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Abstract 

 

Dataflow process networks are a special case of Kahn process networks (PN). In dataflow 

process networks, each process consists of repeated firings of a dataflow actor, which 

defines a quantum of computation. Using this quantum avoids the complexities and 

context switching overhead of process suspension and resumption incurred in most 

implementations of Kahn process networks. Instead of context switching, dataflow 

process networks are executed by scheduling the actor firings. This scheduling can be 

done at compile time for synchronous dataflow (SDF) which is a particularly restricted 

case with the extremely useful property that deadlock and boundedness are decidable. 

However, for the most general dataflow, the scheduling has to be done at run time and 

questions about deadlock and boundedness cannot be statically answered. This report 

describes and implements a dynamic dataflow (DDF) scheduling algorithm under 

Ptolemy II framework based on original work in Ptolemy Classic. The design of the 

algorithm is guided by several criteria that have implications in practical implementation. 

We compared the performance of SDF, DDF and PN. We also discussed composing DDF 

with other models of computation (MoC). Due to Turing-completeness of DDF, it is not 

easy to define a meaningful iteration for a DDF submodel when it is embedded inside 

another MoC. We provide a suite of mechanisms that will facilitate this process. We give 

several application examples to show how conditionals, data-dependent iterations, 

recursion and other dynamic constructs can be modeled in the DDF domain.  
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1 Introduction 

 

1.1 Concurrent Model of Computation (MoC) for Embedded System  

One major achievement of traditional computer science is systematically abstracting 

away the physical world. The Von Neumann model provides a universal abstraction for 

sequential computation. The concept is so simple and powerful for transformational 

systems (vs. reactive systems [1][2]) that any program in traditional sense can run 

regardless of underlying platform ---- whether it is a supercomputer or a desktop. 

Embedded software systems, however, engage the physical world. Time, concurrency, 

liveness, robustness, continuums, reactivity, and resource management must be remarried 

to computation [1]. The traditional way to program embedded systems is to use assembly 

language or C, make sure the function implemented is correct, and then tweak some 

program parameters or priorities on the underlying RTOS and pray it meets the deadline 

imposed by the physical world. Important properties like time and concurrency are not 

part of the program model, but are only treated as afterthought when specifications are 

not met. This mismatch between the abstraction provided by the program model and the 

physical world results in programs that are hard to understand, difficult to debug and 

error-prone. Instead of the Von Neumann model for sequential computation, we need 

models of computation that support the concurrency inherent in embedded systems. 

However, since a universal model of computation for concurrent computation has yet to 

emerge, we need to understand how different models of computation deal with time and 

concurrency, use the ones which match the application domain well, and combine them 

in a systematic way.  
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One of the main objectives of the Ptolemy project is to experiment with different models 

of computation (called domains). The domains currently implemented in Ptolemy II 

include: Component Interaction (CI), Communicating Sequential Process (CSP), 

Continuous Time (CT), Distributed Discrete Event (DDE), Dynamic Dataflow (DDF), 

Discrete Event (DE), Discrete Time (DT), Finite State Machines (FSM), Giotto, Graphics 

(GR), Heterochronous Dataflow (HDF), Process Networks (PN), Parameterized 

Synchronous Dataflow (PSDF), Synchronous Dataflow (SDF), Synchronous Reactive 

(SR), and Timed Multitasking (TM). An essential difference between concurrent models 

of computation is their modeling of time [1]. Some are very explicit by taking time to be 

a real number that advances uniformly, and placing events on a time line or evolving 

continuous signals along the time line (such as CT, DE). Others are more abstract and 

take time to be discrete (such as DT, SR). Others are still more abstract and take time to 

be merely a constraint imposed by causality (such as PN, CSP, SDF, DDF). The last 

interpretation results in time that is partially ordered, which provides a mathematical 

framework for formally analyzing and comparing models of computation [3].   

 

This report is mainly about one particular model of computation ----- dynamic dataflow 

(DDF). It describes and implements a DDF scheduling algorithm under the Ptolemy II 

framework. The following gives an outline of this report. In the remainder of section 1, 

we further motivate the use of dataflow MoC and briefly describe the Ptolemy II software 

environment upon which the DDF domain is created. Section 2 gives a review of 

denotational semantics of Kahn process networks, which is the theoretical foundation of 

any dataflow process network. Since Kahn process networks lack the notion of firing, we 

outline the treatment by Lee [8], which defines a continuous Kahn process as the least 
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fixed point of an appropriately constructed functional, which itself is defined by a firing 

function of a dataflow actor. We also give a brief survey of various dataflow models of 

computation. Section 3 is the main subject of this report. It describes the implementation 

of a DDF scheduling algorithm under the Ptolemy II framework. The design of the 

algorithm is guided by several criteria that have practical implications. We discussed 

designing actors used in DDF domain. We compared the performance of SDF, DDF and 

PN. We also discussed composing DDF with other models of computation (MoC). Due to 

Turing-completeness of DDF, it is not easy to define a meaningful iteration for a DDF 

submodel when it is embedded inside another MoC. We provided a suite of mechanisms 

that will facilitate this process. Section 4 gives several examples to show how 

conditionals, data-dependent iterations, recursions and other dynamic constructs can be 

modeled in DDF domain. Section 5 concludes the report and outlines some future 

directions.                     

 

1.2 Motivation for Dataflow Computing 

The Dataflow model of computation is most popularly used in digital signal processing 

(DSP). Dataflow programs for signal processing are often described as directed graphs 

where each node represents a function and each arc represents a signal path. Compared 

with imperative programs which do not often exhibit the concurrency available in the 

algorithm, dataflow programs automatically break signal processing tasks into subtasks 

and thus expose the inherent concurrency as a natural consequence of programming 

methodology. In a dataflow graph, each function node executes concurrently 

conceptually with the only constraint imposed by data availability. Therefore it greatly 

facilitates efficient use of concurrent resources in the implementation phase.  



 12

Dataflow programming has come a long way since its use in the signal processing 

community. Various programming environments based on this model of computation 

have been developed over the years. Various specialized dataflow models of computation 

have been invented and studied. (We will give a brief overview in section 2). Various 

scheduling algorithms based on different criteria pertinent for specific applications have 

been proposed. It is still a fruitful area of active research due to its expressive way to 

represent concurrency for embedded system design. 

 

1.3 A Software Environment for Experimenting with MoC ---- Ptolemy II 

The Ptolemy project at University of California at Berkeley studies modeling, simulation, 

and design of concurrent, real-time, embedded systems. The focus is on assembly of 

concurrent components. The key underlying principle in the project is the use of well-

defined models of computation that govern the interaction between components [4]. 

Unlike most system design environments which have one or two built-in models of 

computation, the Ptolemy kernel has no built-in semantics. Instead the kernel package 

defines a small set of Java classes that implement a data structure supporting a general 

form of uninterpreted clustered graphs (see Figure 1.1 taken from [6]), which provide an 

abstract syntax that is not concerned with the meaning of the interconnections of 

components, nor even what a component is. 

 

The semantics is introduced in the actor package which provides basic support for 

executable entities. However it makes a minimal commitment to the semantics of these 

entities by avoiding specifying the order in which actors execute and the communication 

mechanism between actors. These properties are defined in each domain where the 
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director controls the execution of actors and the receiver controls the communication 

between actors. Figure 1.2 shows a graphical user interface in Ptolemy II called Vergil 

where we build models most of time.   

