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Chapter 1

Introduction to Soft Walls

1.1 Soft Walls

In response to the September 11, 2001 hijackings, Edward Lee proposed a
new flight-control technology called Soft Walls [9]. The Soft Walls strategy
is to store a 3D database of “no-fly zones”, or restricted airspace, on-board
each aircraft and enforce these no-fly zones using an avionics control system.
Each aircraft will have its own Soft Walls system. Also, the database will
require a digital signature to update the no-fly zones so that the system is
non-hackable.

Soft Walls is not an autonomous control strategy. That is, the controller
does not remove pilot input when the aircraft approaches a no-fly zone. In-
stead the controller adds a bias to the pilot input, and it never removes all
pilot authority. A pilot who approaches a no-fly zone and holds steady will
be turned away from the no-fly zone until it is safe to let the aircraft fly
straight. A pilot who chooses to turn away faster can do so. A pilot who
tries to fly into the no-fly zone will be unsuccessful. Through this, Soft Walls
will maximize pilot authority subject to the constraint that no-fly zones are
enforced. (The system may also include comfort constraints.) This will give
the pilot more maneuverability in an emergency. Figure 1.1 shows how pi-
lot decisions affect the control system. See [10] for some objections to this
strategy.

Even though Soft Walls is not an autonomous control strategy, it is related
to autonomous aircraft control in that it is a collision avoidance problem.
This lets us apply collision avoidance techniques similar to those used for
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Figure 1.1: A pilot who approaches a no-fly zone and holds steady will be
turned away from the no-fly zone until it is safe to let the aircraft fly straight.
A pilot who chooses to turn away faster can do so. A pilot who tries to fly
into the no-fly zone will be unsuccessful.

autonomous flight-path planners that keep two autonomous aircraft from
colliding. This paper focuses on the collision avoidance algorithms. We
consider several controllers we have developed for simulation.

1.2 System Model

We seek a system model that tracks the aircraft’s state as it changes with
time. To match reality, this model should depend on the pilot’s actions as
well as the actions of the control system we design. We want a general model
that does not depend on the particular dynamics of the aircraft. This helps
us apply our algorithms to different aircraft.

We let [A — B] represent the set of functions mapping A to B, where A
and B are sets. Then [A ™% B] represents the set of measurable functions
from A to B. We then define a system by the tuple

S=(,X,UU,D,D,f¢EX), (1.1)

in which



I C R is an interval of time, and ¢ € [ is a particular time. We assume
that I is a connected subset of R.

X C R" is the state space.

U C R™, where U is closed and bounded, is the control space.

meas

U = [I — U] is set of control evolutions over the interval of time I. If
u € U is a control evolution, and if ¢t € I, then u(t) € U is the control
input at time t.

D C RP, where D is closed and bounded, is the disturbance space.

meas

D = [I — D] is set of disturbance evolutions over the interval of time
I. If d € D is a disturbance evolution, and if ¢t € I, then d(t) € D is
the control input at time t¢.

f: X xUxD — R"is a bounded, Lipschitz continuous function that
describes the flow of the system. That is, f(z(t),u(t),d(t)) is the rate
of change in state at time t.

C C 2! is the set of all closed, bounded, and connected subsets of I. If
Q2 € C, then Ja,b € I such that Q = [a, b].

E:Cx X xUXxD— X isatrajectory. If ye X, uel, d e D, and
[tl,tg] S C, with ty > t1, then

5([t17 t2]7 Y, u, d) =y+ /t 2 f(f([tl,TLy, U, d)? U(T)v d(T))dT (1‘2>

X C [I — X] is the set of all state evolutions over the interval of time
I. A state evolution x is in X there exists a u € U and d € D such
that @(t) = f(x(t),u(t),d(t)) for all t € I. If x(t;) =y for ¢; € I, then
x(ty) = &([t1, ta], f,y,u,d) for all to € I satisfying to > t;.

