
HYVISUAL: A HYBRID SYSTEM
VISUAL MODELER

Authors1: Christopher Brooks
Adam Cataldo
Edward A. Lee
Jie Liu
Xiaojun Liu
Steve Neuendorffer
Haiyang Zheng

Version 4.02

UCB ERL M04/18
June 28, 2004

This document describes work that is part of the Ptolemy project, which is supported by the National
Science Foundation (NSF award number CCR-00225610), the Defense Advanced Research Projects
Agency (DARPA), and Chess (the Center for Hybrid and Embedded Software Systems), which receives
support from the State of California MICRO program, and the following companies: Daimler-
Chrysler, Hitachi, Honeywell, Toyota and Wind River Systems.

1. With contributions from the entire Ptolemy II team, but most especially John Reekie and Yuhong Xiong.
2. Version numbers for HyVisual match the version of Ptolemy II on which it is based.

Copyright (c) 1998-2004 The Regents of the University of California.

 All rights reserved.

 Permission is hereby granted, without written agreement and without
 license or royalty fees, to use, copy, modify, and distribute the HyVisual
 software and its documentation for any purpose, provided that the above
 copyright notice and the following two paragraphs appear in all copies
 of the software.

 IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY
 FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES
 ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF
 THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
 SUCH DAMAGE.

 THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
 INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
 MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
 PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
 CALIFORNIA HAS NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
 ENHANCEMENTS, OR MODIFICATIONS.
2 HyVisual

Contents
1. Introduction 5

1.1. Installation and Quick Start 5
1.1.1. Web Start 5
1.1.2. Standard Installers 6
1.1.3. CD 6

2. Continuous-Time Dynamical Systems 7
2.1. Executing a Pre-Built Model 7
2.2. Creating a New Model 10

2.2.1. A Simple Sine Wave Model 10
2.2.2. A Dynamical System Producing a Sine Wave 13
2.2.3. Making Connections 14
2.2.4. Parameters 16
2.2.5. Annotations 17
2.2.6. Impulse Response 17
2.2.7. Using Higher-Order Dynamics Blocks 19

2.3. Data Types 20
2.4. Hierarchy 23

2.4.1. Creating a Composite Actor 23
2.4.2. Adding Ports to a Composite Actor 24
2.4.3. Setting the Types of Ports 25

2.5. Discrete Signals and Mixed-Signal Models 26
2.6. Navigating Larger Models 27

3. Hybrid Systems 28
3.1. Examining a Pre-Built Model 28
3.2. Numerical Precision and Zeno Conditions 30
3.3. Constructing Modal Models 31

3.3.1. Creating Transitions 32
3.3.2. Creating Refinements 33

3.4. Execution Semantics 34
4. Using the Plotter 35
5. Expressions 36

5.1. Expression Evaluator 37
5.2. Simple Arithmetic Expressions 37

5.2.1. Constants and Literals 37
5.2.2. Variables 39
5.2.3. Operators 39
5.2.4. Comments 41

5.3. Uses of Expressions 41
5.3.1. Parameters 41
5.3.2. String Parameters 42
5.3.3. Port Parameters 42
5.3.4. Expression Actor 43
A Hybrid System Visual Modeler 3

5.3.5. State Machines 43
5.4. Composite Data Types 43

5.4.1. Arrays 43
5.4.2. Matrices 46
5.4.3. Records 47

5.5. Invoking Methods 49
5.6. Defining Functions 50
5.7. Built-In Functions 52
5.8. Fixed Point Numbers 56
Appendix: A: Water Tanks Example 58
Appendix: B: Tables of Functions 72

B.1 Trigonometric Functions 72
B.2 Basic Mathematical Functions 73
B.3 Matrix, Array, and Record Functions. 75
B.4 Functions for Evaluating Expressions 76
B.5 Signal Processing Functions 77
B.6 I/O Functions and Other Miscellaneous Functions 79
4 HyVisual

1. Introduction
The Hybrid System Visual Modeler (HyVisual) is a block-diagram editor and simulator for contin-

uous-time dynamical systems and hybrid systems. Hybrid systems mix continuous-time dynamics, dis-
crete events, and discrete mode changes. This visual modeler supports construction of hierarchical
hybrid systems. It uses a block-diagram representation of ordinary differential equations (ODEs) to
define continuous dynamics, and allows mixing of continuous-time signals with events that are dis-
crete in time. It uses a bubble-and-arc diagram representation of finite state machines to define discrete
behavior driven by mode transitions.

In this document, we describe how to graphically construct models and how to interpret the result-
ing models. HyVisual provides a sophisticated numerical solver that simulates the continuous-time
dynamics, and effective use of the system requires at least a rudimentary understanding of the proper-
ties of the solver. This document provides a tutorial that will enable the reader to construct elaborate
models and to have confidence in the results of a simulation of those models. We begin by explaining
how to describe continuous-time models of classical dynamical systems, and then progress to the con-
struction of mixed signal and hybrid systems.

The intended audience for this document is an engineer with at least a rudimentary understanding
of the theory of continuous-time dynamical systems (ordinary differential equations and Laplace trans-
form representations), who wishes to build models of such systems, and who wishes to learn about
hybrid systems and build models of hybrid systems.

HyVisual is built on top of Ptolemy II, a framework supporting the construction of such domain-
specific tools. See http://ptolemy.eecs.berkeley.edu for information about Ptolemy II.

1.1 Installation and Quick Start
HyVisual can be quickly downloaded and run using Web Start from the web site:

http://ptolemy.eecs.berkeley.edu/hyvisual

Once you have done this once, then you can select HyVisual from the Ptolemy II entry in the Start
menu (if you are using a Windows system). You should then see an initial welcome window that looks
something like the one in figure 1. Feel free to explore the links in this window.

To create a new model, invoke the New command in the File menu. But before doing this, it is
worth understanding how a model works.

HyVisual is also available as a standalone installer for Windows (.exe file), experimental installers
for other platforms, and as a CD. This document is included with the software in PDF format, so if you
would like to read the HyVisual Documentation online, then you may need to install the Adobe Acro-
bat Reader. HyVisual-4.0 is also part of the Ptolemy II 4.0 release. HyVisual requires Java 1.4 or later.
Java 1.4.2 is preferred.

1.1.1 Web Start
Web Start is a tool from Sun Microsystems that makes software installation and updates particu-

larly simple. The Web Start installation works best with Windows, but has also been tried under
Solaris, Linux and Mac OS X. The Web Start installation behaves almost exactly like a standalone
installation; you can save models locally, and you need not be connected to the net after the initial
A Hybrid System Visual Modeler 5

installation. The Web Start tool includes a Java Runtime Environment (JRE), and the HyVisual Web
Start installer checks that the proper version of the JRE is present.

1.1.2 Standard Installers
The Windows installer and the experimental installers for other platforms are shipped as a single

executable. One of the Windows installers includes a Java Runtime Environment (JRE). Note that this
JRE will be installed as a private copy and will not be directly accessible by other programs. Under
Windows, the installer will create a Ptolemy, HyVisual menu choice in the Start menu.

1.1.3 CD
The HyVisual CD includes installers for HyVisual, the Java Runtime Environment version

1.4.2_04 and Adobe Acrobat Reader 6.0.

FIGURE 1. Initial welcome window.
6 HyVisual

2. Continuous-Time Dynamical Systems
In this section, we explain how to read, construct and execute models of continuous-time systems.

We begin by examining a demonstration system that is accessible from the welcome window in figure
1, the Lorenz attractor.

2.1 Executing a Pre-Built Model
The Lorenz attractor model can be accessed by clicking on the link in the welcome window, which

results in the window shown in figure 2. It is a block diagram representation of a set of nonlinear ordi-
nary differential equations. The blocks with integration signs in their icons are integrators. At any
given time t, their output is given by

, (1)

where is the initial state of the integrator, is the start time of the model, and is the input sig-
nal. Note that since the output is the integral of the input, then at any given time, the input is the deriv-
ative of the output,

. (2)

FIGURE 2. A block diagram representation of a set of nonlinear ordinary differential equations.

x t() x t0() x· τ() τd

t0

t

∫+=

x t0() t0 x·

x· t()
td

d x t()=
A Hybrid System Visual Modeler 7

Thus, the system describes either an integral equation or a differential equation, depending on which of
these two forms you use.

Let the output of the top integrator in figure 2 be , the output of the middle integrator be , and
the output of the bottom integrator be . Then the equations described by figure 2 are

. (3)

For each equation, the expression on the right is implemented by an Expression actor, whose icon
shows the expression. Each expression refers to parameters (such as lambda for and sigma for)
and input ports of the actor (such as x1 for and x2 for). The names of the input ports are not
shown in the diagram, but if you linger over them with the mouse cursor, the name will pop up in a
tooltip. The expression in each Expression actor can be edited by double clicking on the actor, and the
parameter values can be edited by double clicking on the parameters, which are shown next to bullets
on the right.

The integrators each also have initial values, which you can examine and change by double click-
ing on the corresponding integrator icon. These define the initial values of , , and , respec-
tively. For this example, all three are set to 1.0.

The Continuous-Time (CT) Solver, shown at the upper right, manages a simulation of the model. It
contains a sophisticated ODE solver, and to use it effectively, you will need to understand some of its
parameters. The parameters are accessed by double clicking on solver box, which results in the dialog
shown in figure 3. The simplest of these parameters are the startTime and the stopTime, which are self-
explanatory. They define the region of the time line over which a simulation will execute.

To execute the model, you can click on the run button in the toolbar (with a red triangle icon), or
you can open the Run Window in the View menu. In the former case, the model executes, and the
results are plotted in their own window, as shown in figure 4. What is plotted is vs. for val-

x1 x2
x3

x·1 t() σ x2 t() x1 t()–()=

x·2 t() λ x3 t()–()x1 t() x2 t()–=

x·3 t() x1 t()x2 t() bx3 t()–=

λ σ
x1 x2

x1 x2 x3

FIGURE 3. Dialog box showing solver parameters for the model in figure 2.

x1 t() x2 t()
8 HyVisual

ues of t in between startTime and stopTime. The Run Window obtained via the View menu is shown in
figure 5.

Like the Lorenz model, a typical continuous-time model contains integrators in feedback loops, or
more elaborate blocks that realize linear and non-linear dynamical systems given abstract mathemati-
cal representations of them (such as Laplace transforms). In the next section, we will explore how to
build a model from scratch.

FIGURE 4. Result of running the Lorenz model using the run button in the toolbar.

FIGURE 5. Run Window, obtained via the View menu, for the Lorenz model shown in figure 2.
A Hybrid System Visual Modeler 9

2.2 Creating a New Model
This section walks through the mechanics of constructing simple models. The appendix on

page 58 walks through an exercise of constructing a hybrid system example. First, create a new model
by selecting File, New, and Graph Editor in the welcome window. You should see something like the
window shown in figure 6. On the upper left is a library of objects that can be dragged onto the page on
the right. These are actors (functional blocks) and utilities (annotations, hierarchical models, etc.). The
page on the right is almost blank, containing only a solver. The lower left corner contains a navigation
area, which always shows the entire model (which currently consists only of a solver). For large mod-
els, the navigation area makes it easy to see where you are and makes it easy to get from one part of the
model to another.

2.2.1 A Simple Sine Wave Model
We can begin by populating the model with functional blocks. Let’s begin with the simple objec-

tive of generating and plotting a sine wave. There are a number of ways to do this, and the alternatives
illustrate a number of interesting features about HyVisual. Open the actor library in the palette, and
drag in the ContinuousSinewave actor from the sources library and the TimedPlotter from the sinks
library. Connect the output of the ContinuousSinewave to the input of the TimedPlotter by dragging
from one port to the other. The result should look something like figure 7.

The model is ready to execute. To execute it, click on the run button in the toolbar, or invoke the
Run Window from the view menu. The result of the run should look like figure 8. You can zoom in on
the plot by clicking and dragging in the plot window. You can also customize the plot using the buttons
at the upper right.

FIGURE 6. A blank model, obtained via File, New, and Graph Editor in the menus.

library of components

navigation area

model-building area

toolbar
10 HyVisual

If we zoom in on the plot, turn on stems, and set the marks to “dots,” then we can make the plot
look like figure 9. In this figure you can see that the sine wave is hardly smooth, and that rather few
samples are produced by the simulation. It is worth understanding why this is. Consider the solver
parameters shown in figure 3. Notice that the initStepSize parameter has value 0.1, which is coinciden-
tally the spacing between samples in figure 9. The spacing between samples is called the step size of
the solver. If you change initStepSize to 0.01 (by double clicking on the solver) and re-run the simula-
tion, then the same region of the plot looks like figure 10. The spacing between samples is now 0.01.

The model shown in figure 7 is atypical of continuous-time models of dynamical systems. It has
no blocks that control the step size. Such blocks include those from the dynamics and to discrete

FIGURE 7. A model populated with two actors.

FIGURE 8. Execution of the sine wave example in figure 7, where all parameter values have default.values.

click here to customize
the look of the plot
A Hybrid System Visual Modeler 11

library. For example, another way to get the sine wave to be sampled with a sampling interval of 0.01
is shown in figure 11. The PeriodicSampler block has a parameter samplePeriod that you can set to
0.01 (by double clicking on the block). This will result in the same plot as shown in figure 10, irrespec-
tive of the initStepSize parameter of the solver.

FIGURE 9. Zoomed version of the plot in figure 8, with “dots” and “stems” turned on.

FIGURE 10. The result of running the model in figure 7 with the initStepSize parameter of the solver being 0.01.

FIGURE 11. Another way to control the step size is to insert a sampler.
12 HyVisual

The models shown in figures 7 and 11 have no blocks from the dynamics library, and hence do not
immediately represent an ordinary differential equation. When blocks from the dynamics library are
used, then the solver uses sophisticated techniques to determine the spacing between samples. The ini-
tial step size is given by initStepSize, but the solver may adjust it to any value between minStepSize and
maxStepSize. In the case of the model in figure 7, there are no blocks with continuous dynamics, and
no other blocks that affect the step size and hence there is no basis for the solver to change the step
size. Thus, the step size remains at the value given by initStepSize for the duration of the simulation.

We will next modify the model to be more typical by describing an ODE whose solution is a sine
wave. Before we do that, however, you may want to explore certain features of the user interface:
• You can save your model using commands in the File menu. File names for Ptolemy II models

should end in “.xml” or “.moml” so that Vergil will properly process the file the next time you
open that file.

• You can obtain documentation for the solver, or any other block in the system, by right clicking on
it to get a context menu, and selecting “Get Documentation.”

• You can move blocks around by clicking on them and dragging. Connections are preserved.
• You can edit the parameters of any block (including the solver) by either double clicking on it, or

right clicking and selecting “Configure.”
• You can change the name of a block (or even hide it) by right clicking on the block and selecting

“Customize Name.”
• If your installation includes the source code, then you can examine the source code for any block

by right clicking and choosing “Look Inside.”

2.2.2 A Dynamical System Producing a Sine Wave
From the theory of continuous-time dynamical systems, we know that an LTI system with poles on

the imaginary axis will produce a sinusoidal output. That is, a system with transfer function of the form

(4)

has an impulse response

, (5)

where is the unit step function. If the input to this system is a continuous-time signal and the
output is , then the relationship between the input and output can be described by the differential
equation

, (6)

where is the second derivative of . Suppose that the input is zero for all time,

. (7)

Then the output satisfies

. (8)

H s()
ω0

s jω0–() s jω0+()
--

ω0

s2 ω0
2+

-----------------= =

h t() ω0t()sin u t()=

u t() x
y

ω0x t() ω0
2y t() y·· t()+=

y·· y

t ℜ x t(),∈∀ 0=

y·· t() ω0– 2y t()=
A Hybrid System Visual Modeler 13

This output can be generated by the model shown in figure 12. As shown in the annotations in the fig-
ure, is calculated by multiplying by , is calculated by integrating , and is calculated by
integrating . If we set the initial state of the left integrator (the first derivative of ,) to 1.0 and run
the model for 5 time units, we get the result shown in figure 13.