                                   

                       Figure 1.1 Abstract syntax of Ptolemy II  

There is a large actor library in Ptolemy II. Some actors are written to be domain-

polymorphic, i.e., they can operate in any of a number of domains. They are the result of 

principle of separation of function and communication. Some actors can only be used in 

specific domains because they deal with functionalities specific to those domains. It is 

usually much more difficult to write domain-polymorphic actors.  

 

There are three big volumes of design documents which cover details of the software 

architecture [5][6][7]. They are usually updated with each software release.  
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                          Figure 1.2 Vergil --- a graphical user interface for Ptolemy II 

 

 

 

 

 

 

 

 

 

 



 15

2 Semantics of Dataflow Process Network 
 

Dataflow can be viewed as a special case of Kahn process networks. Therefore in section 2.1 we 

give a brief overview of denotational semantics of Kahn process networks to serve as the 

theoretical foundation for the dynamic scheduler we report here. Kahn process networks lack 

the notion of firing, therefore in section 2.2 we outline the treatment by Lee [8], which 

defines a continuous Kahn process as the least fixed point of an appropriately constructed 

functional which itself is defined by the firing function of a dataflow actor. In section 2.3 

we give a brief survey of various dataflow models of computation, serving to show where 

DDF domain stands in the whole spectrum. The contents of section 2 are mostly based on 

[8][9]. Interested readers should refer to them for more details.  

 

2.1 Fixed Point Semantics of Kahn Process Network 

 

A Kahn process network [10] is a network of processes that communicate only through 

unidirectional, single input single output FIFO channels with unbounded capacities. Each 

channel carries a possibly infinite sequence that we denote s = [v1, v2, v3 …], where each 

vi is an atomic data object called a token drawn from a set V. Each token is written 

(produced) exactly once, and read (consumed) exactly once. So it has event semantics 

instead of state semantics as in some other domains such as Continuous Time.  The set of 

all such sequences (finite and infinite) is denoted S. The set of tuples of n such sequences 

is denoted Sn. A Kahn process is a mapping F: Sm  Sn from an m-tuple to an n-tuple, 

with a key technical restriction that the mapping must be a continuous function (to be 

defined). 
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A partially-ordered set (poset) is a set S where an ordering relation (denoted ) is 

defined that is reflexive ( ,s S s s∀ ∈ ), transitive ( , , , ,s s s S s s s s s s′ ′′ ′ ′ ′′ ′′∀ ∈ ⇒ ) 

and anti-symmetric ( , , ,s s S s s s s s s′ ′ ′ ′∀ ∈ ⇒ = ). The bottom element of a poset S, if 

it exists, is an element s S∈  that satisfies ,s S s s′ ′∀ ∈ . An upper bound of a subset 

W S⊆  is an element s S∈ that satisfies ,w W w s∀ ∈ .  A least upper bound (LUB) of a 

subset W S⊆  is an upper bound s  such that for any other upper bound s′ , s s′ . A 

chain in S is a totally ordered subset of S, i.e., any two elements in the subset are ordered. 

A complete partial order (CPO) is a poset with a bottom element where every chain has a 

LUB. 

 

There is a natural ordering relation in the set S consisting of all finite and infinite 

sequences. It is the prefix order, defined as , ,s s S s s′ ′∀ ∈  if s  is a prefix of s′ . This 

definition easily generalizes to Sn element-wise. This turns out to be a very useful 

ordering relation in defining the denotational semantics of Kahn process network because 

under this ordering Sn is a CPO and there is strong theorem for continuous functions 

defined on a CPO.  

 

A function F: Sm  Sn is monotonic if , , ( ) ( )ms s S s s F s F s′ ′ ′∀ ∈ ⇒ . This expresses 

an untimed notion of causality since according to the definition, giving additional inputs 

can only result in additional outputs.  A function F: Sm  Sn is continuous if for every 

chain , ( )mW S F W⊆  has a LUB and ( ( )) ( ( ))F LUB W LUB F W= . Here F(W) denotes a 

set obtained by applying the function F to each element of W. Intuitively continuity 

means the response of the function to an infinite input sequence is the limit of its 
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response to the finite approximations of this input. It is easy to prove a continuous 

function is always monotonic, but not vice versa. 

 

Finite composition of Kahn processes is obviously determinate (i.e, given the input 

sequences, all other sequences are determined) if there is no feedback. With feedback 

there may be zero, one or multiple behaviors. An interpretation due to Kahn called the 

least-fixed-point semantics is now the well adopted denotational semantics for Kahn 

process networks. It is due to a well known fixed point theorem that states that a 

continuous function : n nF S S→  in CPO nS  has a least fixed point s (i.e., ( )F s s=  and 

for any other s′  satisfying ( )F s s′ ′= , s s′ ). In addition, it gives a constructive way to 

find the least fixed point, which is the LUB of the following sequence: 

0 1 0 2 1, ( ), ( )...s s F s s F s= Λ = =  where Λ  is the tuple of empty sequences. Notice that this 

way of finding least fixed point matches exactly with operational semantics if all signals 

start with empty sequences. Thus we are assured our scheduling algorithm will generate 

sequences that are guaranteed to be the prefix of denotational semantics. 

 

2.2 Denotational Semantics for Dataflow with Firing 

So far these process networks fail to capture an essential principle of dataflow, proposed 

by Dennis and used in almost all practical implementations of dataflow, that of an actor 

firing. An actor firing is an indivisible quantum of computation. A set of firing rules give 

preconditions for a firing, and the firing consumes tokens from the input streams and 

produces tokens on the output streams. In [8] Lee shows that sequences of firings define a 

continuous Kahn process as the least fixed point of an appropriately constructed 
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functional, therefore formally establishing dataflow process network as a special case of 

Kahn process network. We give a brief review of that paper for completeness. 

 

 A dataflow actor with m inputs and n outputs is a pair { , }f R , where: 

1. f: Sm  Sn is a function called the firing function, 

2. mR S⊆  is a set of finite sequences called the firing rules, 

3. f(r) is finite for all r R∈ , and 

4. no two distinct ,r r R′∈  are joinable (i.e. they don’t have a LUB). 

A Kahn process F based on the dataflow actor { , }f R  can be defined as follows: 

( ). ( ) if there exists  such that .
( )

 otherwise
f r F s r R s r s

F s
′ ′∈ =

= Λ
 

where . represents concatenation. Since F is self-referential in this definition, we can not 

guarantee that F exists, nor that F is unique. To show its existence and uniqueness, it has 

to be interpreted as the least-fixed-point function of functional 

: ( ) ( )m n m nS S S Sφ → → →  defined as 

( ). ( ) if there exists  such that .
( ( ))( )

 otherwise
f r F s r R s r s

F sφ
′ ′∈ =

= Λ
     

where ( )m nS S→  represents the set of functions mapping mS  to nS . It can be proved 

that ( )m nS S→  is a CPO under pointwise prefix order. Another similar notation 

[ ]m nS S→  represents the set of continuous functions mapping mS  to nS , and it can also 

be proved to be a CPO under pointwise prefix order. Obviously [ ] ( )m n m nS S S S→ ⊂ → . 

 

It can be proved that φ  is both monotonic and continuous (see [8]). Again using the same 

theorem, φ  has a least fixed point (which is a function in this case) and there is a 



 19

constructive procedure to find this fixed point. Starting with the bottom of the poset 

( )m nS S→ , : m nS Sψ → , which returns Λ , an n-tuple of empty sequences, we can 

construct a sequence of functions: 0 1 0 2 1, ( ), ( )...F F F F Fψ φ φ= = = , and the LUB of this 

chain is the least fixed point of φ . If we apply this chain of functions to ms S∈ where 

1 2 3. . ...s r r r=  and 1 2 3, , ...r r r R∈ , we will get 0 1 1 2 1 2( ) , ( ) ( ), ( ) ( ). ( ),...F s F s f r F s f r f r= Λ = = .  

