. A sin-
gle Fourier series analysis of the complete signal shows its
structure consisting of two distinct sinusoids, while a spec-
trogram shows the structure that corresponds better with
what the human ear hears, which is a sinusoid with a low-
frequency sinusoidal envelope.

2.8. Comb Filters (week 11)

The purpose of thislab isto use a comb filter to deeply ex-
plore concepts of impul se response and frequency response,
and to lay the groundwork for much more sophisticated mu-
sical instrument synthesis done in the next lab. The “sewer
pipe” effect of a comb filter is distinctly heard, and the stu-
dents are asked to explain the effect in physical terms by
considering sound propagation in a cylindrical pipe.* The
comb filter is analyzed as a feedback system, making the
connection to the virtual pet.

The lab again uses Simulink, this time for discrete-time
processing. Discrete-time processing is not the best part of
Simulink, so some operations are awkward. Moreover, the
blocks in the block libraries that support discrete-time pro-
cessing are not well organized. It can be difficult to discover
how to do something as ssmple as an N-sample delay or an
impulse source. The lab has to identify the blocks that the
students need, which again givesit a more “ cookbook-like’
flavor. The students cannot be expected to wade through the
extensive library of blocks, most of which will seem utterly
incomprehensible.

10nly asmall percentage of the students do this successfully.

SPE Workshop

2.9. Plucked String Instrument (week 13)

The purpose of this lab is to experiment with models of a
plucked string instrument, using it to deeply explore con-
cepts of impulse response, frequency response, and spec-
trograms. The methods discussed in this lab were invented
by Karplus and Strong [1]. The design of the lab itself was
inspired by the excellent book of Steiglitz [5].

The lab uses Simulink, modifying the comb filter of the
previous lab in three ways. First, the comb filter is initial-
ized with random state, leveraging the concept of zero-input
state response, studied previously with state-space models.
Then it adds a lowpass filter to the feedback loop to cre-
ate a dynamically varying spectrum, and it uses the spec-
trogram analysis developed in previous labs to show the ef-
fect. Finadly, it adds an allpass filter to the feedback loop to
precisely tune the resulting sound by adjusting the resonant

frequency.

2.10. Modulation and Demodulation (week 14)

The purpose of thislab isto use frequency domain concepts
to study amplitude modulation. Thisis motivated, of course,
by talking about AM radio, but also about digital communi-
cation systems, including digital cellular telephones, voice-
band data modems, and wireless networking devices.

The students are given the following problem scenario:

Assumewe haveasignal that containsfrequen-
cies in the range of about 100 to 300 Hz, and
we have a channel that can pass frequencies
from 700 to 1300 Hz. The task is to modu-
late thefirst signal so that it lies entirely within
the channel passhand, and then to demodulate
to recover the original signal.

Thetest signal isachirp. Thefrequency numbersare chosen
so that every signal involved, even the demodulated signal
with double frequency terms, is well within the audio range
at an 8 kHz sample rate. Thus, students can reinforce the
visual spectral displays with sounds that illustrate clearly
what is happening.

A secondary purpose of this lab is to gain a working
(users) knowledge of the FFT algorithm. In fact, they get
enough information to be able to fully understand the algo-
rithm that they were previously given to compute discrete
Fourier series coefficients.

Inthislab, the students also get an introductory working
knowledge of filter design. They construct a specification
and a filter design for the filter that eliminates the double
frequency terms. This lab requires the Signal Processing
Toolbox of Matlab for filter design.

2.11. Sampling and Aliasing (week 15)

The purpose of this lab is to study the relationship be-
tween discrete-time and continuous-time signals by exam-
ining sampling and aliasing. Of course, a computer cannot

October 15-18, 2000

directly deal with continuous-time signals. So instead, we
construct discrete-timesignal sthat are defined as samples of
continuous-time signal's, and then operate entirely on them,
downsampling them to get new signals with lower sample
rates, and upsampling them to get signals with higher sam-
ple rates. The upsampling operation is used to illustrate
oversampling, as commonly used in digital audio players
such as compact disk players. Once again, the lab is care-
fully designed so that al phenomenacan be heard.