In Soft Walls x € X is the trajectory of the aircraft. d € D is the action

of the pilot, while u € U is the action of the Soft Walls controller. Note
that U and D are compact sets. This means that at each time t € I, the
control input u(¢) and disturbance input d(t) are bounded. These bounds
are constraints on the types of inputs the system will accept. These bounds
may come from safety constraints or physical limitations of the aircraft. f
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describes the dynamics equation of the aircraft. The constraints that f is
bounded and Lipschitz continuous guarantees that for each initial condition
and v € U and d € D, the system S gives a unique trajectory = € X.

In this paper, we focus on a particular system S. Here X = R3. If t € |
we let x(t) = (zp1(t), zp2(t), 24 (t))T represent the state at time t. We define
f as

Zp1 (1) s cos (1)
f Tp(t) |, u(t),d(t) | = | ssinzy(t) |. (1.3)
xp(t) u(t) +d(t)

For a picture of the state space, see Figure 1.2.

~ Xp2

N\ e
"

N

Figure 1.2: The state space for the single aircraft is the aircraft’s position
(xp1(t), xpa(t)) and heading x5 (f). We use this model for our Soft Walls-
controller implementation.

Here we assume the aircraft is travelling at a fixed speed s > 0, so the
aircraft can only turn or go straight. The input is the rate of change in
heading angle. We assume that, due to safety constraints, the aircraft allows
a maximum rate of change in heading of M > 0. We will only let the pilot
give inputs in this range, so D = [-M, M|. At each t € I, so that the control
input can force the aircraft to turn away from the no-fly zone even if the pilot
input commands the aircraft to turn into the no-fly zone, we let |u(t)| > M.
So that even when the maximum control input is applied, the pilot still has
some authority, we need |u(t)| < 2M. We choose U = [-1.5M,1.5M]. We
also limit the value of u(t)+d(t) to the range [— M, M], but we do not include
this in our dynamics model. We will explain why in Chapter 2.



Chapter 2

Control from an Implicit
Surface Function

2.1 Collision-Avoidance Verification with the

Hamilton-Jacobi-Isaacs Approach

In this section we present a multi-agent collision-avoidance approach for con-
tinuous systems. This is an adaptation of the work of [16] and [15]. We re-
strict ourselves to nonlinear continuous systems, whereas these papers solve
the problem for nonlinear hybrid systems. We use a different information
pattern, which we will explain in Section 2.1.1.

2.1.1 Verification Methodology

Given our system S, we now derive a method to generate the unsafe region
of the state space X. The target set T is an illegal region of the state space,
and a “conflict” occurs at time ¢ if z(t) € T. For Soft Walls T" is the no-fly
zone. Here, T is a target we want to avoid; the word target comes from
missile guidance problems [8]. We let Pre : 2¥ — 2% be the predecessor
function. This function will have the property that Pre(7"), which we call
the backwards reachable set of T, is the unsafe region of the state space.
Given T', for any control evolution and for each y € Pre(T), there exists a
disturbance evolution which causes a trajectory starting at y to eventually
enter T'. Trivially, if y € T, then y € Pre(T). If a trajectory starts outside
this subset of the state space, then there exists a control evolution that keeps



the state outside of T'. We will give a definition of Pre shortly, but we first
need some more definitions.

We can describe this collision-avoidance situation as a two-player game.
Here Player I chooses d € D, and Player II chooses u € U. In Soft Walls
Player I is the pilot, and Player II is the Soft Walls controller. We say Player
[ wins the game if z(t) € T for some t € I. We say Player II wins the game
if x(t) ¢ T for all t € I. The set Pre(T) is the set of states at which Player I
can choose d to guarantee a collision, irrespective of the u Player II chooses.
The set X\Pre(T) is the set of states at which, for each d Player I chooses,
Player II can choose u to avoid a collision for all future time.