The model in figure 12 shows two additional key features of the user interface, the mechanism for
connecting an output to multiple inputs (relations) and the mechanism for defining and using parame-
ters. We discuss these two mechanisms next.

2.2.3 Making Connections
The models in figures 7 and 11 have simple connections between blocks. These connections are

made by clicking on one port and dragging to the other. The connection is maintained if either block is
moved. We can now explore how to create and manipulate more complicated connections, such as the
ones in figure 12, where the output of the right Integrator goes to both the Scale and the TimedPlotter

FIGURE 12. Model that generates a sine wave if the integrators have a non-zero initial condition.

y··

y·

y

parameter

relation

y·· y ω0– y y· y·
y·· y y·

FIGURE 13. Result of running the model in figure 12 with the initialState of the left integrator set to 1.0.
14 HyVisual

blocks. Such connections are mediated by a relation, indicated by a black diamond, as shown in figure
12. A relation can be linked to one output port and any number of input ports.

If we simply attempt to make the connections by clicking and dragging from the Integrator output
port to the two input ports in sequence, then we get the exception shown in figure 14. Such exceptions
can be intimidating, but are the normal and common way of reporting errors in HyVisual. The key line
in this exception report is the last one, which says

Attempt to link more than one relation to a single port.

The line below that gives the names of the objects involved, which are

in .integratorSineWave.Integrator.output and .integratorSineWave.relation

In HyVisual models, all objects have a dotted name. The dots separate elements in the hierarchy. Thus,
“.integratorSineWave.Integrator.output” is an object named “output” contained by an object named
“Integrator”, which is contained by a model named “integratorSineWave.”

Why did this exception occur? The diagram shows two distinct flavors of ports, indicated in the
diagrams by a filled triangle or an unfilled triangle. The output port of the Integrator block is a single
port, indicated by a filled triangle, which means that it can only support a single connection. The input
port of the TimedPlotter block is a multiport, indicated by unfilled triangles. Multiports can support
multiple connections, where each connection is treated as a separate channel. A channel is a path from
an output port to an input port (via relations) that can transport a single stream of tokens.

So how do we get the output of the Integrator to the other two actors? We need an explicit relation
in the diagram. A relation is represented in the diagram by a black diamond, as shown in Figure 15. It
can be created by either control-clicking on the background or by clicking on the button in the toolbar
with the black diamond on it.

Making a connection to a relation can be tricky, since if you just click and drag on the relation, the
relation gets selected and moved. To make a connection, hold the control button while clicking and
dragging on the relation.

In the model shown in figure 15, the relation is used to broadcast the output from a single port to a
number of places. The single port still has only one connection to it, a connection to a relation. Rela-
tions can also be used to control the routing of wires in the diagram. For example, in figure 15, the
relation is placed to the left of all the blocks in order to get a pleasing layout. However, as of this writ-
ing, a connection can only have a single relation on it, so the degree to which routing can be controlled
is limited.

The TimedPlotter in figure 15 has a multiport input, as indicated by the unfilled triangle. This
means that multiple channels of input can be connected directly to it. Consider the modification shown
in figure 16, where both and are connected (via relations) to the input port of the TimedPlotter.

FIGURE 14. An exception that results from attempting to make a multi-way connection without a relation.

y y·
A Hybrid System Visual Modeler 15

The resulting plot is shown at the right. The two signals are treated by the block as distinct input sig-
nals coming in on separate channels.

2.2.4 Parameters
Figure 16 shows a parameter named “w” with value “2.0*PI.” That parameter is then used in the

Scale block to specify that the scale factor is “−(w^2).” This usage illustrates a number of convenient
features.

To create a parameter that is visible in the diagram, drag one in from the parameters folder under
the utilities library, as shown in figure 17. Right click on the parameter to change its name to “w”. (In
order to be able to use this parameter in expressions, the name cannot have any spaces in it.) Also,
right click or double click on the parameter to change its default value to “2.0*PI.” This is an example
of the sort of expressions you can use to define parameter values. The expression language is described
below in section 5.

The parameter, once created, belongs to the model. If you right click on the grey background and
select Configure, then you can edit the parameter value, just as you could by double clicking on the
parameter. The resulting dialog also allows you to create parameters that are not visible in the model.
The parameter is also visible and editable in the Run Window obtained via the View menu.

FIGURE 15. A relation can be used to broadcast an output from a single port.

Click here to create
a relation, or control-
click on the background.

FIGURE 16. Multiple signals can be sent to a multiport, shown with the unfilled triangle on the TimedPlotter. In
this case, two signals are plotted.
16 HyVisual

A parameter of the model can be used in expressions anywhere in the model, including in parame-
ter values for blocks within the model. In figure 16, for instance, the factor parameter of the Scale actor
has the value “−(w^2),” which references the parameter w.

2.2.5 Annotations
There are several other useful enhancements you could make to this model. Try dragging an anno-

tation from the decorative folder under the utilities library and creating a title on the diagram. Also, try
setting the title of the plot by clicking on the second button from the right in the row of buttons at the
top right of the plot. This button has the tool tip “Set the plot format” and brings up the format control
window.

2.2.6 Impulse Response
Consider equation (6), which we repeat here for reference:

. (9)

FIGURE 17. Adding a parameter to the IntegratorSineWave model.

ω0x t() ω0
2y t() y·· t()+=
A Hybrid System Visual Modeler 17

Figure 12 and subsequent models based on this equation assume that the input is zero for all time,
, thus realizing equation (8). We can elaborate on this model by re-introducing the input, and

allowing it to be non-zero. The result is shown in figure 18, where the input is provided by a block
labeled “Clock.” Notice that the input is multiplied by , and then is subtracted from it to
obtain . I.e., it calculates

. (10)

In the model, both integrators now have initialState set to 0.0. The plot in the figure shows the result of
running the model with an impulse as the input, resulting in an impulse response that matches (5).

The key question, however, is how can we generate an impulse for the input? In theory, an
impulse, also known as a Dirac delta function, is a continuous-time function that satisfies

. (11)

From these relations, it is easy to see that the Dirac delta function must have infinite value at ,
because otherwise it could not integrate to one. Hence, it is problematic to generate an impulse in a
continuous-time simulator.

The model shown in figure 18 uses a Clock actor to generate an approximate impulse. The param-
eters of the Clock actor are shown in figure 19. First, notice that numberOfCycles is set to 1. This
means that only one pulse will be generated. The pulse is defined by the offsets and values parameters.
The offsets parameter is set to {0.0, 1.0E-5}, which is an array with two numbers. The values parame-
ter is set to {1.0E5, 0.0}. Together, these mean that the output goes to value at time 0.0, and
then to value 0.0 at time . Thus, the output is a very narrow, very high rectangular pulse,
with unit area.

If you create a Clock and set these parameter values, and try to run the model, you are likely to see
the exception shown in figure 20. The problem here is that the default minStepSize value for the solver,
as shown in figure 3, is too large, given the very narrow pulse we are trying to generate. In this case, it
is sufficient to change the minStepSize parameter to 1.0E-9. Generally, the minStepSize parameter
needs to be considerably smaller than the smallest phenomenon in time that is being observed. It is

x t() 0=

FIGURE 18. Variant of figure 12 that has an input, which is provided by the Clock actor.

ω0 ω0
2y t()

y·· t()

y·· t() ω0x t() ω0
2y t()–=

δ

δ t() 0 t 0≠∀,=

δ t() td
∞–

∞

∫ 1=

t 0=

1.0 105×
1.0 10 5–×
18 HyVisual

worth noting that even with this small value for minStepSize, the solver does not actually use step sizes
anywhere near this very often. You can examine which points in the output plot are actually computed
by the solver by turning on stems in the output plot.

2.2.7 Using Higher-Order Dynamics Blocks
Recall from (4) that a transfer function given by the Laplace transform

(12)

describes the system shown in figure 18. In fact, we could have constructed the system more easily by
using the ContinuousTransferFunction actor in the dynamics library, as shown in figure 21. That actor
has as parameters two arrays, numerator and denominator, which are set to {w} and {1.0, 0.0, w^2},
respectively. A portion of the documentation for that actor is shown in figure 22 (you can obtain this
documentation by right clicking on the actor icon and selecting Get Documentation). As indicated on
that page, the numerator and denominator parameters give the coefficients of the numerator and
denominator polynomials in (12).

Recall that to run this model, you will need to set the minStepSize parameter of the solver to
or smaller.

An interesting curiosity about this actor is how it works. It works by creating a hierarchical model
similar to the one that we built by hand. If, after running the model at least once, you right click on the
ContinuousTransferFunction icon and select Look Inside (or type Control-L over the icon), you will
see an inside model that looks like that shown in figure 23. This model is hard to interpret, since all the

FIGURE 19. Parameters of the Clock actor that get it to output an approximate impulse.

FIGURE 20. Exception due to running the model with the minStepSize parameter set too high.

H s()
ω0

s2 ω0
2+

-----------------=

10 9–
A Hybrid System Visual Modeler 19

icons are placed one on top of the other at the upper left. You can select Automatic Layout from the
Graph menu to get something a bit easier to read, shown in figure 24. It is still far from perfect, but
with a bit of additional placement effort, you can verify that this model is functionally equivalent to the
one we constructed manually in figure 18.

2.3 Data Types
In the example of figure 7, the ContinuousSinewave actor produces values on its output port. The

values in this case are double. You can examine the data types of ports after executing a model by sim-
ply lingering on the port with the mouse. A tooltip will appear, as shown in figure 25. Most actors in
the actor library are polymorphic, meaning that they can operate on or produce data with multiple
types. The behavior may even be different for different types. Multiplying matrices, for example, is not
the same as multiplying integers, but both are accomplished by the MultiplyDivide actor in the math

FIGURE 21. A model equivalent to that in figure 18, but using the ContinuousTransferFunction actor.

FIGURE 22. A portion of the documentation for the ContinuousTransferFunction actor.

FIGURE 25. Tooltip showing the name and data type of the output port of the ContinuousSinewave of figure 7.
20 HyVisual

library. HyVisual includes a sophisticated type system1 that allows this to be done efficiently and
safely. Actors represent type constraints that relate the types of the their ports and parameters, and the
type system resolves the constraints, unless a conflict arises.

1. Developed by Yuhong Xiong and realized in Ptolemy II.

FIGURE 23. Inside the ContinuousTransferFunction actor of figure 21.

FIGURE 24. The diagram of figure 23, after invoking Automatic Layout from the Graph menu.
A Hybrid System Visual Modeler 21

To explore data types a bit further, try creating the model in Figure 26. The Const and CurrentTime
actors are listed under sources, the AddSubtract actor is listed under math, and the MonitorValue actor
is listed under sinks. Set the value parameter of the constant to be 1. Running the model for 10.0 time
units should result in 9.0 being displayed in MonitorValue, as shown in the figure. The output of the
CurrentTime actor is a double, the output of the Const actor is an int, and the AddSubtract actor adds
these two to get a double.

Now for the real test: change the value of the Const actor to a string, such as "a" (with the quota-
tion marks). In fact, the Const actor can have as its value anything that can be given using the expres-
sion language, explained below in section 5. When you execute the model, you should see an
exception window, as shown in Figure 27. Do not worry; exceptions are a normal part of constructing
(and debugging) models. In this case, the exception window is telling you that you have tried to sub-
tract a string value from an double value, which doesn’t make much sense at all (following Java, add-
ing strings is allowed). This is an example of a type error.

We can make a small change to the model to get something that does not trigger an exception. Dis-
connect the Const from the lower port of the AddSubtract actor and connect it instead to the upper port,
as shown in Figure 28. You can do this by selecting the connection and deleting it (using the delete
key), then adding a new connection, or by selecting it and dragging one of its endpoints to the new
location. Notice that the upper port is an unfilled triangle; this indicates that it is a multiport, meaning
that you can make more than one connection to it. Now when you run the model you should see strings

FIGURE 26. Another example, used to explore data types in HyVisual.

FIGURE 27. An example that triggers an exception when you attempt to execute it. Strings cannot be subtracted
from doubles.
22 HyVisual

like “10.0a”, as shown in the figure. This is the result of converting the double from CurrentTime to a
string “10.0,” and then adding the strings together (which, following Java, means concatenating them).

As a rough guideline, HyVisual will perform automatic type conversions when there is no loss of
information. An integer can be converted to a string, but not vice versa. An integer can be converted to
a double, but not vice versa. An integer can be converted to a long, but not vice versa.

2.4 Hierarchy
HyVisual supports (and encourages) hierarchical models. These are models that contain compo-

nents that are themselves models. Such components are called composite actors. Suppose we wish to
take the sine wave generated by the previous examples and send it through a model of a noisy channel.
We will create a composite actor modeling the channel, and then use that actor in a model.

2.4.1 Creating a Composite Actor
First open a new graph editor and drag in a Composite Actor from the utilities library. This actor is

going to add noise to our measurements. First, using the context menu (obtained by right clicking over
the composite actor), select “Customize Name”, and give the composite a better name, like “Channel”,
as shown in Figure 29. Then, using the context menu again, select “Look Inside” on the actor. You
should get a blank graph editor, as shown in Figure 30. The original graph editor is still open. To see it,
move the new graph editor window by dragging the title bar of the window. Notice that the new win-
dow has no solver. It will be executed by the solver belonging to the parent model.

FIGURE 28. Addition of a string to an integer.

FIGURE 29. Changing the name of an actor.
A Hybrid System Visual Modeler 23

2.4.2 Adding Ports to a Composite Actor
First we have to add some ports to the composite actor. There are several ways to do this, but click-

ing on the port buttons in the toolbar is probably the easiest. You can explore the ports in the toolbar by
lingering with the mouse over each button in the toolbar. A tool tip pops up that explains the button.
The buttons are summarized in Figure 31. Create an input port and an output port and rename them
input and output right by clicking on the ports and selecting “Customize Name”. Note that, as shown in
Figure 32, you can also right click on the background of the composite actor and select Configure
Ports to change whether a port is an input, an output, or a multiport. The resulting dialog also allows
you to set the type of the port, although much of the time you will not need to do this, since the type
inference mechanism in Ptolemy II will figure it out from the connections.

Then using these ports, create the diagram shown in Figure 331. The Gaussian actor creates values
from a Gaussian distributed random variable, and is found in the random library. Now if you close this
editor and return to the previous one, you should be able to easily create the model shown in figure 34,

1. Hint: to create a connection starting on one of the external ports, hold down the control key
when dragging.

FIGURE 30. Looking inside a composite actor.

FIGURE 31. Summary of toolbar buttons for creating new ports.

New input port
New output port
New input/output port
New input multiport
New output multiport
New input/output multiport
24 HyVisual

similar to the model in figure 7, but with a channel. Notice that both our new Channel actor and the
ContinuousSinewave actor have a red outline. The ContinuousSinewave actor is also a composite actor
(try looking inside). If you execute this model, you should see something like the plot shown in figure
34.

2.4.3 Setting the Types of Ports
In the above example, we never needed to define the types of any ports. The types were inferred

from the connections. Indeed, this is usually the case in Ptolemy II, but occasionally, you will need to
set the types of the ports. Notice in Figure 32 that there is a position in the dialog box that configures
ports for specifying the type. Thus, to specify that a port has type boolean, you could enter boolean
into the dialog box. There are other commonly used types: complex, double, fixedpoint, general, int,
long, matrix, object, scalar, string, and unknown. To set the type to a double matrix, say:

[double]

FIGURE 32. Right clicking on the background brings up a dialog that can be used to configure ports.