This exactly describes the operational semantics of Dennis dataflow for a single actor. 

Since each [ ]m n
iF S S∈ →  is a continuous function and the set [ ]m nS S→  is a CPO as 

mentioned previously, the LUB of the chain is continuous and hence describes a valid 

Kahn process that guarantees determinacy. Notice that the firing function f need not be 

continuous. In fact, it does not even need to be monotonic. It merely needs to be a 

function, and its value must be finite for each of the firing rules. 

 

The conditions satisfied by firing rules is extended in [8] to describe composition of 

dataflow actors such as two-input, two-output identity function. Readers should refer to 

the paper for further details. 

 

2.3 A Review of Dataflow MoC  

            ----- from Static Analysis to Dynamic Scheduling and In-Between 

Over the years, a number of dataflow models of computation (MoC) have been proposed 

and studied. In the synchronous dataflow (SDF) MoC studied by Lee and Messerschmitt 

[11], each dataflow actor consumes and produces fixed number of tokens on each port in 

each firing. The consequence is that the execution order of actors can be statically 

determined prior to execution. This results in execution with minimal overhead, as well 
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as bounded memory usage and a guarantee that deadlock will never occur. The cyclo-

static dataflow MoC[12] extends SDF by allowing each actor’s consumption and 

production rates to vary in a cyclic but predetermined pattern. It does not add more 

expressiveness to SDF, but turns out to be more convenient to use in some scenarios. The 

heterochronous dataflow MoC (HDF) proposed by Girault, Lee and Lee [13] extends 

SDF by using so-called modal model to compose FSM with SDF. It allows actors to 

change their rate signatures between global iterations of a model. In case of a finite 

number of rate signatures, properties like consistency and deadlock are still decidable. 

Bhattacharya and Bhattacharya proposed a parameterized synchronous dataflow (PSDF) 

MoC [14], which is useful for modeling dataflow systems with reconfiguration. In this 

domain symbolic analysis of the model is used to generate a quasi-static schedule that 

statically determines an execution order of actors, but dynamically determines the 

number of times each actor fires. Buck proposed a Boolean dataflow (BDF) MoC [15] 

which allows the use of some dynamic actors such as BooleanSelect and BooleanSwitch. 

He extends the static analysis techniques used in SDF and in some situations a quasi-

static schedule can be pre-computed. But fundamentally since BDF is Turing-complete, it 

does not guarantee that the scheduling algorithm will always succeed. If it fails, a 

dynamic dataflow (DDF) MoC [16] should be used to execute the model. DDF uses only 

runtime analysis and thus makes no attempt to statically answer questions about deadlock 

and boundedness. Since this section only serves as a brief review, it suffices to say that 

the list here does not include every variant of dataflow ever conceived. 

          

  

    



 21

3 Design and Implementation of a DDF Domain 

 

This section is the core of this report. It describes and implements a DDF scheduling 

algorithm under the Ptolemy II framework. In section 3.1, several criteria are used to 

guide the design of the DDF scheduling algorithm. Section 3.2 continues with the 

implementation of the algorithm. In section 3.3, we use several actors such as 

BooleanSelect and Select to show how dynamic actors are designed to be used in DDF 

domain. Section 3.4 gives performance comparison of SDF, DDF and PN domains. In 

Section 3.5, we discuss composing DDF with other MoCs.      

 

3.1 Criteria and algorithm for DDF Scheduling 

Given a DDF graph, there can be numerous ways to schedule its execution. The simplest 

way one can think of is to keep firing any arbitrary enabled actor until either the graph is 

deadlocked or some predefined stop condition is reached. However, there are many 

problems with this naïve scheduler. For one, the execution may need unbounded memory 

whereas some other scheduler may only need bounded memory. Therefore we need some 

criteria to determine whether some scheduler is a “good” scheduler. It is important to 

point out that there are no absolute criteria. Different people can pose different criteria as 

long as they can interpret their choice in a reasonable way.   

The criteria we used were first realized in Ptolemy Classic [17], where the first criterion 

has higher priority over the second one, the second one over the third one and so on: 

1. After any finite time every signal is a prefix of the LUB signal given by the 

denotational semantics. (Correctness) 
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2. The scheduler should be able to execute a graph forever if it is possible to execute 

a graph forever. In particular, it should not stop prematurely if there are enabled 

actors. (Liveness) 

3. The scheduler should be able to execute a graph forever in bounded memory if it 

is possible to execute the graph forever in bounded memory. (Boundedness) 

4. The scheduler should execute the graph in a sequence of well-defined and 

determinate iterations so that the user can control the length of an execution by 

specifying the number of iterations to execute. (Determinacy) 

 

If a schedule satisfies condition 1, it is called a correct execution. To get a correct 

execution, we require that the operational semantics of a graph defined by a scheduler be 

consistent with its denotational semantics. Note that this does not require each signal to 

converge to LUB semantics. As pointed out by Edward Lee, if leaving the execution at a 

finite prefix were incorrect, then it would be incorrect for Ptolemy II to stop the execution 

when a stop button is pushed. This would be counterintuitive. In practice, any execution 

is always partial with respect to denotational semantics with infinite length signals. 

 

If a schedule satisfies condition 2 and 3, it is called a useful execution. In particular, 

condition 2 requires that for every non-terminating model, after any finite time, the 

execution will extend at least one signal in additional finite time. Note the subtlety here. 

It does not require to extend every signal. Condition 3 is for the purpose of practical 

implementation. Among all possible schedulers, we would prefer those that can execute 

the graph with bounded memory. As pointed out by Parks [16], liveness is a property of 

the model itself (directly related with lengths of signals in its denotational semantics), 
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whereas boundedness is a property of both the model and its scheduler. Buck proved in 

his Ph.D. thesis [15] that a BDF graph is Turing-complete. Since the BDF domain is a 

subset of the DDF domain, a DDF graph is also Turing-complete. This has the 

consequence that both liveness and boundedness are undecidable for DDF graphs, 

meaning that no finite analysis can answer the question about these properties for any 

arbitrary DDF model. However, since a DDF scheduler has infinite time to run an infinite 

execution, there may exist schedulers that can satisfy both conditions, as Parks’ algorithm 

did for Process Networks.  

 

Condition 4 expresses the desire to extend the concept of iterations in the SDF domain to 

DDF domain. In SDF, one iteration is defined as the minimum (but non-empty) complete 

cycle through which the graph returns to its original state (defined as the number of 

tokens in each arc). This can be determined by doing static analysis on the SDF graph. 