We assume that at each time ¢ Player II knows the pilot’s choice of d(7)
for all 7 € I with 7 <. Player II does not know the value of d(7) for 7 > t,
so we call this a nonanticipative strateqgy. We also assume that each time ¢
both players know the state z(7) for all 7 € I with 7 <¢. For t € I we let
I, : 1 — 2 be

L(t)={rel]|Te(—o0,t]} (2.1)

We let the set of nonanticipative control strategies be given by

T = {ye[D—U||d €D,dy € D,Vs € I.(t),di(s) = da(s) =
Vs € L (1), (7(d1))(s) = (v(d2)(s)}- (2.2)

The information pattern tells us which information available to each
player. The information pattern we choose describes the Soft Walls con-
troller, since the system will have access to the pilot’s actions, while the pilot
will not be allowed to monitor the control system actions, only the systems
effects on the aircraft. In [15], Player I is assumed to be an unknown distur-
bance, such as wind, the opposite information pattern is used. For more on
information patterns, see [1]

Formally,

Pre(T)={ye X |Vy e Y,3d € D,3r € (—00,0],&([7,0],y,7v(d),d) € T}.
(2.3)
We let the avoid function Avoid : 2% — 2% output the safe region of the
state space. That is, Avoid(7") = X \Pre(T).

Lemma 2.1. For all T C X,

Avoid(T) ={y € X | 3y € T,Vd € D,V € (—00,0],&([1,0],y,v(d),d) ¢ T}
(2.4)



Proof.

Avoid(T) = {ye X |-(VyeT,3d € D,31 € (—00,0],&([7,0],y,7v(d),d

= {yeX|IyeT,~(3d e D,3r € (—0,0],&([7,0],y,v(d),d

= {yeX|IyeT,VdeD,~(3Ir € (—,0],&([r,0],y,v(d),d

= {ye X |IyeT,VdeD,Vr e (—o0,0],-(&([r,0],y,7(d),d

= {ye X |IyeT,VdeD,Vr € (—o0,0,&(r,0],y,7v(d),d) ¢ T}
Here we carried out negation of a predicate at each step. O

2.1.2 The Cost Function

Given our target set, we want a way to compute Pre(7). Our first step is
to rethink how we characterize T'. If T is a connected, bounded, open set,
and we can create a differentiable function [ : X — R such that z € T if
and only if I(z) < 0, then we have one such characterization. This will be
possible whenever T has a simple shape, like a hypersphere or hypercylinder.
We call [ the terminal cost function. We then define our cost function V :
X XU XD — reals as

V(y,u,d) = inf 1(&([7,0],y,u,d)). (2.5)

T€(—00,0]

As long as [ is bounded below, the infimum will always exist.
Given a set A C R?, we let C"(A) be the set of all functions in [A — R],
that has a continuous n'* derivative for all @ € A. That is

n

Va € A, & (a) exits} (2.6)

)= {gc—Rlfvac a1

From this point on, we assume [ € C*(X) and bounded below, and I(y) < 0
if and only if y € T, so that V exists. In this case, V' has the following
important property:

Lemma 2.2. Giveny e X, u e U, de D,

V(y,u,d) >0 < Vr € (—00,0],&([r,0],y,u,d) ¢ T (2.7)



Proof.

V(y,u,d) >0 < inf 1(&([7,0],y,u,d)) >0

TE€(—00,0]
& V1 € (—00,0],1(&([7,0],y,u,d) >0
< VT e (—OO,O]af([T’ O]7y7uad) g_ﬁ T

Here, we are just applying our definition of V' and I. O
We use Lemma 2.2 to recharacterize Pre(T") and Avoid(T).

Corrolary 2.3.

Pre(T) = {ye X |VyeY,3de D,V (y,v(d),d) <0}  (2.8)
Avoid(T) = {ye X |Iye T, Vde D, V(y,v(d),d) >0} (2.9)

Proof.

Pre(T) = {ye X |VyeY,3d € D,3IT € (—0,0],&([7,0],y,7(d),d) € T}
= {ye X |VyeT,3d € D,~(Vr € (—0,0],&([7,0],y,v(d),d) ¢ T)}
= {ye X [VyeT,3d e D,~(V(y,7(d),d) > 0)}
= {yeX|VyeT,3de D, V(y,v(d),d) <0}

Here we applied predicate negation and Lemma 2.2.