FIGURE 33. A simple channel model defined as a composite actor.

FIGURE 34. A model producing a noisy sine wave.
A Hybrid System Visual Modeler 25

This expression actually creates a 1 by 1 matrix containing a double (the value of which is irrelevant).
It thus serves as a prototype to specify a double matrix type. Similarly, we can specify an array of com-
plex numbers as

{complex}

In the Ptolemy II expression language, square braces are used for matrices, and curly braces are used
for arrays. To specify a record containing a string named “name” and an integer named “address,” say:

{name=string, address=int}

2.5 Discrete Signals and Mixed-Signal Models
Continuous-time signals can be combined with discrete-event signals in the same model. A dis-

crete signal in HyVisual is one that consists of events that are placed on the time line and have a value.
If a discrete signal is examined at a time where there is no event, then the signal will have no value. For
some actors, this is an error. Continuous actors cannot read discrete signals. Most actors can handle
either signal, however, so usually it does not require much effort to mix the two types of signals. For
example, most of the math actors are equally content working on continuous signals as discrete sig-
nals.

Discrete signals are generated by the actors in the to discrete library. These include an actor to sim-
ply periodically generate discrete events, level-crossing detectors, samplers (like that shown in figure
11), and a threshold monitor. Discrete signals are converted to continuous signals by the actors in the to
continuous library. These include a zero-order hold and a first-order hold.

Usually, HyVisual will infer automatically whether a signal is discrete or continuous, but occasion-
ally, you will need to help it. Whether a signal is DISCRETE or CONTINUOUS is referred to as its sig-
nal type (do not confuse this with the data type of the signal, which indicates, for example, whether it’s
a double or an int).

Some actors declare the signal types of their ports. For example, an Integrator has a CONTINU-
OUS input and a CONTINUOUS output; a PeriodicSampler has a CONTINUOUS input and a DIS-
CRETE output; a TriggeredSampler has one CONTINUOUS input (the input), one DISCRETE input
(the trigger), and a DISCRETE output; and a ZeroOrderHold has a DISCRETE input and a CONTIN-
UOUS output.

Certain other actors declare that they operate only on sequences of data tokens (they declare this
by implementing the SequenceActor interface). Their inputs and outputs are treated as DISCRETE.
Unless otherwise specified, the types of the input ports and output ports of an actor are the same.

Sometimes, conflicts arise, and you will need to force a port to be either discrete or continuous. To
do this, add a parameter named “signalType” to the port. The signal type system will recognize this
parameter (by name) and resolve other types accordingly. To add this parameter, right click on the port,
select Configure, then click on Add. Give the parameter as a value either the string "CONTINUOUS"
or "DISCRETE", including the quotation marks.

Signal types can become an issue particularly at the boundaries of state or transition refinements,
which occur in Hybrid systems, as explained below.
26 HyVisual

2.6 Navigating Larger Models
Sometimes, a model gets large enough that it is not convenient to view it all at once. There are four

toolbar buttons, shown in Figure 2.27 that help. These buttons permit zooming in and out. The “Zoom
reset” button restores the zoom factor to the “normal” one, and the “Zoom fit” calculates the zoom fac-
tor so that the entire model is visible in the editor window.

In addition, it is possible to pan over a model. Consider the window shown in figure 36. Here, we
have zoomed in on the Lorenz attractor model of figure 2 so that icons are larger than the default. The
pan window at the lower left shows the entire model, with a red box showing the visible portion of the
model. By clicking and dragging in the pan window, it is easy to navigate around the entire model.
Clicking on the “Zoom fit” button in the toolbar results in the editor area showing the entire model,
just as the pan window does.

FIGURE 35. Summary of toolbar buttons for zooming and fitting.

Zoom in
Zoom reset
Zoom fit
Zoom out
Full screen

FIGURE 36. The pan window at the lower left has a red box representing the visible are of the model in the main
editor window. This red box can be moved around to view different parts of the model.
A Hybrid System Visual Modeler 27

3. Hybrid Systems
Hybrid systems are models that combine continuous dynamics with discrete mode changes. They

are created in HyVisual by creating a modal model, found in the higherOrderActors under the actors
library. We start by examining a pre-built modal model, and conclude by illustrating how to construct
one.

3.1 Examining a Pre-Built Model
The third example in figure 1 is a simple hybrid system model of a bouncing ball. The top-level

contents of this model is shown in figure 37. It contains only two actors, a Ball Model and a TimedPlot-
ter. The Ball Model is an instance of the modal model found in the higherOrderActors under the actors
library, but renamed. If you execute the model, you should see a plot like that in the figure. The contin-
uous dynamics correspond to the times when the ball is in the air, and the discrete events correspond to
the times when the ball hits the surface and bounces.

If you look inside the Ball Model, you will see something like figure 38. Figure 38 shows a state-
machine editor, which has a slightly different toolbar and a significantly different library at the left.
The circles in figure 38 are states, and the arcs between circles are transitions between states. A modal
model is one that has modes, which represent regimes of operation. Each mode in a modal model is
represented by a state in a finite-state machine.

The state machine in figure 38 has three states, named init, free, and stop. The init state is the ini-
tial state, which is set as shown in figure 39. The free state represents the mode of operation where the
ball is in free fall, and the stop state represents the mode where the ball has stopped bouncing.

At any time during the execution of the model, the modal model is in one of these three states.
When the model begins executing, it is in the init state. During the time a modal model is in a state, the
behavior of the modal model is specified by the refinement of the state. The refinement can be exam-
ined by looking inside the state. As shown in figure 40, the init state has no refinement.

Consider the transition from init to free. It is labeled as follows:

FIGURE 37. Top level of the bouncing
ball example.
28 HyVisual

true
free.initialPosition = initialPosition; free.initialVelocity = 0.0

The first line is a guard, which is predicate that determines when the transition is enabled. In this case,
the transition is always enabled, since the predicate has value true. Thus, the first thing this model will
do is take this transition and change modes to free. The second line specifies a sequence of actions,
which in this case set parameters of the destination mode free.

FIGURE 38. Inside the Ball Model of figure 37.

FIGURE 39. The initial state of a state machine is set by right clicking on the background and specifying the state
A Hybrid System Visual Modeler 29

If you look inside the free state, you will see the refinement shown in figure 41. This model repre-
sents the laws of gravity, which state that an object of any mass will have an acceleration of roughly

 meters/second2 (roughly). The acceleration is integrated to get the velocity. which is, in turn, inte-
grated to get the vertical position.

In figure 41, a ZeroCrossingDetector actor is used to detect when the vertical position of the ball is
zero. This results in production of an event on the (discrete) output bump. Examining figure 38, you
can see that this event triggers a state transition back to the same free state, but where the initialVeloc-
ity parameter is changed to reverse the sign and attenuate it by the elasticity. This results in the ball
bouncing, and losing energy, as shown by the plot in figure 37.

As you can see from figure 38, when the position and velocity of the ball drop below a specified
threshold, the state machine transitions to the state stop, which has no refinement. This results in the
model producing no further output.

3.2 Numerical Precision and Zeno Conditions
The bouncing ball model of figures 37 and 38 illustrates an interesting property of hybrid system

modeling. The stop state, it turns out, is essential. Without it, the time between bounces keeps decreas-
ing, as does the magnitude of each bounce. At some point, these numbers get smaller than the repre-
sentable precision, and large errors start to occur. If you remove the stop state from the FSM, and re-
run the model, you get the result shown in figure 42. The ball, in effect, falls through the surface on
which it is bouncing and then goes into a free-fall in the space below.

The error that occurs here illustrates some fundamental pitfalls with hybrid system modeling. The
event detected by the ZeroCrossingDetector actor can be missed by the simulator. This actor works
with the solver to attempt to identify the precise point in time when the event occurs. It ensures that the
simulation includes a sample time at that time. However, when the numbers get small enough, numeri-
cal errors take over, and the event is missed.

FIGURE 40. A state may or may not have a refinement, which specified the behavior of the model while the model i
in that state. In this case, init has no refinement.

FIGURE 41. The refinement of the free state, shown here, is a continuous-model representing the laws of gravity.

10–
30 HyVisual

A related phenomenon is called the Zeno phenomenon. In the case of the bouncing ball, the time
between bounces gets smaller as the simulation progresses. Since the simulator is attempting to capture
every bounce event with a time step, we could encounter the problem where the number of time steps
becomes infinite over a finite time interval. This makes it impossible for time to advance. In fact, in
theory, the bouncing ball example exhibits this Zeno phenomenon. However, numerical precision
errors take over, since the simulator cannot possibly keep decreasing the magnitude of the time incre-
ments.

The lesson is that some caution needs to be exercised when relying on the results of a simulation of
a hybrid system. Use your judgement.

3.3 Constructing Modal Models
A modal model is a component in a larger continuous-time model. You can create a modal model

by dragging one in from the higherOrderActors under the actors library. By default, it has no ports. To
make it useful, you will need to add ports. The mechanism for doing that is identical to adding ports to
a composite model, and is explained in section 2.4. Figure 37 shows a top-level continuous-time model
with a single modal model that has been renamed Ball Model. Three output ports have been added to
that modal model, but only the top one is used. It gives the vertical distance of the ball from the surface
on which it bounces.

If you create a new modal model by dragging it in from the higherOrderActors under the actors
library, create an output port and name it output, and then look inside, you will get an FSM editor like
that shown in figure 43. Note that the output port is (regrettably) located at the upper left, and is only
partially visible. The annotation text suggests delete once you no longer need it. You may want to
move the port to a more reasonable location (where it is visible).

The output port that you created is in fact indicated in the state machine as being both an output
and input port. The reason for this is that guards in the state machine can refer to output values that are
produced on this port by refinements. In addition, the output actions of a transition can assign an out-
put value to this port. Hence, the port is, in fact, both an output and input for the state machine.

To create a finite-state machine like that in figure 38, drag in states (white circles), or click on the
state icon in the toolbar. You can rename these states by right clicking on them and selecting “Custom-
ize Name”. Choose names that are pertinent to your application. In figure 38, there is an init state for
initialization, a free state for when the ball is in the air, and a stop state for when the ball is no longer
bouncing. You must specify the initial state of the FSM by right clicking on the background of the

FIGURE 42. Result of running the bouncing ball model without the stop state.
A Hybrid System Visual Modeler 31

FSM Editor, selecting “Edit Parameters”, and specifying an initial state name, as shown in figure 39. In
that figure, the initial state is named init.

3.3.1 Creating Transitions
To create transitions, you must hold the control button on the keyboard while clicking and drag-

ging from one state to the next (a transition can also go back to the same state). The handles on the
transition can be used to customize its curvature and orientation. Double clicking on the transition (or
right clicking and selecting “Configure”) allows you to configure the transition. The dialog for the
transition from init to free is shown in Figure 44. In that dialog, we see the following:
• The guard expression is true, so this transition is always enabled. The transition will be taken as

soon as the model begins executing. A guard expression can be any boolean-valued expression
that depends on the inputs, parameters, or even the outputs of any refinement of the current state
(see below). Thus, this transition is used to initialize the model.

FIGURE 43. Inside of a new modal model that has had a single output port added.

output port

FIGURE 44. Transition dialog for the transition from init to free in Figure 37.
32 HyVisual

• The output actions are empty, meaning that when this transition is taken, no output is specified.
This parameter can have a list of assignments of values to output ports, separated by semicolons.
Those values will be assigned to output ports when the transition is taken.

• The set actions field contains the following statements:

free.initialPosition = initialPosition; free.initialVelocity = 0.0

The “free” in these expressions refers to the mode refinement in the free state. Thus, free.initialPo-
sition is a parameter of that mode refinement. Here, its value is assigned to the value of the param-
eter initialPosition. The parameter free.initialVelocity is set to zero.

• The reset parameter is set to true, meaning that the destination mode refinement will be initialized
when the transition is taken.

• The preemptive parameter is set to false. In this case, it makes no difference, since the init state has
no refinement. Normally, if a transition out of a state is enabled and preemptive is true, then the
transition will be taken without first executing the refinement. Thus, the refinement will not affect
the outputs of the modal model.

A state may have several outgoing transitions. However, it is up to the model builder to ensure that at
no time does more than one guard on these transitions evaluate to true. In other words, HyVisual does
not allow nondeterministic state machines, and will throw an exception if it encounters one.

3.3.2 Creating Refinements
Both states and transitions can have refinements. To create a refinement, right click on the state or

transition, and select “Add Refinement.” You will see a dialog like that in figure 45. As shown in the
figure, you will be offered the alternatives of a “Continuous Time Refinement” or a “State Machine
Refinement.” The first of these provides a continuous-time model as the refinement. The second pro-
vides another finite state machine as the refinement. In the former case (the default), an almost blank
refinement model with a refinement solver will open, as shown in the figure. As before, the output port
will appear in an inconvenient location. You will almost certainly want to move it to a more convenient
location.

FIGURE 45. Adding a refinement to a state.

output port
A Hybrid System Visual Modeler 33

You can also create refinements for transitions, but these have somewhat different behavior. They
will execute exactly once when the transition is taken. For this reason, they offer an entirely different
“solver” by default. In fact, transition refinements by default contain a solver that will execute accord-
ing to dataflow semantics. This mechanism is typically used to perform arithmetic computations that
are too elaborate to be conveniently specified as an action on the transition.

Once you have created a refinement, you can look inside a state or transition. For the bouncing ball
example, the refinement of the free state is shown in figure 41. This model exhibits certain key proper-
ties of refinements:
• Refinements must contain solvers, unlike composite actors. In this case, the solver is named

“Refinement Solver” and is an instance of the CTEmbeddedDirector class.
• The refinement has the same ports as the modal model, and can read input value and specify output

values. When the state machine is in the state of which this is the refinement, this model will be
executed to read the inputs and produce the outputs.

3.4 Execution Semantics
The behavior of a refinement is simple. When the modal model is executed, the following

sequence of events occurs:
• For any transitions out of the current state for which preemptive is true, the guard is evaluated. If

exactly one such guard evaluates to true, then that transition is chosen. The output actions of the
transition are executed, and the refinements of the transition (if any) are executed, followed by the
set actions.

• If no preemptive transition evaluated to true, then the refinement of the current state, if there is
one, is evaluated at the current time step.

• Once the refinement has been evaluated (and it has possibly updated its output values), the guard
expressions on all the outgoing transitions of the current state are evaluated. If none is true, the
execution is complete. If one is true, then that transition is taken. If more than one is true, then an
exception is thrown (the state machine is nondeterministic). What it means for the transition to be
“taken” is that its output actions are executed, its refinements (if any) are executed, and its set
actions are executed.

• If reset is true on a transition that is taken, then the refinement of the destination mode (if there is
one) is initialized.

There is a subtle distinction between the output actions and the set actions. The intent of these two
fields on the transition is that output actions are used to define the values of output ports, while set
actions are used to define state variables in the refinements of the destination modes. The reason that
these two actions are separated is that while solving a continuous-time system of equations, the solver
may speculatively execute models at certain time steps before it is sure what the next time step will be.
The output actions make no permanent changes to the state of the system, and hence can be executed
during this speculative phase. The set actions, however, make permanent changes to the state variables
of the destination refinements, and hence are not executed during the speculative phase.
34 HyVisual

4. Using the Plotter
Several of the plots shown above have flaws that can be fixed using the features of the plotter. For

instance, the plot shown in figure 16 has the default (uninformative) title, the axes are not labeled, and
there is no legend.