Then an SDF graph can be executed by repeating iterations, and the user can control the 

length of execution by specifying the number of iterations in one execution. In DDF, 

there is no such inherent iteration. But we still want to define a somewhat meaningful 

iteration which achieves something such as printing a dot on a plotter (which involves 

invoking that actor once). And the set of actors executed in each iteration is determinate 

so that the state of the model is a well-defined function of the number of iterations. This 

requires that which actors to fire in each iteration should not depend on arbitrary 

decisions made by the scheduler, like the order in which it examines the enabling status 

of each actor. This way the user can control the progress of the model using the same 

mechanism as in SDF. The detailed implementation will be explained in the later 

sections. 
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It is appropriate to repeat that the set of criteria we give are subjective but based on good 

reasoning. For example, Marc Geilen and Twan Basten proposed a different set of criteria 

in a recent paper [18]. They replaced condition 2 with an output completeness condition, 

i.e., each signal should eventually converge to that prescribed by the denotational 

semantics. They observed that Parks’ algorithm [16] cannot solve so-called local 

deadlock problem where several actors are deadlocked in a cyclic fashion but the whole 

model can still make progress, therefore Parks’ algorithm won’t  try to solve these 

deadlocks since it will only do so when the whole model is deadlocked. Thus the 

execution will violate their completeness condition. Since they cannot come up with a 

scheduler that would satisfy their criteria for all models, their solution is to give a 

executing strategy that would satisfy their criteria for a subset of models, which are 

bounded and effective. (Their definition for effectiveness is that every token produced 

will be ultimately consumed.) However, due to Turing-completeness, whether or not a 

model is bounded and effective is undecidable. Therefore there is no program which can 

classify any arbitrary model before execution. And if we prefer completeness over 

boundedness, some models may run out of memory, whereas using our criterion they 

may be executed forever in bounded memory. We prefer the our way because it allows 

useful functions provided by some part of the model to be performed in bounded memory 

whereas with Geilen & Basten’s technique the model may have to be aborted at some 

point due to memory constraints. For example, the model in Figure 3.1 can be executed 

as the model in Figure 3.2 with bounded memory using our criterion. If we insist on 

complete execution, then we will run out of the memory eventually.  So this is a 

something-better-than-nothing philosophy. 
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  Figure 3.1 A dataflow model where BooleanSelect actor only consumes from true input port  

 

           Figure 3.2 A simplified model for Figure 3.1 from the viewpoint of Display actor 

The particular scheduler implemented in this DDF domain is based on a scheduler in 

Ptolemy Classic [17].  The intuition behind this scheduler is that we defer firing of each 

enabled actor until it is absolutely necessary in order to avoid deadlock. Thus we don’t 

create more tokens than necessary on each channel. To capture this notion, we define a 

deferrable actor as an actor, one or more of whose output channels already has enough 

tokens to satisfy the demand of the destination actor. There are several points to notice 

here. First, if the actor has multiple output channels, it only takes one output channel 

satisfying one destination actor connected to that channel to be a deferrable actor. Of 
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course if there are more than one output channel satisfying destination actors, the actor is 

still deferrable. However, it does not require that all output channels satisfy all 

destinations actors to be a deferrable actor. Second, when one particular channel of a 

destination actor is satisfied, it has two possible situations. One situation is that the 

number of tokens buffered on that channel is greater than or equal to the number of 

tokens required on that channel in order to fire the destination actor. Another situation is 

that the destination actor does not consume a token on that channel during next firing.  

Third, when one particular channel of a destination actor is satisfied, it does not mean the 

destination actor is enabled. It may be still waiting for tokens on different channels to 

enable the next firing. The consequence is that we cannot use the prefire() method of the 

destination actors to check its deferability. Each actor must expose the number of tokens 

consumed on each input channel as part of its interface, which may dynamically change 

from one firing to another. This will have consequences in designing actors that can be 

used in DDF domain. 

 

Having defined the deferability of an actor, which is a key concept in our scheduler, we 

now give the algorithm in the following pseudo-code: 

 

   

      

 

 

 

 

At the start of each basic iteration compute { 
        E = set of enabled actors 
        D = set of deferrable and enabled actors 
        minimax(D) = subset of D as defined on the next page 
}  
One basic (default) iteration consists of { 
        If (E \ D !=  Ø)  
               fire (E \ D)      
        else if (D != Ø)  
               fire minimax(D) 
        else  
               declare deadlock 
} 
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where the function "minimax(D)" returns a subset of D with the smallest maximum 

number of tokens on their output channels which satisfy the demands of destination 

actors, and the backslash denotes set substraction. 

  

Let’s check this algorithm against the four criteria we proposed at the beginning of this 

section. We fire each actor only when it is enabled, and we assume each actor is written 

such that at the beginning of each firing, it will consume certain number of tokens 

corresponding to one of its firing rules from each input channel; then it accurately 

performs its computation (in other words the code in each actor has no bug); finally it 

produces tokens resulting from tokens it just consumed to the output channels. Therefore 

the operational semantics should be consistent with the denotational semantics, and we 

have a correct execution. 

 

It is easy to see that the only time the scheduler will declare a deadlock is when both if-

clauses  return false, i.e.,  

                                                   E \ D == Ø  && D == Ø. 

This is equivalent to  

                                                           E == D == Ø. 

Therefore we can conclude that the scheduler will declare deadlock only when there are 

no enabled actors (E == Ø), i.e., when all actors are read-blocked. This guarantees that 

the model will be executed forever if it can be executed forever. In particular, it won’t 

stop prematurely if there are still enabled actors. 
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Parks designed an algorithm which guarantees bounded execution for a process network 

if it can be executed with bounded memory. The basic idea is to start with a small buffer 

size on each channel, which will introduce a write-block if the output channel is full. 

Then the model is executed until a global deadlock is reached. At this time, if some actors 

are write-blocked (i.e., it is an artificial deadlock due to the limited buffer size), increase 

the smallest full buffer size among those channels where write-block occurs. Then 

continue to execute the model and repeat the deadlock-resolving mechanism if necessary. 

This technique cannot be directly applied to dataflow scheduling because the firing of a 

dataflow actor is atomic. Once it is initialized, the firing cannot be suspended until all 

output tokens are produced. For example, in Figure 3.3, the source actor A produces 10 

tokens in each firing and the sink actor B consumes 1 token in each firing. In the PN 

(process network) domain, this model can be executed with buffer size of 1 because the 

process associated with actor A will suspend itself if the output channel has already been 

filled with one token and continue to produce the next token only after the process 

associated with actor B has consumed the token and emptied the channel. If the same 

model is executed under a dataflow scheduler, when actor A fires, it will require a buffer 

size of 10 on the output channel to store all tokens produced in each firing. Therefore 

whatever dataflow scheduler is used, a buffer size of at least 10 is required to execute this 

model.  
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           Figure 3.3 A simple model with two actors 

In order to preserve bounded memory whenever possible, a dataflow actor should not 

produce more tokens to the output channels when there are already enough tokens to 

satisfy the demand of destination actors. Therefore during each basic iteration we only 

fire enabled and non-deferrable actors (the set E \ D) if possible. Assume each actor 

consumes or produces at most N tokens in each channel during each firing. There could 

be as many as N-1 tokens on a channel with the demand still unsatisfied. An actor could 

produce as many as N tokens on each output channel when fired, so there could be as 

many as 2N-1 tokens on a channel. If deferrable actors are never fired, then there will 

never be more than 2N-1 tokens on any channel. However, if at some point during the 

execution, all enabled actors become deferrable (E == D), we will fire minimax(D) 

according to the algorithm. The motivation is to increase the capacity of only the smallest 

full channels as Parks’ algorithm did for process networks. Each deferrable actor has at 

least one output channel with a satisfied demand. In some sense, such channels are full. 

In general we do not know which channels an actor firing will produce tokens on, so for 

each deferrable actor we must determine the largest such channel buffer size, which is 

denoted as Ni for actor i. We choose to fire actors with the smallest value for Ni (the set 

minimax(D)). Some arguments presented here are vague, and as of this writing we don’t 
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have a rigorous proof yet that the algorithm satisfies criterion 3. It remains further work. 