3. TEAMWORK

An engineer rarely works alone. Cooperation and collabo-
ration are avery real part of the working world. Learning to
collaborate effectively isimportant. In view of this, and the
reality that they will do it anyway, students are encouraged
to work cooperatively with up to two other students on lab
reports. A team of three or fewer may turn in a single lab
report with up to three names.

There are distinct problems with this approach. Oneis
that even with this policy, students were found to copy the
work of others in the class and include it unattributed in
their own lab reports. Moreover, some teams partitioned
the work (usually by lab, since each lab exercise is difficult
to partition effectively). As a consequence, there were stu-
dentswho, based on their performancein the labs, appeared
to fully understand the material, and yet were unableto per-
formin the exams.

4. CONCLUSION

We did not conduct a rigorous study of the impact of the
lab, nor did we survey the students for their opinions about
it. So all | can offer is general impressions. First, the stu-
dents appeared to find the lab relatively easy, with the pos-
sible exception of the Plucked String modeling. The grades
were consistently high, and questions on exams that were
based primarily on lab material consistently showed strong
performance.

The integration of the labs with the course is very care-
ful, and very tightly scheduled. So much so that slipping
by one or two lectures can create problems with the labs.
We were trying for a careful balance of having covered the
necessary background material, but not so long ago that the
students have forgotten.

A key question that we can address is what we might
changein the future. In my opinion, the weakest part of this
lab is the use of Simulink. Although Simulink can model
discrete-time systems, and mixed discrete and continuous-
time systems, it does not do so well. The discrete-time
models in Simulink are not truly discrete-time models.
In Simulink semantics, discrete-time signals are piecewise
constant continuous-time signals. This becomes evident
when constructing mixed signal models. Confusion can be
avoided by carefully avoiding this mixture. However, the

SPE Workshop

block library organization and the solver configuration does
not make it easy to avoid this.

Although this interpretation of discrete-time signals
might seem innocuous enough, unfortunately, it undermines
some of the basic principles of the course, where domains
and ranges of functions are carefully defined to get mod-
els of signals. It seems to say that precise definition of the
domain is not important.

In addition, when doing discrete-time modeling, it is
regrettable that the students have to specify mysterious
“solver options” that are quite difficult to explain to them.
We are forced to tell them “just doiit ... don’t ask why.”

Simulink has other weaknesses. Asdiscussed above, the
on-line documentation and block organization are not good
enough for the students to be able to find solutions on their
own. The labs that use Simulink are forced to have a more
“cookbook-like” flavor, clearly leading the students through
the widely scattered block libraries to find what they need.
Students need to follow our instructions closely, or they are
likely to discover very puzzling behavior. We could proba-
bly improvethis situation considerably by constructing cus-
tom libraries and on-line documents.

Finaly, Simulink is more limited and awkward than
Matlab in its ability to read and write audio files. We find
that it iseasier to smply write signals to the workspace and
use soundsc to listen to them.

References

[1] K. Karplus and A. Strong, “Digital Synthesis of
Plucked-String and Drum Timbres,” Computer Music
Journal, vol. 7, no. 2, pp. 43-55, Summer 1983.

[2] Edward A. Lee & Pravin Varaiya, Sructure and In-
terpretation of Sgnals and Systems, textbook draft,
2000 (http://www.eecs.berkel ey.edu/ eal/eecs20).

[3] Edward A. Lee and Pravin Varaiya, “Introduc-
ing Signals and Systems — The Berkeley Approach,”
Proc. of the First Sgnal Processing Education Work-
shop, Hunt, Texas, October 15 - 18, 2000 (this vol-
ume).

[4] James H. McClellan, Ronald W. Schafer, and
Mark A. Yoder, DSP First: A Multimedia Approach,
Prentice-Hall, 1998.

[5] Ken Steiglitz, A DSP Primer: With Applications to
Digital Audio and Computer Music, Addison-Wesley,
1996.

October 15-18, 2000

	 Introduction
	 Mechanics of the Labs

	 Lab Content
	 Arrays and Sound (week 3)
	 Images (week 4)
	 State Machines (week 5)
	 Control Systems (week 6)
	 Difference Equations (week 8)
	 Differential Equations (week 9)
	 Spectrum (week 10)
	 Comb Filters (week 11)
	 Plucked String Instrument (week 13)
	 Modulation and Demodulation (week 14)
	 Sampling and Aliasing (week 15)

	 Teamwork
	 Conclusion