The TimedPlotter actor has some pertinent parameters, shown in figure 46. The fillOnWrapup
parameter specifies whether the plot should fill the available screen area when the model completes
execution. The default value is true, and for finite executions, this is often the most useful value. The
legend parameter can be used to identify signals. It is a comma-separated listed of names that will be
attached to signals. With the values shown in figure 46, the resulting plot looks like figure 47. The
startingDataset parameter is used when two actors share the same plot, and is beyond the scope of this
discussion.

The plot in figure 47 is better, but it is still missing useful information. To control more precisely
the visual appearance of the plot, click on the second button from the right in the row of buttons at the
top right of the plot. This button brings up a format control window. It is shown in figure 48, filled in
with values that result in the plot shown in figure 49. Most of these are self-explanatory, but the fol-
lowing pointers may be useful:
• The grid is turned off to reduce clutter.
• Titles and axis labels have been added.
• The X range and Y range are determined by the fill button at the upper right of the plot.
• Stem plots can be had by clicking on “Stems.”

FIGURE 46. Parameters of the TimedPlotter actor.

FIGURE 47. A plot with a legend.
A Hybrid System Visual Modeler 35

• Individual sample points can be shown by clicking on “dots.”
• Connecting lines can be eliminated by deselecting “connect.”
• The Y axis label has been changed to text rather than numbers. This is done by entering the follow-

ing in the Y Ticks field:

“minus one” -1.0, zero 0.0, one 1.0

The syntax in general is:

label value, label value, ...
where the label is any string (enclosed in quotation marks if it includes spaces), and the value is a num-
ber.

5. Expressions
In HyVisual, models specify computations by composing actors. Many computations, however,

are awkward to specify this way. A common situation is where we wish to evaluate a simple algebraic
expression, such as “sin(2π (x-1)).” It is possible to express this computation by composing actors in a

FIGURE 48. Format control window for a plot.

FIGURE 49. Still better labeled plot.
36 HyVisual

block diagram, but it is far more convenient to give it textually.
The expression language provides infrastructure for specifying algebraic expressions textually and

for evaluating them. The expression language is used to specify the values of parameters, guards and
actions in state machines, and for the calculation performed by the Expression actor. In fact, the
expression language is part of the generic infrastructure in Ptolemy II, upon which HyVisual is built.

5.1 Expression Evaluator
Vergil provides an interactive expression evaluator, which is accessed through the File:New menu.

This operates like an interactive command shell, and is shown in figure 50. It supports a command his-
tory. To access the previously entered expression, type the up arrow or Control-P. To go back, type the
down arrow or Control-N. The expression evaluator is useful for experimenting with expressions.

5.2 Simple Arithmetic Expressions
5.2.1 Constants and Literals

The simplest expression is a constant, which can be given either by the symbolic name of the con-
stant, or by a literal. By default, the symbolic names of constants supported are PI, pi, E, e, true, false,
i, j, NaN, Infinity, PositiveInfinity, NegativeInfinity, MaxUnsignedByte, MinUnsignedByte, MaxInt,
MinInt, MaxLong, MinLong, MaxDouble, MinDouble. For example,

PI/2.0

is a valid expression that refers to the symbolic name “PI” and the literal “2.0.” The constants i and j
are the imaginary number with value equal to the square root of −1. The constant NaN is “not a num-
ber,” which for example is the result of dividing 0.0/0.0. The constant Infinity is the result of dividing
1.0/0.0. The constants that start with “Max” and “Min” are the maximum and minimum values for
their corresponding types.

FIGURE 50. Expression evaluator, which is accessed through the File:New menu.
A Hybrid System Visual Modeler 37

Numerical values without decimal points, such as “10” or “−3” are integers (type int). Numerical
values with decimal points, such as “10.0” or “3.14159” are of type double. Numerical values without
decimal points followed by the character “l” (el) or “L” are of type long. Unsigned integers followed
by “ub” or “UB” are of type unsignedByte, as in “5ub”. An unsignedByte has a value between 0 and
255; note that it not quite the same as the Java byte, which has a value between -128 and 127.

Numbers of type int, long, or unsignedByte can be specified in decimal, octal, or hexadecimal.
Numbers beginning with a leading “0” are octal numbers. Numbers beginning with a leading “0x” are
hexadecimal numbers. For example, “012” and “0xA” are both equal to the integer 10.

A complex is defined by appending an “i” or a “j” to a double for the imaginary part. This gives a
purely imaginary complex number which can then leverage the polymorphic operations in the Token
classes to create a general complex number. Thus “2 + 3i” will result in the expected complex num-
ber. You can optionally write this “2 + 3*i”.

Literal string constants are also supported. Anything between double quotes, “...”, is interpreted as
a string constant. The following built-in string-valued constants are defined:

The value of these variables is the value of the Java virtual machine property, such as user.home. The
properties user.dir and user.home are standard in Java. Their values are platform dependent; see the
documentation for the java.lang.System.getProperties() method for details. Note that user.dir and
user.home are usually not readable in unsigned applets, in which case, attempts to use these variables
in an expression will result in an exception. Vergil will display all the Java properties if you invoke
JVM Properties in the View menu of a Graph Editor.

The ptolemy.ptII.dir property is set automatically when HyVisual is started up. The constants()
utility function returns a record with all the globally defined constants. If you open the expression eval-
uator and invoke this function, you will see that its value is something like:

{CWD="C:\ptII\ptolemy\data\expr", E=2.718281828459, HOME="C:\Documents
and Settings\eal", Infinity=Infinity, MaxDouble=1.7976931348623E308,
MaxInt=2147483647, MaxLong=9223372036854775807L,
MaxUnsignedByte=255ub, MinDouble=4.9E-324, MinInt=-2147483648,
MinLong=-9223372036854775808L, MinUnsignedByte=0ub, NaN=NaN,
NegativeInfinity=-Infinity, PI=3.1415926535898, PTII="c:\ptII",
PositiveInfinity=Infinity, boolean=false, complex=0.0 + 0.0i,
double=0.0, e=2.718281828459, false=false, fixedpoint=fix(0.0,2,1),

TABLE 1: String-valued constants defined in the expression language.

Variable name Meaning Property name Example under Windows

PTII The directory in which HyVisual is installed ptolemy.ptII.dir c:\tmp

HOME The user home directory user.home c:\Documents and Settings\you

CWD The current working directory user.dir c:\ptII
38 HyVisual

general=present, i=0.0 + 1.0i, int=0, j=0.0 + 1.0i, long=0L, matrix=[],
object=object(null), pi=3.1415926535898, scalar=present, string="",
true=true, unknown=present, unsignedByte=0ub}

5.2.2 Variables
Expressions can contain identifiers that are references to variables within the scope of the expres-

sion. For example,

PI*x/2.0

is valid if “x” is a variable in scope. In the expression evaluator, the variables that are in scope include
the built-in constants plus any assignments that have been previously made. For example,

>> x = pi/2
1.5707963267949
>> sin(x)
1.0
>>

In the context of HyVisual models, the variables in scope include all parameters defined at the same
level of the hierarchy or higher. So for example, if an actor has a parameter named “x” with value 1.0,
then another parameter of the same actor can have an expression with value “PI*x/2.0”, which will
evaluate to π /2.

Consider a parameter P in actor X which is in turn contained by composite actor Y. The scope of an
expression for P includes all the parameters contained by X and Y, plus those of the container of Y, its
container, etc. That is, the scope includes any parameters defined above in the hierarchy.

You can add parameters to actors (composite or not) by right clicking on the actor, selecting “Con-
figure” and then clicking on “Add”, or by dragging in a parameter from the utilities library. Thus, you
can add variables to any scope, a capability that serves the same role as the “let” construct in many
functional programming languages.

5.2.3 Operators
The arithmetic operators are +, −, *, /, ^, and %. Most of these operators operate on most data

types, including arrays, records, and matrices. The ^ operator computes “to the power of” or exponen-
tiation where the exponent can only be an int or an unsignedByte.

The unsignedByte, int and long types can only represent integer numbers. Operations on these
types are integer operations, which can sometimes lead to unexpected results. For instance, 1/2 yields 0
if 1 and 2 are integers, whereas 1.0/2.0 yields 0.5. The exponentiation operator ‘^’ when used with
negative exponents can similarly yield unexpected results. For example, 2^−1 is 0 because the result is
computed as 1/(2^1).
A Hybrid System Visual Modeler 39

The % operation is a modulo or remainder operation. The result is the remainder after division.
The sign of the result is the same as that of the dividend (the left argument). For example,

>> 3.0 % 2.0
1.0
>> -3.0 % 2.0
-1.0
>> -3.0 % -2.0
-1.0
>> 3.0 % -2.0
1.0

The magnitude of the result is always less than the magnitude of the divisor (the right argument). Note
that when this operator is used on doubles, the result is not the same as that produced by the remain-
der() function (see Table 4 on page 73). For instance,

>> remainder(-3.0, 2.0)
1.0

The remainder() function calculates the IEEE 754 standard remainder operation. It uses a rounding
division rather than a truncating division, and hence the sign can be positive or negative, depending on
complicated rules (see page 55). For example, counterintuitively,

>> remainder(3.0, 2.0)
-1.0

When an operator involves two distinct types, the expression language has to make a decision
about which type to use to implement the operation. If one of the two types can be converted without
loss into the other, then it will be. For instance, int can be converted losslessly to double, so 1.0/2 will
result in 2 being first converted to 2.0, so the result will be 0.5. Among the scalar types, unsignedByte
can be converted to anything else, int can be converted to double, and double can be converted to com-
plex. Note that long cannot be converted to double without loss, nor vice versa, so an expression like
2.0/2L yields the following error message:

Error evaluating expression "2.0/2L"
 in .Expression.evaluator
Because:
divide method not supported between ptolemy.data.DoubleToken '2.0' and
ptolemy.data.LongToken '2L' because the types are incomparable.

All scalar types have limited precision and magnitude. As a result of this, arithmetic operations are
subject to underflow and overflow.
• For double numbers, overflow results in the corresponding positive or negative infinity. Underflow

(i.e. the precision does not suffice to represent the result) will yield zero.
• For integer types and fixedpoint, overflow results in wraparound. For instance, while the value of

MaxInt is 2147483647, the expression MaxInt + 1 yields −2147483648. Similarly, while Max-
UnsignedByte has value 255ub, MaxUnsignedByte + 1ub has value 0ub. Note, however, that
40 HyVisual

MaxUnsignedByte + 1 yields 256, which is an int, not an unsignedByte. This is because Max-
UnsignedByte can be losslessly converted to an int, so the addition is int addition, not unsigned-
Byte addition.

The bitwise operators are &, |, #, and ~. They operate on boolean, unsignedByte, int and long (but not
fixedpoint, double or complex). The operator & is bitwise AND, ~ is bitwise NOT, and | is bitwise OR,
and # is bitwise XOR (exclusive or, after MATLAB).

The relational operators are <, <=, >, >=, == and !=. They return type boolean. Note that these
relational operators check the values when possible, irrespective of type. So, for example,

1 == 1.0

returns true. If you wish to check for equality of both type and value, use the equals() method, as in

>> 1.equals(1.0)
false

Boolean-valued expressions can be used to give conditional values. The syntax for this is

boolean ? value1 : value2

If the boolean is true, the value of the expression is value1; otherwise, it is value2.
The logical boolean operators are &&, ||, !, & and |. They operate on type boolean and return type

boolean. The difference between logical && and logical & is that & evaluates all the operands regardless
of whether their value is now irrelevant. Similarly for logical || and |. This approach is borrowed
from Java. Thus, for example, the expression “false && x” will evaluate to false irrespective of
whether x is defined. On the other hand, “false & x” will throw an exception.

The << and >> operators performs arithmetic left and right shifts respectively. The >>> operator
performs a logical right shift, which does not preserve the sign. They operate on unsignedByte, int, and
long.

5.2.4 Comments
In expressions, anything inside /*...*/ is ignored, so you can insert comments.

5.3 Uses of Expressions
5.3.1 Parameters

The values of most parameters of actors can be given as expressions1. The variables in the expres-
sion refer to other parameters that are in scope, which are those contained by the same container or
some container above in the hierarchy. They can also reference variables in a scope-extending
attribute, which includes variables defining units. Adding parameters to actors is straightforward, as
explained in the previous chapter.

1. The exceptions are parameters that are strictly string parameters, in which case the value of
the parameter is the literal string, not the string interpreted as an expression, as for example
the function parameter of the TrigFunction actor, which can take on only “sin,” “cos,”
“tan”, “asin”, “acos”, and “atan” as values.
A Hybrid System Visual Modeler 41

5.3.2 String Parameters
Some parameters have values that are always strings of characters. Such parameters support a sim-

ple string substitution mechanism where the value of the string can reference other parameters in scope
by name using the syntax $name, where name is the name of the parameter in scope. For example, the
StringCompare actor in figure 51 has as the value of firstString “The answer is $PI”. This references
the built-in constant PI. The value of secondString is “The answer is 3.1415926535898”. As shown in
the figure, these two strings are deemed to be equal because $PI is replaced with the value of PI.

5.3.3 Port Parameters
It is possible to define a parameter that is also a port. Such a PortParameter provides a default

value, which is specified like the value of any other parameter. When the corresponding port receives
data, however, the default value is overridden with the value provided at the port. Thus, this object
functions like a parameter and a port. The current value of the PortParameter is accessed like that of
any other parameter. Its current value will be either the default or the value most recently received on
the port.

A PortParameter might be contained by an atomic actor or a composite actor. To put one in a com-
posite actor, drag it into a model from the parameters directory under the utilities library, as shown in
figure 52. The resulting icon is actually a combination of two icons, one representing the port, and the
other representing the parameter. These can be moved separately, but doing so might create confusion,
so we recommend selecting both by clicking and dragging over the pair and moving both together.

To be useful, a PortParameter has to be given a name (the default name, “portParameter,” is not
very compelling). To change the name, right click on the icon and select “Customize Name,” as shown
in figure 52. In the figure, the name is set to “noiseLevel.” Then set the default value by either double
clicking or selecting “Configure.” In the figure, the default value is set to 10.0.

An example of a library actor that uses a PortParameter is the ContinuousSinewave actor, which is
found in the sources library in Vergil. It is shown in figure 53. If you double click on this actor, you can
set the default values for frequency and phase. But both of these values can also be set by the corre-
sponding ports, which are shown with grey fill.

FIGURE 51. String parameters are indicated in the parameter editor boxes by a light blue background. A string
parameter can include references to variables in scope with $name, where name is the name of the variable. In this
example, the built-in constant $PI is referenced by name in the first
42 HyVisual

5.3.4 Expression Actor
The Expression actor is a particularly useful actor found in the math library. By default, it has one

output and no inputs, as shown in Figure 54(a). The first step in using it is to add ports, as shown in (b)
and (c), resulting in a new icon as shown in (d). Note: In (c) when you click on Add, you will be
prompted for a Name (pick one) and a Class. Leave the Class entry blank and click OK. You then spec-
ify an expression using the port names, as shown in (e), resulting in the icon shown in (f).

5.3.5 State Machines
Expressions give the guards for state transitions, as well as the values used in actions that produce

outputs and actions that set values of parameters in the refinements of destination states. This mecha-
nism was explained in the previous chapter.