However, our experience points to that direction and indeed it is a challenge to come up 

with a model that can be executed in bounded memory but fails to do so with our 

algorithm.  

 

With the way the algorithm is designed, the set of actors that are executed in each basic 

iteration is determinate. The reason is that only at the start of each basic iteration are all 

actors classified into sets E, D, minimax(D). These sets are not updated in the middle of 

one basic iteration. Each set is a function of a model’s state represented by tokens (their 

number and values) queued on each channel. By “function” we mean the contents of each 

set do not depend on the order in which we examine the status of each actor. The 

resulting state after firing a set of actors does not depend on the order in which we fire 

each actor in the set. Therefore we can conclude that each basic iteration is well-defined 

and determinate. Later on we will show the mechanism to group several basic iterations 

into one iteration that is more meaningful.      

 

3.2 Implementation of DDF Domain in Ptolemy II  

This section continues with the implementation of a scheduler under the Ptolemy II 

framework. In Ptolemy II, each domain has a director which is responsible for controlling 

the execution of actors in that domain. In some domains, such as CT, SDF and SR, the 

model can be statically analyzed (called compiling a model) to come up with a schedule 

before execution starts. That is the job of a scheduler. In other domains such as DE, 

firings of actors can only be dynamically scheduled during the execution. For these 

domains, there is no (static) scheduler per se and all functionality (including dynamic 
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scheduling and actor invocation since they are closely intertwined) is implemented in the 

director.  The DDF domain belongs to the latter case and therefore a single DDFDirector 

does dynamic scheduling as well as actor invocation. 

 

In Ptolemy II, the semantics of a domain is defined both by the director and the receiver. 

The director is responsible for controlling the flow of execution and the receiver is 

responsible for mediating communication between actors. Since the communication style 

in a dataflow network is asynchronous message passing, we need a first-in-first-out queue 

to act as the receiver in the DDF domain. There are two kinds of receivers that are 

already implemented in the software which can be used for our purpose. One is the 

SDFReceiver, which contains a FIFOQueue implemented with an array. Another is the 

QueueReceiver which contains a FIFOQueue implemented with a LinkedList. We choose 

to use the SDFReceiver in this implementation. 

 

According to the execution model in Ptolemy II, a director controls how actors are 

invoked with the action methods defined in the Executable interface. A brief description 

of the implementation for each method is given here. 

 

preinitialize() 

For a static scheduling director, this is the place where a static schedule is computed. 

Since DDFDirector does dynamic scheduling, we simply inherit this method from the 

base class. 

 

initialize() 
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In this method, we classify all actors into three categories: actors that are not enabled, 

actors that are enabled but deferrable, and actors that are enabled and not deferrable. We 

also search those actors for a parameter named requiredFiringsPerIteration, which 

specifies the number of times the actor must be fired in one iteration. Since some actors 

may not get fired in one basic iteration, one iteration consists of several basic iterations 

(possible infinite if the model is ill-designed). The reason we introduce this mechanism to 

define an iteration is to match the user’s expectation. For example, intuitively a user 

would expect to see one token consumed and plotted by a sink actor in each iteration, 

which can be achieved by adding the parameter to the sink plotter with value 1. 

 

prefire() 

If the DDF domain is embedded in another domain, we first check the input ports of the 

container composite actor to see whether they have enough tokens. It is tricky to do that 

because unlike SDF, it is undecidable for DDF to determine the exact number of tokens 

required to finish one iteration. This point will be further elaborated in section 3.5 when 

we mix DDF domain with other Ptolemy II domains. We also reset to zero the counting 

variables for those actors which are required to fire specified number of times in each 

iteration. 

 

fire() 

This is the place where the bulk of computation is performed. Each invocation of this 

method corresponds to one iteration of the model, which by default is one basic iteration. 

However, if some actor has a parameter named requiredFiringsPerIteration, continue to 

execute basic iterations until the actor has been fired at least the number of times given 
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by that parameter. If more than one actor has such a parameter, then the iteration will 

continue until all are satisfied. As an optimization technique, after each actor is fired, we 

determine the new status (is it enabled? is it deferrable?) of the actors directly connected 

to this actor as well as itself since the rest of the actors won’t be affected. Then we don’t 

need to do classification for each actor at the beginning of the next iteration. 

 

posfire() 

This method returns false if it is determined that the execution of the model should not 

continue to the next iteration. This happens when the number of iterations specified in the 

director parameter has been reached (there is no upper limit if the parameter is left with 

its default value 0) or the model comes to a deadlock in the current iteration. 

 

wrapup() 

This method is invoked exactly once at the end of the execution for cleaning up purposes. 

We simply inherit it from the base class. 

 

3.3 Design of Actors Used in DDF Domain 

Given the scheduling algorithm in previous sections, we now consider the 

implementation details such as how to determine whether an actor is enabled. What kind 

interface should an actor expose so that the director can do proper scheduling based on 

the information provide by the actor’s interface? We will generalize the mechanism used 

in the SDF domain.  
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In SDF, the scheduling algorithm relies on the actors in the model to declare the data 

rates of each port. The data rates of ports are specified using up to three parameters on 

each port named tokenConsumptionRate, tokenProductionRate, and tokenInitProduction. 

The production parameters are valid only for output ports, while the consumption 

parameter is valid only for input ports. If a valid parameter is not specified when the 

scheduler runs, then default values of the parameters corresponding to a homogeneous 

actor will be assumed: input ports are assumed to have a consumption rate of one, output 

ports are assumed to have a production rate of one, and no tokens produced during 

initialization. If there are multiple channels connected to a multiport, all channels are 

assumed to have the same rate given by the parameter. 

 

In DDF, the director also relies on the tokenConsumptionRate parameter of each input 

port to determine whether an actor is enabled or deferrable. (The tokenProductionRate 

parameter has no use in DDF because for a general DDF actor this information is not 

available before the actor gets fired. The tokenInitProduction serves the same purpose as 

in SDF, which is the initial token production rate during the initialization phase, used to 

generate initial tokens for the model at the beginning of the execution.)  However, unlike 

an SDF actor, the dynamic nature of DDF actor dictates that the parameter will have a 

possible new value after each firing and thus must be updated if needed.  
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                    Figure 3.4 Icons for DDFBooleanSelect and BooleanSwitch actors 

For example, the BooleanSelect Actor is a canonical actor in DDF domain and its design 

is representative of DDF actors. (See Figure 3.4, where it is renamed DDFBooleanSelect 

to distinguished it from BooleanSelect used in other domains such as DE. We are 

currently working on a domain polymorphic version.) It has the following firing rules: 

                                             [ ] [ ] [ ] [ ]( ){ }( * , , ) , , * ,T F⊥ ⊥   

where the first rule says if the control port has a true token, the trueInput port must have a 

token and the second rule says if the control port has a false token, the falseInput port 

must have a token. Compared with SDF actor firing rule which only specifies the number 

of tokens each input port must consume, the firing rules of BooleanSelect actor also 

assert the token values of some input port. It seems that just providing the rate 

information wouldn’t be enough to distinguish between different firing rules. However, it 

turns out that for a large category of actors which use so-called sequential firing rules, we 

can decompose original actor firing which would be enabled only when one of firing 

rules is satisfied into multiple firings and in each of new firings, the rate information 

would be enough to determine if an actor is enabled.  
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Before proceeding with how this can be achieved with BooleanSelect actor, let’s spend a 

few words on sequential firing rules. Intuitively sequential means that the firing rules can 

be tested in a pre-defined order using only blocking reads. Each blocking read can be 

expressed as rate information on the input ports. Upon consuming the token, the actor 

determines the next input port to read token from, and the corresponding rate information 

is updated to reflect that. For a more rigorous treatment of this rather technical definition 

of sequentiality, please refer to [9]. Later on in this section, we will give an example of 

non-sequential firing rules. 