Avoid(T) = {ye X |3yeT,VdeD,Vr € (—o0,0],&([7,0],y,7(d),d) ¢ T}
= {ye X |IyeT,¥deD,V(y,~(d),d) > 0}

Here we simply applied Lemma 2.2. O

Now recall that Player I wins the game by causing a collision. In light of
Equation 2.8, at each time ¢ Player I should choose d to minimize V' (z(t),v(d), d)
and move the state towards the target set until he wins the game. Similarly
Player II should choose v to maximize V(x(t),v(d),d), so he can keep the
state outside of Pre(7") and win the game. Given our information pattern,
Player I will have to minimize V (z(t),v(d),d) over the worst case choose of
7. In Soft Walls, a malicious pilot will try to minimize V(x(t),v(d),d), and
our controller will try to maximize V' (x(t),v(d), d).
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We will show how we can use these strategies to compute Pre(7") in The-
orem 2.6. First, however, let V* : X — R be the optimal cost function,
where

V*(y) = sup inf V(y,v(d), d). (2.10)

fye’r deD

We must the existence and uniqueness of V* before we use it.
Lemma 2.4. Vy € X, min,ex l(z) < V*(y) <I(y).

Proof. Since [ is continuous and bounded below, and the smallest value oc-
curs when z is in the closed set T, min,cx [(z) exists.

Viy) = supinf it IS (7 0Ly v(d), ).

> sup inf minl(z)
yEY deD zeX

= mipl(z)

Here we are saying that no trajectory can give a value of x which has lower
terminal cost than the minimum terminal cost.

V*(y) = supinf inf (¢:([7,0],y,7(d),d))

’YET deD TE(—O0,0]

< supinf I(§ : ([0,0],y,7(d),d))

’YET deD

= (y),

Here we applying the fact that

inf (& ([7,0],y,7(d),d)) < U(y).

TE(—00,0]

Corrolary 2.5. V* exists and is unique.

Proof. Existence follows immediately from Lemma 2.4. Uniqueness follows
from the uniqueness of ¢ and [ and the uniqueness of the inf and sup expres-
sions. O

Finally, we categorize Pre(T") and Avoid(7") in terms of V*.
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Theorem 2.6.

lye X | V*(y) <0}
{lye X [V*(y) >0}

Pre(T) (2.11)
Avoid(T) (2.12)

N 1N

Proof.

V*(y) <0 < supinf V(y,vy(d)d) <0

1
~eY d€D

= Vye T,Cilnlf) V(y,v(d)d) <0
S
& VyeY,3d e D, V(y,y(d)d) <0
We are saying that if V*(y) < 0, Player I can choose d to guarantee a collision.
We now apply this to finish the proof of Equation 2.11.

{ye X |V*(y) <0} C {yeX|VyeT,3deD,V(y,v(d)d) <0}
= Pre(T)

Now we prove Equation 2.12.

V*(y) >0 < supinf V(y,vy(d)d) >0
~veY d€D

= Fre T, infV(y,v(d)d) >0
& dyeT,VdeD,V(y,v(d)d) >0

We are saying that if V*(y) > 0, Player II can choose 7 to avoid any future
collision. We now apply this to finish the proof of Equation 2.12.

{yeX |V (y)>0} C {yeX|[IyeT,VdeD,V(y,(d)d) > 0}
= Avoid(T)

]

This theorem tells us that if V*(y) > 0, then y € Avoid(T'), so we can
guarantee safety. If V*(y) < 0, then y € Pre(T), so we cannot guarantee
safety. If V*(y) = 0, we need extra information to know if y is a safe or unsafe
state. In Soft Walls, this says that if we only know V*, we will need to control
the aircraft before it reaches the boundary of the backwards-reachable set,
which we call OPre(T"). We now explain how to compute V.

12



2.1.3 Games of Finite Duration

Consider the case where our game starts at some time ¢ < 0 and terminates
at time 0. Under this formulation, we will create a cost function we can
compute numerically. We first need some definitions.

e Pt: 2% x R_ — 2% is the timed predecessor, with

Pt(T,s)={ye X |Vye Y,3d € D,3r € [t,0],£([7,0],y,v(d),d) € T}.
(2.13)

o At:2%¥ x R_ — 2% is the timed avoid function, with At(T,s) = X\Pt.
e J: X XU XD xR_ — Ris the timed cost function, with

J(y,u,d,t) = min [(£([7,0],y,u,d)). (2.14)

T€E[¢,0]

Note that the we use min instead of inf, because the set [t, 0] is closed,
so the minimum will exist.

e J*: X xR_ — R is the optimal timed cost function, with

J*(y,t) = sup nlf) J(y,~(d),d,t). (2.15)

i
e de
By the same reasoning as in the last section, we can show that J* exists

and is unique. This gives us Proposition 2.7.