5.4 Composite Data Types
5.4.1 Arrays

Arrays are specified with curly brackets, e.g., “{1, 2, 3}” is an array of int, while “{"x",
"y", "z"}” is an array of string. The types are denoted “{int}” and “{string}” respectively. An
array is an ordered list of tokens of any type, with the only constraint being that the elements all have
the same type. If an array is given with mixed types, the expression evaluator will attempt to losslessly
convert the elements to a common type. Thus, for example,

{1, 2.3}

FIGURE 52. A portParameter is both a port and a parameter. To use it in a composite actor, drag it into the actor,
change its name to something meaningful, and set its default value.

customize the name:
A Hybrid System Visual Modeler 43

has value

{1.0, 2.3}

Its type is {double}. The elements of the array can be given by expressions, as in the example
“{2*pi, 3*pi}.” Arrays can be nested; for example, “{{1, 2}, {3, 4, 5}}” is an array of
arrays of integers. The elements of an array can be accessed as follows:

>> {1.0, 2.3}(1)
2.3

which yields 2.3. Note that indexing begins at 0. Of course, if name is the name of a variable in scope
whose value is an array, then its elements may be accessed similarly, as shown in this example:

FIGURE 53. ContinuousSinewave actor, showing its port parameters, and their usage at the lower level of the hier-
archy.
44 HyVisual

>> x = {1.0, 2.3}
{1.0, 2.3}
>> x(0)
1.0

Arithmetic operations on arrays are carried out element-by-element, as shown by the following exam-
ples:

>> {1, 2}*{2, 2}
{2, 4}
>> {1, 2}+{2, 2}
{3, 4}
>> {1, 2}-{2, 2}
{-1, 0}
>> {1, 2}^2
{1, 4}
>> {1, 2}%{2, 2}
{1, 0}

FIGURE 54. Illustration of the Expression actor.

(a)

(b)

(c)

(d)

(e)
(f)
A Hybrid System Visual Modeler 45

An array can be checked for equality with another array as follows:

>> {1, 2}=={2, 2}
false
>> {1, 2}!={2, 2}
true

For other comparisons of arrays, use the compare() function (see Table 4 on page 73). As with scalars,
testing for equality using the == or != operators tests the values, independent of type. For example,

>> {1, 2}=={1.0, 2.0}
true

5.4.2 Matrices
In HyVisual, arrays are ordered sets of tokens. HyVisual also supports matrices, which are more

specialized than arrays. They contain only certain primitive types, currently boolean, complex, double,
fixedpoint, int, and long. Currently unsignedByte matrices are not supported. Matrices cannot contain
arbitrary tokens, so they cannot, for example, contain matrices. They are intended for data intensive
computations.

Matrices are specified with square brackets, using commas to separate row elements and semico-
lons to separate rows. E.g., “[1, 2, 3; 4, 5, 5+1]” gives a two by three integer matrix (2 rows and 3 col-
umns). Note that an array or matrix element can be given by an expression. A row vector can be given
as “[1, 2, 3]” and a column vector as “[1; 2; 3]”. Some MATLAB-style array constructors are sup-
ported. For example, “[1:2:9]” gives an array of odd numbers from 1 to 9, and is equivalent to “[1, 3, 5,
7, 9].” Similarly, “[1:2:9; 2:2:10]” is equivalent to “[1, 3, 5, 7, 9; 2, 4, 6, 8, 10].” In the syntax
“[p:q:r]”, p is the first element, q is the step between elements, and r is an upper bound on the last ele-
ment. That is, the matrix will not contain an element larger than r. If a matrix with mixed types is spec-
ified, then the elements will be converted to a common type, if possible. Thus, for example, “[1.0, 1]”
is equivalent to “[1.0, 1.0],” but “[1.0, 1L]” is illegal (because there is no common type to which both
elements can be converted losslessly).

Reference to elements of matrices have the form “matrix(n, m)” or “name(n, m)” where name is
the name of a matrix variable in scope, n is the row index, and m is the column index. Index numbers
start with zero, as in Java, not 1, as in MATLAB. For example,

>> [1, 2; 3, 4](0,0)
1
>> a = [1, 2; 3, 4]
[1, 2; 3, 4]
>> a(1,1)
4

Matrix multiplication works as expected. For example, as seen in the expression evaluator (see fig-
ure 50),

>> [1, 2; 3, 4]*[2, 2; 2, 2]
[6, 6; 14, 14]
46 HyVisual

Of course, if the dimensions of the matrix don’t match, then you will get an error message. To do ele-
mentwise multiplication, use the multipyElements() function (see Table 5 on page 75). Matrix addition
and subtraction are elementwise, as expected, but the division operator is not supported. Elementwise
division can be accomplished with the divideElements() function, and multiplication by a matrix
inverse can be accomplished using the inverse() function (see Table 5 on page 75). A matrix can be
raised to an int or unsignedByte power, which is equivalent to multiplying it by itself some number of
times. For instance,

>> [3, 0; 0, 3]^3
[27, 0; 0, 27]

A matrix can also be multiplied or divided by a scalar, as follows:

>> [3, 0; 0, 3]*3
[9, 0; 0, 9]

A matrix can be added to a scalar. It can also be subtracted from a scalar, or have a scalar subtracted
from it. For instance,

>> 1-[3, 0; 0, 3]
[-2, 1; 1, -2]

A matrix can be checked for equality with another matrix as follows:

>> [3, 0; 0, 3]!=[3, 0; 0, 6]
true
>> [3, 0; 0, 3]==[3, 0; 0, 3]
true

For other comparisons of matrices, use the compare() function (see Table 4 on page 73). As with sca-
lars, testing for equality using the == or != operators tests the values, independent of type. For exam-
ple,

>> [1, 2]==[1.0, 2.0]
true

To get type-specific equality tests, use the equals() method, as in the following examples:

>> [1, 2].equals([1.0, 2.0])
false
>> [1.0, 2.0].equals([1.0, 2.0])
true
>>

5.4.3 Records
A record token is a composite type containing named fields, where each field has a value. The

value of each field can have a distinct type. Records are delimited by curly braces, with each field
A Hybrid System Visual Modeler 47

given a name. For example, “{a=1, b="foo"}” is a record with two fields, named “a” and “b”, with
values 1 (an integer) and “foo” (a string), respectively. The value of a field can be an arbitrary expres-
sion, and records can be nested (a field of a record token may be a record token).

Fields may be accessed using the period operator. For example,

{a=1,b=2}.a

yields 1. You can optionally write this as if it were a method call:

{a=1,b=2}.a()

The arithmetic operators +, −, *, /, and % can be applied to records. If the records do not have identical
fields, then the operator is applied only to the fields that match, and the result contains only the fields
that match. Thus, for example,

{foodCost=40, hotelCost=100} + {foodCost=20, taxiCost=20}

yields the result

{foodCost=60}

You can think of an operation as a set intersection, where the operation specifies how to merge the val-
ues of the intersecting fields. You can also form an intersection without applying an operation. In this
case, using the intersect() function, you form a record that has only the common fields of two specified
records, with the values taken from the first record. For example,

>> intersect({a=1, c=2}, {a=3, b=4})
{a=1}

Records can be joined (think of a set union) without any operation being applied by using the
merge() function. This function takes two arguments, both of which are record tokens. If the two
record tokens have common fields, then the field value from the first record is used. For example,

merge({a=1, b=2}, {a=3, c=3})

yields the result {a=1, b=2, c=3}.
Records can be compared, as in the following examples:

>> {a=1, b=2}!={a=1, b=2}
false
>> {a=1, b=2}!={a=1, c=2}
true
48 HyVisual

Note that two records are equal only if they have the same field labels and the values match. As with
scalars, the values match irrespective of type. For example:

>> {a=1, b=2}=={a=1.0, b=2.0+0.0i}
true

The order of the fields is irrelevant. Hence

>> {a=1, b=2}=={b=2, a=1}
true

Moreover, record fields are reported in alphabetical order, irrespective of the order in which they are
defined. For example,

>> {b=2, a=1}
{a=1, b=2}

To get type-specific equality tests, use the equals() method, as in the following examples:

>> {a=1, b=2}.equals({a=1.0, b=2.0+0.0i})
false
>> {a=1, b=2}.equals({b=2, a=1})
true
>>

5.5 Invoking Methods
Every element and subexpression in an expression represents an instance of the Token class in

HyVisual (or more likely, a class derived from Token). The expression language supports invocation of
any method of a given token, as long as the arguments of the method are of type Token and the return
type is Token (or a class derived from Token, or something that the expression parser can easily con-
vert to a token, such as a string, double, int, etc.). The syntax for this is (token).methodName(args),
where methodName is the name of the method and args is a comma-separated set of arguments. Each
argument can itself be an expression. Note that the parentheses around the token are not required, but
might be useful for clarity. As an example, the ArrayToken and RecordToken classes have a length()
method, illustrated by the following examples:

{1, 2, 3}.length()
{a=1, b=2, c=3}.length()

each of which returns the integer 3.
The MatrixToken classes have three particularly useful methods, illustrated in the following exam-

ples:

[1, 2; 3, 4; 5, 6].getRowCount()
A Hybrid System Visual Modeler 49

which returns 3, and

[1, 2; 3, 4; 5, 6].getColumnCount()

which returns 2, and

[1, 2; 3, 4; 5, 6].toArray()

which returns {1, 2, 3, 4, 5, 6}. The latter function can be particularly useful for creating arrays using
MATLAB-style syntax. For example, to obtain an array with the integers from 1 to 100, you can enter:

[1:1:100].toArray()

5.6 Defining Functions
The expression language supports definition of functions. The syntax is:

function(arg1:Type, arg2:Type...)
 function body

where “function” is the keyword for defining a function. The type of an argument can be left unspeci-
fied, in which case the expression language will attempt to infer it. The function body gives an expres-
sion that defines the return value of the function. The return type is always inferred based on the
argument type and the expression. For example:

function(x:double) x*5.0

defines a function that takes a double argument, multiplies it by 5.0, and returns a double. The return
value of the above expression is the function itself. Thus, for example, the expression evaluator yields:

>> function(x:double) x*5.0
(function(x:double) (x*5.0))
>>

To apply the function to an argument, simply do

>> (function(x:double) x*5.0) (10.0)
50.0
>>
50 HyVisual

Alternatively, in the expression evaluator, you can assign the function to a variable, and then use the
variable name to apply the function. For example,

>> f = function(x:double) x*5.0
(function(x:double) (x*5.0))
>> f(10)
50.0
>>

Functions can be passed as arguments to certain “higher-order functions” that have been defined
(see table Table 8 on page 79). For example, the iterate() function takes three arguments, a function, an
integer, and an initial value to which to apply the function. It applies the function first to the initial
value, then to the result of the application, then to that result, collecting the results into an array whose
length is given by the second argument. For example, to get an array whose values are multiples of 3,
try

>> iterate(function(x:int) x+3, 5, 0)
{0, 3, 6, 9, 12}

The function given as an argument simply adds three to its argument. The result is the specified initial
value (0) followed by the result of applying the function once to that initial value, then twice, then
three times, etc.

Another useful higher-order function is the map() function. This one takes a function and an array
as arguments, and simply applies the function to each element of the array to construct a result array.
For example,

>> map(function(x:int) x+3, {0, 2, 3})
{3, 5, 6}

A typical use of functions in a HyVisual model is to define a parameter in a model whose value is
a function. Suppose that the parameter named “f” has value “function(x:double) x*5.0”. Then
within the scope of that parameter, the expression “f(10.0)” will yield result 50.0.

Functions can also be passed along connections in a HyVisual model. Consider the model shown
in figure 55. In that example, the Const actor defines a function that simply squares the argument. Its

FIGURE 55. Example of a function being passed from one actor to another.
A Hybrid System Visual Modeler 51

output, therefore, is a token with type function. That token is fed to the “f” input of the Expression
actor. The expression uses this function by applying it to the token provided on the “y” input. That
token, in turn, is supplied by the Ramp actor, so the result is the curve shown in the plot on the right.

A more elaborate use is shown in figure 56. In that example, the Const actor produces a function,
which is then used by the Expression actor to create new function, which is then used by Expression2
to perform a calculation. The calculation performed here adds the output of the Ramp to the square of
the output of the Ramp.

Functions can be recursive, as illustrated by the following (rather arcane) example:

>> fact = function(x:int,f:(function(x,f) int)) (x<1?1:x*f(x-1,f))
(function(x:int, f:function(a0:general, a1:general) int)
(x<1)?1:(x*f((x-1), f)))
>> factorial = function(x:int) fact(x,fact)
(function(x:int) (function(x:int, f:function(a0:general, a1:general)
int) (x<1)?1:(x*f((x-1), f)))(x, (function(x:int, f:function(a0:gen-
eral, a1:general) int) (x<1)?1:(x*f((x-1), f)))))
>> map(factorial, [1:1:5].toArray())
{1, 2, 6, 24, 120}
>>

The first expression defines a function named “fact” that takes a function as an argument, and if the
argument is greater than or equal to 1, uses that function recursively. The second expression defines a
new function “factorial” using “fact.” The final command applies the factorial function to an array to
compute factorials.

5.7 Built-In Functions
The expression language includes a set of functions, such as sin(), cos(), etc. The functions cur-

rently available are shown in the tables in the appendix, which also show the argument types and return
types.

FIGURE 56. More elaborate example with functions passed between actors.
52 HyVisual

In most cases, a function that operates on scalar arguments can also operate on arrays and matrices.
Thus, for example, you can fill a row vector with a sine wave using an expression like

sin([0.0:PI/100:1.0])

Or you can construct an array as follows,

sin({0.0, 0.1, 0.2, 0.3})

Functions that operate on type double will also generally operate on int or unsignedByte, because these
can be losslessly converted to double, but not generally on long or complex.

Tables of available functions are shown in the appendix. For example, Table 3 on page 72 shows
trigonometric functions. Note that these operate on double or complex, and hence on int and unsigned-
Byte, which can be losslessly converted to double. The result will always be double. For example,

>> cos(0)
1.0

These functions will also operate on matrices and arrays, in addition to the scalar types shown in the
table, as illustrated above. The result will be a matrix or array of the same size as the argument, but
always containing elements of type double

Table 4 on page 73 shows other arithmetic functions beyond the trigonometric functions. As with
the trigonometric functions, those that indicate that they operate on double will also work on int and
unsignedByte, and unless they indicate otherwise, they will return whatever they return when the argu-
ment is double. Those functions in the table that take scalar arguments will also operate on matrices
and arrays. For example, since the table indicates that the max() function can take int, int as arguments,
then by implication, it can also take {int}, {int}. For example,

>> max({1, 2}, {2, 1})
{2, 2}

Notice that the table also indicates that max() can take {int} as an argument. E.g.

>> max({1, 2, 3})
3

In the former case, the function is applied pointwise to the two arguments. In the latter case, the
returned value is the maximum over all the contents of the single argument.

Table 5 shows functions that only work with matrices, arrays, or records (that is, there is no corre-
sponding scalar operation). Recall that most functions that operate on scalars will also operate on
arrays and matricesTable 6 shows utility functions for evaluating expressions given as strings or repre-
senting numbers as strings. Of these, the eval() function is the most flexible (see page 54).

A few of the functions have sufficiently subtle properties that they require further explanation.
That explanation is here.
A Hybrid System Visual Modeler 53

eval() and traceEvaluation()

The built-in function eval() will evaluate a string as an expression in the expression language. For
example,

eval("[1.0, 2.0; 3.0, 4.0]")

will return a matrix of doubles. The following combination can be used to read parameters from a file:

eval(readFile("filename"))

where the filename can be relative to the current working directory (where HyVisual was started, as
reported by the property user.dir), the user’s home directory (as reported by the property user.home), or
the classpath, which includes the directory tree in which HyVisual is installed.