 

The firing rules of BooleanSelect actor are sequential, therefore we can introduce a two-

phase firings for this actor. During initialization, the control port sets its rate to 1 and 

trueInput/falseInput ports both set their rates to 0.  

 

This code block from DDFBooleanSelect actor shows initialization: 

 

 

 

 

 

In the first firing, the actor consumes a Boolean token from control port. Depending on 

the Boolean value of that token (true or false), the corresponding port (trueInput or 

falseInput) changes its rate to 1 and the other port keeps its rate at 0. The control port also 

needs to change its rate to 0 to declare that it doesn’t consume token in the next firing. In 

the second firing, trueInput port or falseInput port with rate 1 consumes one token and 

public void initialize() throws IllegalActionException { 

        super.initialize(); 

        _isControlRead = false; 

        trueInput_tokenConsumptionRate.setToken(new IntToken(0)); 

        falseInput_tokenConsumptionRate.setToken(new IntToken(0)); 

        control_tokenConsumptionRate.setToken(new IntToken(1)); 

 } 
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sends it to the output port. Then the actor resets the rate parameters of all input ports just 

as before first firing.   

 

This code block from DDFBooleanSelect actor shows two-phase firings:                    

 

     

 

 

 

 

 

 

 

This code block from DDFBooleanSelect actor shows the rate update after each firing: 

 

 

 

 

 

 

 

 

 

 

public void fire() throws IllegalActionException { 

        if (_isControlRead) { 

            if (_control) { 

                output.send(0, trueInput.get(0)); 

            } else { 

                output.send(0, falseInput.get(0)); 

            } 

            _isControlRead = false; 

        } else { 

            _control = ((BooleanToken)control.get(0)).booleanValue(); 

            _isControlRead = true; 

        } 

} 

public boolean postfire() throws IllegalActionException { 

        if (_isControlRead) { 

            if (_control) { 

                trueInput_tokenConsumptionRate.setToken(new IntToken(1)); 

                falseInput_tokenConsumptionRate.setToken(new IntToken(0)); 

                control_tokenConsumptionRate.setToken(new IntToken(0)); 

            } else { 

                trueInput_tokenConsumptionRate.setToken(new IntToken(0)); 

                falseInput_tokenConsumptionRate.setToken(new IntToken(1)); 

                control_tokenConsumptionRate.setToken(new IntToken(0)); 

            } 

        } else { 

            trueInput_tokenConsumptionRate.setToken(new IntToken(0)); 

            falseInput_tokenConsumptionRate.setToken(new IntToken(0)); 

            control_tokenConsumptionRate.setToken(new IntToken(1)); 

        } 

        return super.postfire(); 

} 
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                                   Figure 3.5 Icons for DDFSelect and Switch actors 

 

Another extension of the SDF domain involves rate declaration for multiports, which 

allow multiple-channel connections. In SDF, all channels connected to the same 

multiport have the same rate. This won’t work for some dynamic actors. For example, the 

Select actor is very similar to BooleanSelect actor functionally. (See Figure 3.5 where we 

use the name DDFSelect to distinguish from Select used in other domains such as DE.) 

Its input port is a multiport (represented by hollow arrow) because the actor 

communicates via an indeterminate number of channels depending on the connections 

made to the input port. The control port consumes an integer token, and its value 

specifies the input channel that should be read in the next firing. In this case, we use an 

ArrayToken for each multiport to represent the rates of channels. The length of the array 

is equal to the width of the port which is the number of channels connected to the port. 

Each element of the array represents the rate of a channel in the order channels are 

created while building the model. The rest of functionality including two-phase firings is 

the same as for the DDFBooleanSelect Actor.  
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It is interesting to notice that two actors BooleanSwitch and Switch (see Figure 3.4 and 

3.5), the counterparts of BooleanSelect and Select, don’t need special treatment to be 

used in DDF domain. They only have one firing rule ---- each input channel needs one 

token. And that’s the default firing rule if no rate parameters are declared. It is also 

appropriate to mention that all SDF actors can be directly used in DDF domain since SDF 

domain is a subset of DDF domain.  

 

This code block from the DDFSelect actor shows using ArrayToken to represent rates: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally we give an example of non-sequential firing rules. The example is the famous 

Gustave function . It has three input ports and has the following firing rules: 

public boolean postfire() throws IllegalActionException { 

        if (_isControlRead) { 

            Token[] rates = new IntToken[input.getWidth()]; 

            for (int i = 0; i < input.getWidth(); i++) { 

                rates[i] = new IntToken(0); 

            } 

            rates[_control] = new IntToken(1); 

            input_tokenConsumptionRate.setToken(new ArrayToken(rates)); 

            control_tokenConsumptionRate.setToken(new IntToken(0)); 

        } else { 

            Token[] rates = new IntToken[input.getWidth()]; 

            for (int i = 0; i < input.getWidth(); i++) { 

                rates[i] = new IntToken(0); 

            } 

            input_tokenConsumptionRate.setToken(new ArrayToken(rates)); 

            control_tokenConsumptionRate.setToken(new IntToken(1)); 

        } 

        return super.postfire(); 

} 
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                                 [ ] [ ] [ ] [ ]( ) [ ] [ ]( ){ }( 1 , 0 , ) , 0 , , 1 , , 1 , 0⊥ ⊥ ⊥  

A blocking read on any input port would not give the desired behavior. An actor with this 

set of firing rules can not be used in the current DDF implementation. 

 

3.4 Performance Comparison: SDF, DDF and PN 

Dataflow process networks have been shown to be a special case of Kahn process 

networks. In dataflow process networks, each process consists of repeated firings of a 

dataflow actor, which defines a quantum of computation. Using this quantum avoids the 

complexities and context switching overhead of process suspension and resumption 

incurred in most implementations of Kahn process networks. Instead of context 

switching, dataflow process networks are executed by scheduling the actor firings. This 

scheduling can be done at compile time or at run time. SDF is scheduled at compile time. 

After the static schedule of an SDF graph is computed, the actors can be fired according 

to the predetermined sequence specified by the schedule.  DDF is scheduled at run time, 

which is much more expensive.   

 

To compare the performance of the SDF, DDF and PN domains, we simulated one SDF 

model under all three domains and plotted the running time in each domain. The model 

was slightly modified from ViterbiDecoder created by Rachel Zhou and Edward Lee so 

that we can better control the number of iterations in each domain. We also replaced 

original MonitorValue actors with Discard actors so that their graphical displays would 

not slow down the simulation. The final model contains 30 actors. As we can see from 

Figure 3.6, the simulation in the PN domain takes about twice as long as that in the DDF 

domain, and both are proportional to the number of iterations. SDF has an upfront cost 
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for computing static schedule. After that, the actual running time increases very slowly 

with the number of iterations. The simulation is done on a 2.4GHz Pentium 4 desktop 

installed with Windows XP Professional. 

 

                     Figure 3.6 Simulation time of an SDF model under SDF, DDF, PN domains 

3.5 Mixing DDF with Other Ptolemy II domains 

The Ptolemy project advocates a system modeling and design paradigm called 

hierarchical heterogeneity [19][20]. There exist different approaches to solve the 

complexity of modern embedded system, which consists of heterogeneous components 

interacting with very different styles. One is the unified approach, which seeks a 

consistent semantics for the specification of the complete system. The other is the 

heterogeneous approach, which seeks to systematically combine disjoint semantics each 

describing the characteristics of a subsystem. Different semantics correspond to different 

models of computation (MoC). Each MoC usually matches well with certain design style 
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or certain aspects of the system. Small, specialized languages and tools based on different 

MoCs have proved to be very useful due to their appropriateness for certain domains of 

application and their formal properties resulting from the constrained semantics. Using 

hierarchy, one can divide a complex model into a tree of nested submodels with each 

level being homogeneous (each described by a particular MoC), thus allowing different 

MoCs used at different levels. Figure 3.7, which is directly borrowed from [21], shows a 

hierarchical model in Ptolemy II. Atomic actors, such as A1 and B1, appear at the 

bottom of the hierarchy. Composite actors, such as A2, can further contain other actors, 

so the hierarchy can be arbitrarily nested. Director2 is called the local director of A2 

while Director1 is called the executive director of A2. Hierarchical heterogeneity is 

achieved by having different directors at different levels of the model. 

                                       Figure 3.7 A hierarchical model in Ptolemy II  
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A key concept to achieve compositional execution is the notion of iteration for a model of 

computation. Using the terminology Jie Liu developed [22], an iteration is one composite 

precise reaction that starts with the trigger of the composite actor and finishes at a 

compositional quiescent state where each actor contained reaches its own quiescent state. 

Generally, how many individual precise reactions to aggregate into one composite precise 

reaction could be domain dependent. For some domains one iteration is natural and well-

defined. For others it is not so obvious, which is unfortunately the case for DDF domain. 

 

A composite actor can be embedded inside the DDF domain as long as the actor declares 

the consumption rate for each input port (or use the default value 1) and has a well-

defined iteration when enabled and invoked. For example, an SDF composite actor 

contains an SDFDirector as its local director which (by delegating to the SDFScheduler) 

is responsible for statically analyzing the model contained by this composite actor and 

coming up with a complete cycle of component actor firings (if it exists), which would 

bring the composite actor to its original state (where all internal queues have the same 

number of tokens). Therefore a complete cycle for the SDF composite actor can be 

defined as one iteration and can be repeated indefinitely in bounded memory. Sometimes 

even when there is only one flat DDF model without any hierarchy, it is useful to 

compose some SDF actors into a submodel and add one level of hierarchy so that the 

submodel can be scheduled with static analysis. This would relieve some of the burden 

for dynamic scheduling. One should take caution in doing so, because arbitrary 

composition may lead to a deadlock which does not exist in the original model. Buck 

further developed this idea and created a new Boolean dataflow (BDF) domain [15]. This 

domain allows some special dynamic actors such as BooleanSelect and BooleaSwitch. 
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Automatic clustering can be performed to derive a quasi-static schedule for part of the 

model or even for the whole model if the clustering algorithm succeeds in reducing the 

model into a composite actor. If more than one actor remains to be scheduled, a 

DDFDirector can be used at the top level to direct the execution of the whole model, 

while each composite actor uses its own quasi-static schedule. This effectively reduces 

dynamic scheduling decisions that must be made during execution, because although 

quasi-static schedules still involve some data-dependent decisions, they come in a much 

simplified and disciplined form.  

 

One the other hand, composition of actors will decrease the granularity of the model and 

may lead to sub-optimal performance when the actors are scheduled on, say, parallel 

processors. Therefore the overall effect must be analyzed to make a good decision. 

 

When it comes to embedding DDF domain inside other domains, a lot of subtleties arise 

that fundamentally result from the fact that DDF domain is Turing-complete and a lot of 

properties are undecidable. As usual we need to define a meaningful iteration for the 

DDF submodel and also define firing rules for the composite DDF actor.  

 

For a top level DDF model, we’ve already defined “basic iteration” and “iteration”. If we 

use the basic iteration as one iteration for the DDF submodel, we can guarantee the 

reactivity of the composite actor since a basic iteration is always finite. However, we 

cannot guarantee that each iteration will produce fixed number of tokens, therefore a 

DDF submodel cannot be embedded in an SDF model. There is another problem with 

using the basic iteration. In Figure 3.8, Actor A would produce 2 tokens and actor B 
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would consume 1 token in each basic iteration (except the first iteration when B does not 

have token on its input port). This would lead to unbounded memory consumption. One 

solution is to define an iteration such that actor B is fired twice in each iteration (as done 

in a top level DDF model using parameter requiredFiringsPerIteration). But imagine the 

case that actor A produces a varying number of tokens in each firing. In this case it would 

be nice to define an iteration which consists of firing actors in the submodel until the 

submodel is deadlocked without reading tokens from outside domain. This option is 

indeed provided, as we will explain later. (The reader might argue the submodel in Figure 

3.8 is actually an SDF composite actor and using DDFDirector is neither necessary nor 

desired in this case. But we could easily find a DDF composite actor with the same 

problem.)  

 

 

 

        Figure 3.8 An example of a DDF composite actor 

1 2 1 1 
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If we define an iteration for a DDF submodel such that some contained actor(s) must be 

fired a given number of times as we just did for Figure 3.8, it will have difficulty in other 

models. For example, in Figure 3.9, it would be nice to have actor B fire once in each 

iteration so that there is one output token per iteration. The problem is that we cannot 

define firing rules for such an iteration because we don’t know how many tokens the 

composite actor needs to consume before it can output one token. Again in this case one 

iteration can be defined as running the submodel until deadlock. Then it has a well-

defined firing rule, i.e., the input port needs one token. But it cannot produce a token per 

iteration. That’s a compromise we have to make because the DDF domain is a superset of 

SDF domain and it’s generally impossible to convert a DDF submodel into an SDF 

composite actor. 

 

 

 

          3.9 Yet another example of a DDF composite actor 
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So far it seems that running until deadlock is a preferred choice for defining an iteration 

for a DDF submodel. However, in the previous two examples, we did not include any 

source actor nor feedback loop, which can destroy reactivity of the composite actor if we 

don’t constrain the number of times the actors in the submodel can fire. In Figure 3.10, a 

nice way to define one iteration is to add requiredFiringsPerIteration parameter to 

DDFBooleanSelect actor with value two. (Remember two-phase firings of 

DDFBooleanSelect  actor which outputs one token every two firings.) 

 

 

 

                        Figure 3.10 Still another example of a DDF composite actor 

Having seen the complexity of defining one iteration for a DDF composite actor, we 

choose to provide a number of choices to the user, and let the user take the final 

responsibility to define one iteration, as appropriate for their specific application. To sum 

up, an iteration can be defined as (1) a basic iteration, (2) several basic iterations which 
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satisfy requiredFiringsPerIteration for the actors with that parameter, (3) repeating a 

basic iteration until the submodel is deadlocked. Among these three definitions, (2) 

overrides (1), (3) overrides (1) and (2). Also notice that while definition (1) and (2) are 

also applicable for top level DDF models, definition (3) is only applicable for embedded 

DDF submodels.  

 

We also have the following rules for transferring tokens into and out of DDF submodels. 

If the user manually adds tokenConsumptionRate and tokenProductionRate parameters to 

the input ports and output ports of the DDF composite actor, the local DDFDirector will 

leave them as they are and obey them assuming the user knows the consequence of 

his(her) actions. If the rates of some ports are not manually defined, the local 

DDFDirector will try to define them in a reasonable way. For the input port, the 

tokenConsumptionRate is set to the minimum number of tokens needed to satisfy one of 

destination actors connected to this input port. Therefore the rate could be zero if one of 

destination actors already has enough tokens on the channel connected to this input port. 