Note that if eval() is used in an Expression actor, then it will be impossible for the type system to
infer any more specific output type than general. If you need the output type to be more specific, then
you will need to cast the result of eval(). For example, to force it to type double:

>> cast(double, eval("pi/2"))
1.5707963267949

The traceEvaluation() function evaluates an expression given as a string, much like eval(), but instead
of reporting the result, reports exactly how the expression was evaluated. This can be used to debug
expressions, particularly when the expression language is extended by users.

random(), gaussian()

The functions random() and gaussian() shown in Table 4 on page 73 return one or more random
numbers. With the minimum number of arguments (zero or two, respectively), they return a single
number. With one additional argument, they return an array of the specified length. With a second
additional argument, they return a matrix with the specified number of rows and columns.

There is a key subtlety when using these functions in HyVisual. In particular, they are evaluated
only when the expression within which they appear is evaluated. The result of the expression may be
used repeatedly without re-evaluating the expression. Thus, for example, if the value parameter of the
Const actor is set to “random()”, then its output will be a random constant, i.e., it will not change on
each firing. The output will change, however, on successive runs of the model. In contrast, if this is
used in an Expression actor, then each firing triggers an evaluation of the expression, and consequently
will result in a new random number.

property()

The property() function accesses system properties by name. Some possibly useful system proper-
ties are:
• ptolemy.ptII.dir: The directory in which HyVisual is installed.
• ptolemy.ptII.dirAsURL: The directory in which HyVisual is installed, but represented as a URL.
• user.dir: The current working directory, which is usually the directory in which the current execut-

able was started.
54 HyVisual

remainder()

This function computes the remainder operation on two arguments as prescribed by the IEEE 754
standard, which is not the same as the modulo operation computed by the % operator. The result of
remainder(x, y) is , where is the integer closest to the exact value of . If two integers
are equally close, then is the integer that is even. This yields results that may be surprising, as indi-
cated by the following examples:

>> remainder(1,2)
1.0
>> remainder(3,2)
-1.0

Compare this to

>> 3%2
1

which is different in two ways. The result numerically different and is of type int, whereas remain-
der() always yields a result of type double. The remainder() function is implemented by the
java.lang.Math class, which calls it IEEEremainder(). The documentation for that class gives the
following special cases:
• If either argument is NaN, or the first argument is infinite, or the second argument is positive zero

or negative zero, then the result is NaN.
• If the first argument is finite and the second argument is infinite, then the result is the same as the

first argument.

DCT() and IDCT()

The DCT function can take one, two, or three arguments. In all three cases, the first argument is an
array of length and the DCT returns an

(13)

for from 0 to , where is the size of the specified array and is the size of the DCT. If only
one argument is given, then is set to equal the next power of two larger than . If a second argu-

x yn– n x/y
n

N 0>

Xk sk xn 2n 1+()k π
2D

 cos
n 0=

N 1–

∑=

k D 1– N D
D N
A Hybrid System Visual Modeler 55

ment is given, then its value is the order of the DCT, and the size of the DCT is . If a third argu-
ment is given, then it specifies the scaling factors according to the following table:

The default, if a third argument is not given, is “Normalized.”
The IDCT function is similar, and can also take one, two, or three arguments. The formula in this

case is

. (14)

5.8 Fixed Point Numbers
HyVisual includes a preliminary fixed point data type. We represent a fixed point value in the

expression language using the following format:

fix(value, totalBits, integerBits)

Thus, a fixed point value of 5.375 that uses 8 bit precision of which 4 bits are used to represent the
(signed) integer part can be represented as:

fix(5.375, 8, 4)

The value can also be a matrix of doubles. The values are rounded, yielding the nearest value repre-
sentable with the specified precision. If the value to represent is out of range, then it is saturated, mean-
ing that the maximum or minimum fixed point value is returned, depending on the sign of the specified
value. For example,

fix(5.375, 8, 3)

will yield 3.968758, the maximum value possible with the (8/3) precision.
In addition to the fix() function, the expression language offers a quantize() function. The argu-

ments are the same as those of the fix() function, but the return type is a DoubleToken or DoubleMa-

TABLE 2: Normalization options for the DCT function

Name Third argument Normalization

Normalized 0

Unnormalized 1

Orthonormal 2

2order

sk

sk
1/ 2; k = 0
1 otherwise;

=

sk 1=

sk
1/ D; k = 0

2/D otherwise;

=

xn skXk 2n 1+()k π
2D

 cos

k 0=

N 1–

∑=
56 HyVisual

trixToken instead of a FixToken or FixMatrixToken. This function can therefore be used to quantize
double-precision values without ever explicitly working with the fixed-point representation.

To make the FixToken accessible within the expression language, the following functions are
available:
• To create a single FixPoint Token using the expression language:

fix(5.34, 10, 4)

This will create a FixToken. In this case, we try to fit the number 5.34 into a 10 bit representation
with 4 bits used in the integer part. This may lead to quantization errors. By default the round
quantizer is used.

• To create a Matrix with FixPoint values using the expression language:
fix([-.040609, -.001628, .17853], 10, 2)

This will create a FixMatrixToken with 1 row and 3 columns, in which each element is a FixPoint
value with precision(10/2). The resulting FixMatrixToken will try to fit each element of the given
double matrix into a 10 bit representation with 2 bits used for the integer part. By default the round
quantizer is used.

• To create a single DoubleToken, which is the quantized version of the double value given, using
the expression language:
quantize(5.34, 10, 4)

This will create a DoubleToken. The resulting DoubleToken contains the double value obtained by
fitting the number 5.34 into a 10 bit representation with 4 bits used in the integer part. This may
lead to quantization errors. By default the round quantizer is used.

• To create a Matrix with doubles quantized to a particular precision using the expression language:
quantize([-.040609, -.001628, .17853], 10, 2)

This will create a DoubleMatrixToken with 1 row and 3 columns. The elements of the token are
obtained by fitting the given matrix elements into a 10 bit representation with 2 bits used for the
integer part. Instead of being a fixed point value, the values are converted back to their double rep-
resentation and by default the round quantizer is used.
A Hybrid System Visual Modeler 57

Appendix A: Water Tanks Example
In this section, we step through construction of a simple hybrid system model in HyVisual. In the

first model, there are two tanks, and a hose fills only one tank at a time. It switches to fill the other tank
whenever the level of that tank goes below a certain value. To build this model, start HyVisual and use
File...New...Graph Editor to get a new screen like this:

We will use a modal model to represent the water source. In the library on the left, open the actors
library. Then drag out a modal model from the higherOrderActors directory. Your model should look
like this:.

FIGURE 57. An empty HyVisual model

FIGURE 58. Model with a single modal model.
58 HyVisual

The water tanks themselves will be represented by integrators, where the output of each integrator
is the level of the corresponding tank, and the input is the net flow rate into the tank. Find the integrator
in the dynamics library, and create two instances, one for each water tank as follows:

The modal model needs to provide the flow rates for each of the tanks. These flow rates will depend on
the levels, which will be the outputs of the integrators. Thus, we need four ports on the modal model.
Call them level1, level2, flow1, flow2. To create them, right click on the modal model and select “Con-
figure Ports,” which yields the dialog shown below:

FIGURE 59. Two integrators, each representing one water tank.

FIGURE 60. Invocation of the dialog to add ports to the modal model.
A Hybrid System Visual Modeler 59

Click on the Add button four times to add the four ports, and specify whether they are inputs or outputs
as follows:

Your model should look like this:

Note that if you linger with the mouse over any of the ports, the tooltip will give the name of the port
and its data type (which starts out unknown, but will later be inferred from the connections that we will

FIGURE 61. Dialog for adding ports to the modal model.

FIGURE 62. Modal model with ports.
60 HyVisual

make). You can also optionally right click on the ports and select Customize Name and then Show
name, in which case the ports will be labeled in the block diagram, as follows:

The final component that we need is a plotter to monitor the tank levels. This can be found in the
sinks library, as shown below:

The plotter is called a TimedPlotter because it plots signals as a function of time.

FIGURE 63. Labeled ports.

FIGURE 64. Model with a plotter.
A Hybrid System Visual Modeler 61

Next we need to wire the model together as follows:

The black diamonds (which are called relations) are necessary in order to route the outputs of the inte-
grators to both the plotter and the modal model. They can be created by clicking on the black diamond
in the toolbar or by control-clicking in the diagram.

The integrators need initial values. Double click on the integrators to specify an initial value of
10.0, as shown in figure 66.

You may wish to save your model before proceeding.

FIGURE 65. Top level tanks model, fully wired.

FIGURE 66. Top level tanks model, fully wired.
62 HyVisual

As yet, our model has no interesting behavior because the modal model itself is empty. We will
populate it with a state machine that will alternate between filling one water tank and filling the other.
To populate it, simply look inside the modal model. You will see this:

Unfortunately, as of this writing, the four ports for the model are all placed on top of one another at the
upper left of the diagram. Drag them to more reasonable locations as follows:

In this window, we will create a state machine that represents the water source. Create two states
named fill1 and fill2, to correspond to filling one tank or the other. To make the states, drag a state out
from the library on the left into the model, or click on the circle in the toolbar. To name a state, right

FIGURE 67. Inside a newly created modal model

FIGURE 68. Modal model with more reasonable placement of ports.
A Hybrid System Visual Modeler 63

click it and select Customize Name. When you have given it the name, select Commit. After adding
and naming the states, your model should look like this:

You will now need to draw arcs to represent possible transitions between the states. In this case,
we assume you start in the fill1 state, where tank 1 is being filled. To specify this, right click on the
background, select Configure, and specify the initial state as follows:

FIGURE 69. A modal model with two states

FIGURE 70. Specifying the initial state.
64 HyVisual

We draw arcs back and forth between fill1 and fill2 to represent the switching that happens every time
the hose is moved from one tank to the other. To draw an arc hold the Control key while dragging the
cursor from one state to the other. Repeat this for the other arc to get:

Next we need to specify the conditions under which a transition from one state to the other is taken.
Such a condition is called a guard. To do this, double click on the arc from fill1 to fill2 and fill in the
resulting dialog as follows:

This specifies that the transition from fill1 to fill2 should be taken when the level of tank 2 is less than
1.0 (in whatever units this model uses). Note that the input port level2 is simply referenced by name in
this expression. Any boolean-valued expression can be given as a guard. Double click on the second

FIGURE 71. The modal model with the states connected

FIGURE 72. Specifying a guard for the transition from fill1 to fill2.
A Hybrid System Visual Modeler 65

transition to specify that it should be taken when the level of tank 1 is less than 1.0. The diagram
should now look like this:

For each of the two states, fill1 and fill2, we can now specify a refinement, which is a model that
defines the values of the output signals, possibly as a function of the input signals. To add the refine-
ment for fill1, right click on the fill1 state, and select Add Refinement. A refinement window will pop
up that looks like this:

FIGURE 73. State machine with guards on the transitions.

FIGURE 74. Inside the fill1 refinement
66 HyVisual

All four ports have been automatically placed in the upper left corner of the screen, so you will need to
drag them to get a more reasonable placement, for example as shown here:

We will initially assume a constant outflow rate for each of the two tanks. Assume in mode fill1
that tank 1 gets a net in flow of 5.0 and that tank 2 gets a net outflow of 7.0. This can be specified by
dragging in two instances of the Const actor from the sources library and double clicking on them to
specify the values, as shown below:

Notice that a net outflow is given as a negative number.

FIGURE 75. The fill1 refinement after moving the ports.

FIGURE 76. Flows added.
A Hybrid System Visual Modeler 67

Wire the two Const actors to the output ports as follows:

To wire from one of the ports of the refinement to one of the ports of an actor it contains, hold the Con-
trol key while dragging the mouse from one to the other.

Create a similar refinement for the fill2 mode, but this time, set the flow2 output to 5.0 and the
flow1 output to -6.0, as shown below:

FIGURE 77. Refinement for mode fill1, fully wired.

FIGURE 78. Refinement for mode fill1, fully wired.
68 HyVisual

You should probably save again at this point. You can use Ctrl-S as a shortcut to save. To run the
model, press the Play button on the menu bar (red triangle), and you should see this:

To get the legend as shown on the upper right, double click on the TimedPlotter actor and fill in its
parameters as shown here:

Other attributes of the plot (such as the title) can be set by clicking on the second button from the right
at the upper right of the plot.

Note in figure 79 that the time between switching appears to get shorter. Indeed, you can run the
model longer, but be careful. This model exhibits a condition called the Zeno condition, and in fact,
time cannot progress beyond a certain point because the time between switches becomes vanishingly

FIGURE 79. Levels of the two water tanks plotted as a function of time.

FIGURE 80. Parameters of the TimedPlotter to get a legend.
A Hybrid System Visual Modeler 69

small. To witness this phenomenon, double click on the director, which is the green box named Contin-
uous Time (CT) Solver, and change its stopTime parameter to 20.0, as shown below:

Then click on the run button, and note that the execution appears to freeze after a short time. You must
now click on the stop button, or else the run will continue to produce an extremely large number of
events, and attempt to plot them. The plotter can get very sluggish when asked to plot a large number
of events, so you should stop the model shortly after it appears to freeze. At this point, you should see
something like this:

You can verify that the time between events is getting very small by dragging a box around the tail of
this plot to zoom in.

FIGURE 81. Solver parameters to get a longer run.

FIGURE 82. Levels of the two water tanks plotted as a function of time.
70 HyVisual

A more interesting model would close the feedback loop in the state refinements. For example,
you can replace the fill2 refinement as follows so that the rate at which water drains from tank 1 is pro-
portional to the level in tank 1:

Running this variant yields the following plot:

Note that the Zeno condition is gone.

FIGURE 83. Variant of fill2 refinement that makes the rate at which water drains from tank 1 proportional to the
level in the tank..

FIGURE 84. Plot with the variant of figure 83.
A Hybrid System Visual Modeler 71

Appendix B: Tables of Functions
In this appendix, we tabulate the functions available in the expression language. Further explana-

tion of many of these functions is given in section section 5.7 above.

B.1 Trigonometric Functions

TABLE 3: Trigonometric functions.

function argument type(s) return type description

acos double in the range
[-1.0, 1.0] or
complex

double in the range
[0.0, pi] or NaN if out of range or
complex

arc cosine

complex case:

asin double in the range
[-1.0, 1.0] or
complex

double in the range
[-pi/2, pi/2] or NaN if out of range
or complex

arc sine

complex case:

atan double or
complex

double in the range [-pi/2, pi/2]
or complex

arc tangent

complex case:

atan2 double, double double in the range [-pi, pi] angle of a vector (note: the arguments are (y,x), not (x,y) as
one might expect).

acosh double greater than 1 or
complex

double or
complex

hyperbolic arc cosine, defined for both double and complex

case by:

asinh double or
complex

double or
complex

hyperbolic arc sine

complex case:

cos double or
complex

double in the range , or
complex

cosine

complex case:

cosh double or
complex

double or
complex

hyperbolic cosine, defined for double or complex by:

sin double or
complex

double or
complex

sine function

complex case:

sinh double or
complex

double or
complex

hyperbolic sine, defined for double or complex by:

tan double or
complex

double or
complex

tangent function, defined for double or complex by:

tanh double or
complex

double or
complex

hyperbolic tangent, defined for double or complex by:

acos z() i z isqrt 1 z2–()+()log–=

z()asin i iz sqrt 1 z2–()+()log–=

z()atan i
2
--- i z–

i z+

 log–=

z()acosh z sqrt z2 1–()+()log=

z()asinh z sqrt z2 1+()+()log=

1 1,–[]

z()cos iz()exp i– z()exp+()
2

--=

z()cosh z()exp z–()exp+()
2

--=

z()sin iz()exp i– z()exp–()
2i

---=

z()sinh z()exp z–()exp–()
2

---=

z()tan z()sin
z()cos

----------------=

z()tanh z()sinh
z()cosh

-------------------=
72 HyVisual

B.2 Basic Mathematical Functions
TABLE 4: Basic mathematical functions

function argument type(s) return type description

abs double or int or long or com-
plex

double or int or long
(complex returns double)

absolute value

complex case:

angle complex double in the range [-pi, pi] angle or argument of the complex number:

ceil double double ceiling function, which returns the smallest (closest to neg-
ative infinity) double value that is not less than the argu-
ment and is an integer.

compare double, double int compare two numbers, returning -1, 0, or 1 if the first argu-
ment is less than, equal to, or greater than the second.

conjugate complex complex complex conjugate

exp double or
complex

double in the range
[0.0, infinity] or complex

exponential function (e^argument)

complex case:

floor double double floor function, which is the largest (closest to positive
infinity) value not greater than the argument that is an inte-
ger.

gaussian double, double or
double, double, int, or
double, double, int, int

double or
{double} or
[double]

one or more Gaussian random variables with the specified
mean and standard deviation (see page 54).

imag complex double imaginary part

isInfinite double boolean return true if the argument is infinite

isNaN double boolean return true if the argument is “not a number”

log double or
complex

double or
complex

natural logarithm
complex case:

log10 double double log base 10

log2 double double log base 2

max double, double or
int, int or
long, long or
unsignedByte, unsignedByte or
{double} or
{int} or
{long} or
{unsignedByte}

double or
int or
long or
unsignedByte

maximum

min double, double or
int, int or
long, long or
unsignedByte, unsignedByte or
{double} or
{int} or
{long} or
{unsignedByte}

double or
int or
long or
unsignedByte

minimum

abs a ib+() z a2 b2+= =

z∠

ea ib+ ea b()cos i b()sin+()=

z()log abs z() iangle z()+()log=
A Hybrid System Visual Modeler 73

neighborhood type, type, double boolean return true if the first argument is in the neighborhood of
the second, meaning that the distance is less than or equal
to the third argument. The first two arguments can be any
type for which such a distance is defined. For composite
types, arrays, records, and matrices, then return true if the
first two arguments have the same structure, and each cor-
responding element is in the neighborhood.

pow double, double or
complex, complex

double or
complex

first argument to the power of the second

random no arguments or
int or
int, int

double or
{double} or
[double]

one or more random numbers between 0.0 and 1.0 (see
page 54)

real complex double real part

remainder double, double double remainder after division, according to the IEEE 754 float-
ing-point standard (see page 55).

round double long round to the nearest long, choosing the next greater integer
when exactly in between, and throwing an exception if out
of range. If the argument is NaN, the result is 0L. If the
argument is out of range, the result is either MaxLong or
MinLong, depending on the sign.

roundToInt double int round to the nearest int, choosing the next greater integer
when exactly in between, and throwing an exception if out
of range. If the argument is NaN, the result is 0. If the argu-
ment is out of range, the result is either MaxInt or MinInt,
depending on the sign.

sgn double int -1 if the argument is negative, 1 otherwise

sqrt double or
complex

double or
complex

square root. If the argument is double with value less than
zero, then the result is NaN.

complex case:

toDegrees double double convert radians to degrees

toRadians double double convert degrees to radians

TABLE 4: Basic mathematical functions

function argument type(s) return type description

sqrt z() z z∠
2

 cos i z∠

2

 sin+
 =
74 HyVisual

B.3 Matrix, Array, and Record Functions.
TABLE 5: Functions that take or return matrices, arrays, or records.

function argument type(s) return type description

arrayToMatrix {type}, int, int [type] Create a matrix from the specified array with the specified
number of rows and columns

conjugateTranspose [complex] [complex] Return the conjugate transpose of the specified matrix.

createSequence type, type, int {type} Create an array with values starting with the first argument,
incremented by the second argument, of length given by the
third argument.

crop [int], int, int, int, int or
[double], int, int, int, int or
[complex], int, int, int, int or
[long], int, int, int, int or

[int] or
[double] or
[complex] or
[long] or

Given a matrix of any type, return a submatrix starting at the
specified row and column with the specified number of rows
and columns.

determinant [double] or
[complex]

double or
complex

Return the determinant of the specified matrix.

diag {type} [type] Return a diagonal matrix with the values along the diagonal
given by the specified array.

divideElements [type], [type] [type] Return the element-by-element division of two matrices

hilbert int [double] Return a square Hilbert matrix, where .

A Hilbert matrix is nearly, but not quite singular.

identityMatrixComplex int [complex] Return an identity matrix with the specified dimension.

identityMatrixDouble int [double] Return an identity matrix with the specified dimension.

identityMatrixInt int [int] Return an identity matrix with the specified dimension.

identityMatrixLong int [long] Return an identity matrix with the specified dimension.

intersect record, record record Return a record that contains only fields that are present in
both arguments, where the value of the field is taken from the
first record.

inverse [double] or
[complex]

[double] or
[complex]

Return the inverse of the specified matrix, or throw an excep-
tion if it is singular.

matrixToArray [type] {type} Create an array containing the values in the matrix

merge record, record record Merge two records, giving priority to the first one when they
have matching record labels.

multiplyElements [type], [type] [type] Multiply elementwise the two specified matrices.

orthogonalizeColumns [double] or
[complex]

[double] or
[complex]

Return a similar matrix with orthogonal columns.

orthogonalizeRows [double] or
[complex]

[double] or
[complex]

Return a similar matrix with orthogonal rows.

orthonormalizeColumns [double] or
[complex]

[double] or
[complex]

Return a similar matrix with orthonormal columns.

orthonormalizeRows [double] or
[complex]

[double] or
[complex]

Return a similar matrix with orthonormal rows.

repeat int, type {type} Create an array by repeating the specified token the specified
number of times.

sum {type} or
[type]

type Sum the elements of the specified array or matrix. This throws
an exception if the elements do not support addition or if the
array is empty (an empty matrix will return zero).

trace [type] type Return the trace of the specified matrix.

Aij 1/ i j 1+ +()=
A Hybrid System Visual Modeler 75

B.4 Functions for Evaluating Expressions

transpose [type] [type] Return the transpose of the specified matrix.

zeroMatrixComplex int, int [complex] Return a zero matrix with the specified number of rows and
columns.

zeroMatrixDouble int, int [double] Return a zero matrix with the specified number of rows and
columns.

zeroMatrixInt int, int [int] Return a zero matrix with the specified number of rows and
columns.

zeroMatrixLong int, int [long] Return a zero matrix with the specified number of rows and
columns.

TABLE 6: Utility functions for evaluating expressions

function argument type(s) return type description

eval string any type evaluate the specified expression (see page 54).

parseInt string or
string, int

int return an int read from a string, using the given radix if a sec-
ond argument is provided.

parseLong string or
string, int

int return a long read from a string, using the given radix if a sec-
ond argument is provided.

toBinaryString int or long string return a binary representation of the argument

toOctalString int or long string return an octal representation of the argument

toString double or
int or
int, int or
long or
long, int

string return a string representation of the argument, using the given
radix if a second argument is provided.

traceEvaluation string string evaluate the specified expression and report details on how it
was evaluated (see page 54).

TABLE 5: Functions that take or return matrices, arrays, or records.

function argument type(s) return type description
76 HyVisual

B.5 Signal Processing Functions
TABLE 7: Functions performing signal processing operations

function argument type(s) return type description

convolve {double}, {double}
or
{complex}, {com-
plex}

{double} or
{complex}

Convolve two arrays and return an array whose length is sum
of the lengths of the two arguments minus one. Convolution of
two arrays is the same as polynomial multiplication.

DCT {double} or
{double}, int or
{double}, int, int

{double} Return the discrete cosine transform of the specified array,
using the specified (optional) length and normalization strat-
egy (see page 55).

downsample {double}, int or
{double}, int, int

{double} Return a new array with every -th element of the argument

array, where is the second argument. If a third argument is

given, then it must be between 0 and , and it specifies
an offset into the array (by giving the index of the first output).

FFT {double} or
{complex} or
{double}, int
{complex}, int

{complex} Return the fast Fourier transform of the specified array. If the
second argument is given with value , then the length of the

transform is . Otherwise, the length is the next power of
two greater than or equal to the length of the input array. If the
input length does not match this length, then input is padded
with zeros.

generateBartlettWindow int {double} Return a Bartlett (rectangular) window with the specified
length. The end points have value 0.0, and if the length is odd,
the center point has value 1.0. For length M + 1, the formula

is:

generateBlackmanWindow int {double} Return a Blackman window with the specified length. For
length M + 1, the formula is:

generateBlackmanHarrisWindow int {double} Return a Blackman-Harris window with the specified length.
For length M + 1, the formula is:

generateGaussianCurve double, double, int {double} Return a Gaussian curve with the specified standard deviation,
extent, and length. The extent is a multiple of the standard
deviation. For instance, to get 100 samples of a Gaussian
curve with standard deviation 1.0 out to four standard devia-
tions, use generateGaussianCurve(1.0, 4.0, 100).

generateHammingWindow int {double} Return a Hamming window with the specified length. For
length M + 1, the formula is:

generateHanningWindow int {double} Return a Hanning window with the specified length. For
length M + 1, the formula is:

n
n

n 1–

n

2n

w n()
2 n

M
-----; if 0 n M

2
-----≤ ≤

2 2 n
M
-----; – if M2

----- n M≤ ≤

=

w n() 0.42 0.5 2πn/M()cos 0.08 4πn/M()cos+ +=

w n() 0.35875 0.48829 2πn/M()cos
0.14128 4πn/M()cos 0.01168 6πn/M()cos

+ +
+

=

w n() 0.54 0.46 2πn/M()cos–=

w n() 0.5 0.5 2πn/M()cos–=
A Hybrid System Visual Modeler 77

generatePolynomialCurve {double}, double,
double, int

{double} Return samples of a curve specified by a polynomial. The first
argument is an array with the polynomial coefficients, begin-
ning with the constant term, the linear term, the squared term,
etc. The second argument is the value of the polynomial vari-
able at which to begin, and the third argument is the increment
on this variable for each successive sample. The final argu-
ment is the length of the returned array.

generateRaisedCosinePulse double, double, int {double} Return an array containing a symmetric raised-cosine pulse.
This pulse is widely used in communication systems, and is
called a “raised cosine pulse” because the magnitude its Fou-
rier transform has a shape that ranges from rectangular (if the
excess bandwidth is zero) to a cosine curved that has been
raised to be non-negative (for excess bandwidth of 1.0). The
elements of the returned array are samples of the function:

,

where x is the excess bandwidth (the first argument) and T is
the number of samples from the center of the pulse to the first
zero crossing (the second argument). The samples are taken
with a sampling interval of 1.0, and the returned array is sym-
metric and has a length equal to the third argument. With an
excessBandwidth of 0.0, this pulse is a sinc pulse.

generateRectangularWindow int {double} Return an array filled with 1.0 of the specified length. This is a
rectangular window.

IDCT {double} or
{double}, int or
{double}, int, int

{double} Return the inverse discrete cosine transform of the specified
array, using the specified (optional) length and normalization
strategy (see page 55).

IFFT {double} or
{complex} or
{double}, int
{complex}, int

{complex} Return the inverse fast Fourier transform of the specified
array. If the second argument is given with value , then the

length of the transform is . Otherwise, the length is the
next power of two greater than or equal to the length of the
input array. If the input length does not match this length, then
input is padded with zeros.

nextPowerOfTwo double int Return the next power of two larger than or equal to the argu-
ment.

poleZeroToFrequency {complex}, {com-
plex}, complex, int

{complex} Given an array of pole locations, an array of zero locations, a
gain term, and a size, return an array of the specified size rep-
resenting the frequency response specified by these poles,
zeros, and gain. This is calculated by walking around the unit
circle and forming the product of the distances to the zeros,
dividing by the product of the distances to the poles, and mul-
tiplying by the gain.

sinc double double Return the sinc function, , where special care is
taken to ensure that 1.0 is returned if the argument is 0.0.

TABLE 7: Functions performing signal processing operations

function argument type(s) return type description

h t() πt/T()sin
πt/T

----------------------- xπt/T()cos
1 2xt/T()2–
------------------------------×=

n

2n

x()/xsin
78 HyVisual

B.6 I/O Functions and Other Miscellaneous Functions

toDecibels double double Return , where is the argument.

unwrap {double} {double} Modify the specified array to unwrap the angles. That is, if the
difference between successive values is greater than in
magnitude, then the second value is modified by multiples of

 until the difference is less than or equal to . In addition,
the first element is modified so that its difference from zero is
less than or equal to in magnitude.

upsample {double}, int {double} Return a new array that is the result of inserting zeroes
between each successive sample in the input array, where is
the second argument. The returned array has length ,
where L is the length of the argument array. It is required that

.

TABLE 8: Miscellaneous functions.

function argument type(s) return type description

cast type1, type2 type1 Return the second argument converted to the type of the first,
or throw an exception if the conversion is invalid.

constants none record Return a record identifying all the globally defined constants
in the expression language.

findFile string string Given a file name relative to the user directory, current direc-
tory, or classpath, return the absolute file name of the first
match, or return the name unchanged if no match is found.

freeMemory none long Return the approximate number of bytes available for future
memory allocation.

iterate function, int, type {type} Return an array that results from first applying the specified
function to the third argument, then applying it to the result of
that application, and repeating to get an array whose length is
given by the second argument.

map function, {type} {type} Return an array that results from applying the specified func-
tion to the elements of the specified array.

property string string Return a system property with the specified name from the
environment, or an empty string if there is none. Some useful
properties are java.version, ptolemy.ptII.dir,
ptolemy.ptII.dirAsURL, and user.dir.

readFile string string Get the string text in the specified file, or throw an exception if
the file cannot be found. The file can be absolute, or relative to
the current working directory (user.dir), the user’s home direc-
tory (user.home), or the classpath.

readResource string string Get the string text in the specified resource (which is a file
found relative to the classpath), or throw an exception if the
file cannot be found.

totalMemory none long Return the approximate number of bytes used by current
objects plus those available for future object allocation.