However, if no actor in the DDF composite actor gets fired during the previous iteration, 

the tokenConsumptionRate is set to the minimum number of tokens needed to satisfy one 

of destination actors that are connected to this input port and haven’t been satisfied on the 

connecting channels. The motivation behind this seemingly complicated procedure is to 

try to break a deadlock using minimum number of tokens. When every destination actor 

connected to this input port has been satisfied and the submodel is still deadlocked in the 

previous iteration, the tokenConsumptionRate of this input port is set to zero. For the 

output port (which has no tokenProductionRate parameter added by the user), the local 

DDFDirector will not set the rate for this output port because in general there is no way 
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to know how many tokens will be produced before each iteration. Instead the local 

DDFDirector will transfer all tokens produced for this output port in each iteration.  

 

Finally we want to emphasize that the mechanism we provide to define iterations and set 

rates should be considered “best effort”. We don’t claim this will solve the problem of 

embedding arbitrary DDF submodel into other domains because fundamentally DDF 

domain is Turing-complete and many properties are undecidable. However, many 

interesting models can be built if the mechanism is used wisely. We will show some 

examples in the next chapter.       
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4 Application Examples 
      

This section gives several examples to show how conditionals, data-dependent iterations, 

recursion and other dynamic constructs can be modeled in DDF domain. 

 

4.1 An OrderedMerge example 

The first example in Figure 4.1 is due to Kahn and MacQueen. It calculates integers 

whose prime factors are only 2, 3 and 5, with no redundancies. It uses the OrderedMerge 

actor, which takes two monotonically increasing input sequences and merges them into 

one monotonically increasing output sequence. This model was originally implemented 

in PN domain and is adapted here to show the concept of an iteration in DDF domain. 

Although no static or quasi-static schedule can be computed for this model, by adding a 

requiredFiringsPerIteration parameter to Display actor and setting its value to one, we 

have effectively defined one iteration of this model such that there is one output per 

iteration. This iteration does not bring the model to its original state or anything close to 

that, but matches well with our intuition and serves to precisely control the progress of 

the simulation by specifying the number of iterations (i.,e. how many output tokens) we 

want in one execution.  
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                                          Figure 4.1 An OrderedMerge example 
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4.2 Conditionals with If-Else Structure 

This DDF-inside-SDF example in Figure 4.2 demonstrates an if-then-else like structure in 

the dataflow context.  

 

 

 

 

 

                Figure 4.2 An example with if-then-else structure 
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In this example, we must add rate parameters and set their values to one for all input ports 

and output port of the DDF composite actor because it must look like an SDF actor from 

outside. We also add a requiredFiringsPerIteration parameter to DDFBooleanSelect 

actor and set its value to 2. In each iteration of the DDF composite actor, each input port 

transfers a token to the inside. Depending on the Boolean value of the token transferred 

from control input port, the token transferred from ramp input port is routed to the upper 

or the lower branch. Then it is processed by some actor(s) and reemerges from 

DDFBooleanSelect actor. Finally it is transferred to the outside through the output port. 

 

4.3 Data-Dependent Iterations 

The model in Figure 4.3 illustrates a do-while like structure in the dataflow context. Each 

input integer from Ramp actor is repeatedly multiplied by 0.5 until the product is below 

0.5. The outside-the-loop Plotter has a requiredFiringsPerIteration parameter with value 

1. Therefore each iteration in this model corresponds to a complete do-while loop for 

each input integer.     

 

Another model in Figure 4.4 generates a random walk with evenly spaced steps. It has 

three-level nesting: SDF inside DDF inside SDF. In each iteration of DDF composite 

actor, the ParameterPort numberOfSteps gets one token from outside domain and uses its 

value to configure both Repeat actors. Since the number of tokens produced by the 

Repeat actors varies, we set the runUntilDeadlockInOneIteration parameter of 

DDFDirector to true so that in each iteration of DDF composite actor, all tokens 

produced by Repeat actors are consumed.       
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                              Figure 4.3 An example with do-while structure 
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                       Figure 4.4 A random walk example with SDF/DDF/SDF nesting   
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4.4 Recursion: Sieve of Eratosthenes 

Eratosthenes (276 - 196 B.C.) invented a method called Sieve of Eratosthenes for 

efficiently constructing tables of prime numbers, which, in modified form, is still an 

important tool in number theory research. It is interesting to see it implemented in a 

dataflow context. The method goes like this: 

First, write down a list of integers beginning with 2,                    

                 2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 

Then filter out all multiples of 2:  

                 2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20 
                                          x      x      x       x        x        x        x        x        x 
 
Move to the next remaining number, which in this case is 3, then filter out all its 

multiples:  

                                  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 
                                          x      x      x  x    x        x        x   x   x        x        x 
 
Continue in this fashion and filter out all multiples of the next remaining number. The 

numbers that are left up to this remaining number are all prime numbers. In principle, this 

process can be repeated indefinitely to find any prime number. 

 

This method can be implemented in a dataflow model with an ActorRecursion actor we 

created. Because each filtering has the same structure, we only need to build one structure 

and whenever filtering against another number is needed, we can copy (clone) the same 

structure and expand the topology.  

 

Technically, the ActorRecursion actor is a composite actor with a StringParameter named 

recursionActor. Upon firing, it clones the composite actor containing itself and referred 
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to by its StringParameter. It then places the clone inside itself and connects the 

corresponding ports of both actors. It uses local DDFDirector to preinitialize the clone 

and then transfers all tokens contained by input ports of this actor to the connected 

opaque ports inside. It again uses local DDFDirector to initialize all actors contained by 

this actor and check their statuses (enabled? deferable?). It then transfers all tokens 

(produced during initialization) contained by output ports of this actor to the connected 

opaque ports outside. It finally merges local DDFDirector with its executive 

DDFDirector and then removes local DDFDirector. Thus during entire execution this 

actor is fired at most once, after which the executive director directly controls all actors 

inside.   

 

As is done in many cases, the Display actor in the model (see Figure 4.5) has a 

requiredFiringsPerIteration parameter and the value is one. Therefore in each iteration it 

will get a prime number. Before the execution, ActorRecursion contains only an 

embedded DDFDirector. But as execution goes on, the model topology will be 

dynamically expanded.  

 

We have built another demo called Hanoi Tower using the same ActorRecursion. Due to 

its complexity, it is not shown in this report. Interested readers may refer to Ptolemy tree 

and future distribution.     
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Figure 4.5 Implementation of Sieve of Eratosthenes with recursion 
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5 Conclusion and Future Work 

In this report, we first motivated the use of dataflow model of computation and gave a 

brief review of the denotational semantics of Kahn process networks and a denotational 

semantics of dataflow with firing as theoretical foundations. Then we described the 

implementation of a dynamic dataflow scheduling algorithm under Ptolemy II framework 

guided by several criteria we’d like it to satisfy. We show how to write actors that can be 

used in this domain. We also discuss composing DDF with other models of computation. 

The report concludes with several examples showing how conditionals, data-dependent 

iterations, recursion and other dynamic constructs can be modeled in DDF domain. 

 

The future work includes developing a scheduling algorithm for non-sequential firing 

functions such as Gustave function. Mechanisms for composing the DDF domain with 

other models of computation could be further improved. A timed DDF model of 

computation similar to timed PN could be developed, thus making it easier to compose 

with other timed models of computation.      
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