TABLE 7: Functions performing signal processing operations

function argument type(s) return type description

20 log10 z()× z

π

2π π

π

n 1–
n

nL

n 0>
A Hybrid System Visual Modeler 79

Index
A

abs function 73
acos function 72
acosh function 72
actions 29
actions in state machines 37
actor library 10
Add Refinement 33
adding parameters 39
AddSubtract actor 22
AND 41
angle function 73
annotation 17
arithmetic operators in expressions 39
array 26
arrays in expressions 43
arrayToMatrix function 75
asin function 72
asinh function 72
assignments 39
atan function 72
atan2 function 72

B
Bartlett (rectangular) window 77
bitwise operators in expressions 41
Blackman window 77
bouncing ball 28

C
cast function 79
ceil function 73
channel model 25
channels 15
comments in expressions 41
compare function 46, 47, 73
complex constant 25
complex numbers 26
complex numbers in expressions 38
Composite Actor 23
composite actor 25
composite actors 23
Configure Ports 24
conjugate function 73
conjugateTranspose function 75
connections

making in Vergil 24
Const actor 22
constants

expression language 37
constants function 79
constants() utility function 38
context menu 23
CONTINUOUS 26
ContinuousSinewave actor 10
ContinuousTransferFunction actor 19
control key 24
conversion of types 40
cos function 72
cosh function 72
createSequence function 75
crop function 75
curly braces 26
CurrentTime actor 22
CWD variable 38

D
data types 22
DCT function 55, 77
determinant function 75
diag function 75
DISCRETE 26
divideElements function 47, 75
double 38
double constant 25
downsample function 77
dynamics library 19

E
E 37
e 37
eval function 54, 76
events 26
exception 22
exceptions 15
exclusive or 41
exp function 73
exponentiation 39
Expression actor 37, 43
expression evaluator 37
expression language 37

F
false 37
FFT function 77
File->New menu 10
findFile function 79
fix function in expression language 56
fixed point data type 56
fixedpoint constant 25
floor function 73
80 HyVisual

Fourier transform 77, 78
freeMemory function 79
functions

expression language 52
functions in the expression language 50

G
Gaussian actor 24
gaussian function 54, 73
general constant 25
generateBartlettWindow function 77
generateBlackmanHarrisWindow function 77
generateBlackmanWindow function 77
generateGaussianCurve function 77
generateHammingWindow function 77
generateHanningWindow function 77
generatePolynomialCurve function 78
generateRaisedCosinePulse function 78
generateRectangularWindow function 78
getColumnCount() method

MatrixToken class 50
getRowCount() method

MatrixToken class 49
guard 29
guard expression 32
guards in state machines 37

H
Hamming window 77
Hanning window 77
hierarchical models 23
higher-order functions 51
higherOrderActors 28, 31
hilbert function 75
HOME variable 38
hybrid systems 28

I
i 37
IDCT function 55, 78
identifiers 39
identityMatrixComplex function 75
identityMatrixDouble function 75
identityMatrixInt function 75
identityMatrixLong function 75
IFFT function 78
imag function 73
Infinity 37
int 38
int constant 25
integers 38
intersect function 75

inverse FFT 78
inverse function 47, 75
isInfinite function 73
isNaN function 73
iterate function 51, 79

J
j 37
Java properties 38
Java Runtime Environment 6
Java virtual machine property 38
JVM Properties 38

L
laws of gravity 30
length() method

ArrayToken class 49
let construct 39
links

in Vergil 24
literal constants 38
log function 73
log10 function 73
log2 function 73
logical boolean operators in expressions 41
long constant 25
long integers 38
lossless type conversion 40

M
map function 51, 79
math library 20, 22, 43
matrices 46
matrices in expressions 46
matrix 25
matrix constant 25
matrixToArray function 75
MatrixToken class 49
max function 73
MaxDouble 37
MaxInt 37
MaxLong 37
MaxUnsignedByte 37
merge function 48, 75
methods

expression language 49
min function 73
MinDouble 37
MinInt 37
MinLong 37
MinUnsignedByte 37
modal model 28
81 HyVisual

modes 28
MonitorValue actor 22
MultiplyDivide 20
MultiplyDivide actor 20
multiplyElements function 75
multiport 22
multiports 15
multipyElements function 47

N
name of objects 15
NaN 37
NegativeInfinity 37
neighborhood function 74
nextPowerOfTwo function 78
NOT 41

O
object constant 25
OR 41
orthogonalizeColumns function 75
orthogonalizeRows function 75
orthonormalizeColumns function 75
orthonormalizeRows function 75
output actions 33, 34

P
pan 27
pan window 27
parameters 42

adding 39
reading from a file 54

parseInt function 76
parseLong function 76
PI 37
pi 37
Plotter actors 35
poleZeroToFrequency function 78
polymorphic 20
PortParameter 42
portParameter 43
PositiveInfinity 37
pow function 74
properties 38

Java virtual machine 38
property function 79
PTII variable 38
ptolemy.ptII.dir property 38

Q
quantize() function in expression language 56

R
random function 54, 74
random library 24
random variable 24
readFile function 54, 79
readResource function 79
real function 74
record 26
record tokens in expressions 47
rectangular window 77, 78
refinements 33
relational operators in expressions 41
relations 15
remainder function 55, 74
repeat function 75
reset parameter 33
right click 23
round function 74
roundToInt function 74

S
scalar constant 25
scope in expressions 39
scope-extending attribute 41
SequenceActor interface 26
set actions 33, 34
sgn function 74
signal type 26
sin function 72
sinc function 78
Sinewave actor 42
single port 15
sinh function 72
sinks library 22
sources library 22
sqrt function 74
square braces 26
Start menu 6
state 28
state-machine editor 28
states 28
stem plots 35
string constant 25
string constants 38
string parameters 42
sum function 75

T
tan function 72
tanh function 72
TimedPlotter actor 35
82 HyVisual

to continuous library 26
to discrete library 26
toArray() method

MatrixToken class 50
toBinaryString function 76
toDecibels function 79
toDegrees function 74
Token class 49
toOctalString function 76
toRadians function 74
toString function 76
totalMemory function 79
trace function 75
traceEvaluation function 54, 76
transitions 28, 32
transpose function 76
true 37
type conversion 40
type inference 24
type system 21
types of ports 25

U
unknown constant 25
unsignedByte 38

unwrap function 79
upsample function 79
user.dir property 38, 54
user.home property 38, 54
utilities library 23, 42

V
variables in expressions 39
View menu 38

W
Web Start 5
welcome window 10
Windows installer 6

X
XOR 41

Z
Zeno condition 69
zeroMatrixComplex function 76
zeroMatrixDouble function 76
zeroMatrixInt function 76
zeroMatrixLong function 76
zoom 27
83 HyVisual

84 HyVisual

85 HyVisual

86 HyVisual

	HyVisual: A Hybrid System Visual Modeler
	Contents
	1. Introduction 5
	1.1. Installation and Quick Start 5
	1.1.1. Web Start 5
	1.1.2. Standard Installers 6
	1.1.3. CD 6

	2. Continuous-Time Dynamical Systems 7
	2.1. Executing a Pre-Built Model 7
	2.2. Creating a New Model 10
	2.2.1. A Simple Sine Wave Model 10
	2.2.2. A Dynamical System Producing a Sine Wave 13
	2.2.3. Making Connections 14
	2.2.4. Parameters 16
	2.2.5. Annotations 17
	2.2.6. Impulse Response 17
	2.2.7. Using Higher-Order Dynamics Blocks 19

	2.3. Data Types 20
	2.4. Hierarchy 23
	2.4.1. Creating a Composite Actor 23
	2.4.2. Adding Ports to a Composite Actor 24
	2.4.3. Setting the Types of Ports 25

	2.5. Discrete Signals and Mixed-Signal Models 26
	2.6. Navigating Larger Models 27

	3. Hybrid Systems 28
	3.1. Examining a Pre-Built Model 28
	3.2. Numerical Precision and Zeno Conditions 30
	3.3. Constructing Modal Models 31
	3.3.1. Creating Transitions 32
	3.3.2. Creating Refinements 33

	3.4. Execution Semantics 34

	4. Using the Plotter 35
	5. Expressions 36
	5.1. Expression Evaluator 37
	5.2. Simple Arithmetic Expressions 37
	5.2.1. Constants and Literals 37
	5.2.2. Variables 39
	5.2.3. Operators 39
	5.2.4. Comments 41

	5.3. Uses of Expressions 41
	5.3.1. Parameters 41
	5.3.2. String Parameters 42
	5.3.3. Port Parameters 42
	5.3.4. Expression Actor 43
	5.3.5. State Machines 43

	5.4. Composite Data Types 43
	5.4.1. Arrays 43
	5.4.2. Matrices 46
	5.4.3. Records 47

	5.5. Invoking Methods 49
	5.6. Defining Functions 50
	5.7. Built-In Functions 52
	5.8. Fixed Point Numbers 56

	1. Introduction
	1.1 Installation and Quick Start
	FIGURE 1. Initial welcome window.
	1.1.1 Web Start
	1.1.2 Standard Installers
	1.1.3 CD

	2. Continuous-Time Dynamical Systems
	2.1 Executing a Pre-Built Model
	FIGURE 2. A block diagram representation of a set of nonlinear ordinary differential equations.
	, (1)
	. (2)
	. (3)
	FIGURE 3. Dialog box showing solver parameters for the model in figure 2.
	FIGURE 4. Result of running the Lorenz model using the run button in the toolbar.
	FIGURE 5. Run Window, obtained via the View menu, for the Lorenz model shown in figure 2.

	2.2 Creating a New Model
	FIGURE 6. A blank model, obtained via File, New, and Graph Editor in the menus.
	2.2.1 A Simple Sine Wave Model
	FIGURE 7. A model populated with two actors.
	FIGURE 8. Execution of the sine wave example in figure 7, where all parameter values have default...
	FIGURE 9. Zoomed version of the plot in figure 8, with “dots” and “stems” turned on.
	FIGURE 10. The result of running the model in figure 7 with the initStepSize parameter of the sol...
	FIGURE 11. Another way to control the step size is to insert a sampler.

	2.2.2 A Dynamical System Producing a Sine Wave
	(4)
	, (5)
	, (6)
	. (7)
	. (8)
	FIGURE 12. Model that generates a sine wave if the integrators have a non-zero initial condition.
	FIGURE 13. Result of running the model in figure 12 with the initialState of the left integrator ...

	2.2.3 Making Connections
	FIGURE 14. An exception that results from attempting to make a multi-way connection without a rel...
	FIGURE 15. A relation can be used to broadcast an output from a single port.
	FIGURE 16. Multiple signals can be sent to a multiport, shown with the unfilled triangle on the T...

	2.2.4 Parameters
	FIGURE 17. Adding a parameter to the IntegratorSineWave model.

	2.2.5 Annotations
	2.2.6 Impulse Response
	. (9)
	FIGURE 18. Variant of figure 12 that has an input, which is provided by the Clock actor.

	. (10)
	. (11)
	FIGURE 19. Parameters of the Clock actor that get it to output an approximate impulse.
	FIGURE 20. Exception due to running the model with the minStepSize parameter set too high.

	2.2.7 Using Higher-Order Dynamics Blocks
	(12)
	FIGURE 21. A model equivalent to that in figure 18, but using the ContinuousTransferFunction actor.
	FIGURE 22. A portion of the documentation for the ContinuousTransferFunction actor.
	FIGURE 23. Inside the ContinuousTransferFunction actor of figure 21.
	FIGURE 24. The diagram of figure 23, after invoking Automatic Layout from the Graph menu.

	2.3 Data Types
	FIGURE 25. Tooltip showing the name and data type of the output port of the ContinuousSinewave of...
	FIGURE 26. Another example, used to explore data types in HyVisual.
	FIGURE 27. An example that triggers an exception when you attempt to execute it. Strings cannot b...
	FIGURE 28. Addition of a string to an integer.

	2.4 Hierarchy
	2.4.1 Creating a Composite Actor
	FIGURE 29. Changing the name of an actor.
	FIGURE 30. Looking inside a composite actor.

	2.4.2 Adding Ports to a Composite Actor
	FIGURE 31. Summary of toolbar buttons for creating new ports.
	FIGURE 32. Right clicking on the background brings up a dialog that can be used to configure ports.
	FIGURE 33. A simple channel model defined as a composite actor.
	FIGURE 34. A model producing a noisy sine wave.

	2.4.3 Setting the Types of Ports

	2.5 Discrete Signals and Mixed-Signal Models
	2.6 Navigating Larger Models
	FIGURE 35. Summary of toolbar buttons for zooming and fitting.
	FIGURE 36. The pan window at the lower left has a red box representing the visible are of the mod...

	3. Hybrid Systems
	3.1 Examining a Pre-Built Model
	FIGURE 37. Top level of the bouncing ball example.
	FIGURE 38. Inside the Ball Model of figure 37.
	FIGURE 39. The initial state of a state machine is set by right clicking on the background and sp...
	FIGURE 40. A state may or may not have a refinement, which specified the behavior of the model wh...
	FIGURE 41. The refinement of the free state, shown here, is a continuous-model representing the l...

	3.2 Numerical Precision and Zeno Conditions
	FIGURE 42. Result of running the bouncing ball model without the stop state.

	3.3 Constructing Modal Models
	FIGURE 43. Inside of a new modal model that has had a single output port added.
	3.3.1 Creating Transitions
	FIGURE 44. Transition dialog for the transition from init to free in Figure 37.

	3.3.2 Creating Refinements
	FIGURE 45. Adding a refinement to a state.

	3.4 Execution Semantics

	4. Using the Plotter
	FIGURE 46. Parameters of the TimedPlotter actor.
	FIGURE 47. A plot with a legend.
	FIGURE 48. Format control window for a plot.
	FIGURE 49. Still better labeled plot.

	5. Expressions
	5.1 Expression Evaluator
	FIGURE 50. Expression evaluator, which is accessed through the File:New menu.

	5.2 Simple Arithmetic Expressions
	5.2.1 Constants and Literals
	TABLE 1: String-valued constants defined in the expression language.

	5.2.2 Variables
	5.2.3 Operators
	5.2.4 Comments

	5.3 Uses of Expressions
	5.3.1 Parameters
	5.3.2 String Parameters
	FIGURE 51. String parameters are indicated in the parameter editor boxes by a light blue backgrou...

	5.3.3 Port Parameters
	FIGURE 52. A portParameter is both a port and a parameter. To use it in a composite actor, drag i...
	FIGURE 53. ContinuousSinewave actor, showing its port parameters, and their usage at the lower le...

	5.3.4 Expression Actor
	FIGURE 54. Illustration of the Expression actor.

	5.3.5 State Machines

	5.4 Composite Data Types
	5.4.1 Arrays
	5.4.2 Matrices
	5.4.3 Records

	5.5 Invoking Methods
	5.6 Defining Functions
	FIGURE 55. Example of a function being passed from one actor to another.
	FIGURE 56. More elaborate example with functions passed between actors.

	5.7 Built-In Functions
	(13)
	TABLE 2: Normalization options for the DCT function

	. (14)

	5.8 Fixed Point Numbers

	Appendix A: Water Tanks Example
	FIGURE 57. An empty HyVisual model
	FIGURE 58. Model with a single modal model.
	FIGURE 59. Two integrators, each representing one water tank.
	FIGURE 60. Invocation of the dialog to add ports to the modal model.
	FIGURE 61. Dialog for adding ports to the modal model.
	FIGURE 62. Modal model with ports.
	FIGURE 63. Labeled ports.
	FIGURE 64. Model with a plotter.
	FIGURE 65. Top level tanks model, fully wired.
	FIGURE 66. Top level tanks model, fully wired.
	FIGURE 67. Inside a newly created modal model
	FIGURE 68. Modal model with more reasonable placement of ports.
	FIGURE 69. A modal model with two states
	FIGURE 70. Specifying the initial state.
	FIGURE 71. The modal model with the states connected
	FIGURE 72. Specifying a guard for the transition from fill1 to fill2.
	FIGURE 73. State machine with guards on the transitions.
	FIGURE 74. Inside the fill1 refinement
	FIGURE 75. The fill1 refinement after moving the ports.
	FIGURE 76. Flows added.
	FIGURE 77. Refinement for mode fill1, fully wired.
	FIGURE 78. Refinement for mode fill1, fully wired.
	FIGURE 79. Levels of the two water tanks plotted as a function of time.
	FIGURE 80. Parameters of the TimedPlotter to get a legend.
	FIGURE 81. Solver parameters to get a longer run.
	FIGURE 82. Levels of the two water tanks plotted as a function of time.
	FIGURE 83. Variant of fill2 refinement that makes the rate at which water drains from tank 1 prop...
	FIGURE 84. Plot with the variant of figure 83.

	Appendix B: Tables of Functions
	B.1 Trigonometric Functions
	TABLE 3: Trigonometric functions.

	B.2 Basic Mathematical Functions
	TABLE 4: Basic mathematical functions

	B.3 Matrix, Array, and Record Functions.
	TABLE 5: Functions that take or return matrices, arrays, or records.

	B.4 Functions for Evaluating Expressions
	TABLE 6: Utility functions for evaluating expressions

	B.5 Signal Processing Functions
	TABLE 7: Functions performing signal processing operations

	B.6 I/O Functions and Other Miscellaneous Functions
	TABLE 8: Miscellaneous functions.

	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