Proposition 2.7.

lye X | J(y,t) <0}
lye X | J(y,t) > 0}

Pt(T, t) (2.16)

C
C At(T,1) (2.17)

The proof of Proposition 2.7 is nearly identical to that of Theorem 2.6.
We now show that at each y € X J*(y,t) is decreasing as the starting time
t decreases.

Lemma 2.8. For allt € (—00,0] and s € (—o0,0], with s < t, and for all
yeX,

IA A



Proof.

J(y,s) = itelgggggég]1(5([7,0],y,u,d))

= sup inf min { min [(&([7,0],y,u,d)), min [(&([T, O],y,u,d))}

yeY d€D TE[s,t] TE[t,0]

= supmin{inf min [({([7,0],y,u,d)), inf min [(&([r, 0],y,u,d))}

~vEY deD 1€(s,t] deD r€|t,0]

= min {sup inf min l({([T,O],y,u,d)),J*(y,t)}

~eY d€D TEs,t]

Thus J*(y,s) < J*(y,t). Here we have broken [s, 0] into the two intervals
[s,t] and [t, 0], to prove Equation 2.18.

V*(y) = supinf min [(&([7,0],y,u,d))

~eY d€D T7€—(00,0]

= sup inf min{ min [(£([7,0],y,u,d)), min {(&([T, 0],y,u,d))}

~veY d€D T€(00,8] 7€[5,0]
sup min {élelp‘rg(l;gs] (&([7, 0], y,u, )),;gpgﬁ] (7, 0], y,u, ))}

- min{sup inf min l(ﬁ([r,O],y,u,d)),J*(y,s)}

~eY d€D T€(00,8]

Thus V*(y) < J*(y, s). Here we have broken (—oo, 0] into the two intervals
(—o0, s] and [s, 0], to prove Equation 2.18. O

Not only is V*(y) a lower bound for J*(y,t), it is also a limit point as
t —, —o00. This is what we now show in theorem 2.9

Theorem 2.9. For all y € X,

Jim T (y, 1) =V (y) (2.20)

2.1.4 The Hamilton-Jacobi-Isaacs Approach

We know show how to compute J*(y,t) by solving a partial differential equa-
tion (PDE). Since this J*(y,t) converges to V*(y) as t approaches —oo, an
approximation for J*(y, t) for large, negative ¢ will be a good approximation

14



of V*(y). We will then be able to approximate our backwards-reachable set,
Pre(T).

Solving J*(y,t) from PDE requires that J*(y,t) to is differentiable. In
practice, J*(y,t) will be continuous but may have “kinks”, or points where
the function is not differentiable. These kinks correspond to points where the
optimal control is not unique. At all points where J*(y,t) is differentiable,
however, it will satisfy our PDE, so we need J*(y, t) to be a general notion of
a solution to our PDE. We call this a wviscosity solution. A good introduction
to viscosity solutions can be found in [6].

Let h: R x R_ — R, and let V,h(y,t) denote the gradient with respect
to y at the point (y,t). Suppose we have a function H : R" x R” — R, which
we call the Hamiltonian. In dynamics [12], the Hamiltonian represents the
total energy of a time-invariant system if the potential energy is independent
of velocity. Our notion of the Hamiltonian is more general than this. If
g : R® — R is a continuous function, then a bounded, uniformly continuous
function h is a viscosity solution to the PDE

%h(y,t) + H(V,h(y,t)) = 0 (2.21)
h(y,0) = g(x), (2.22)
if for all v € C*(R x R_),

1. if h — v has a local maximum at (yo, to), then

0

&’U(yo7 to) + H(Vyv(yo, to)) S 0 (223)
2. if h — v has a local minimum at (yo, %), then

av(yo,to) + H(Vyv(yo. to)) = 0. (2.24)

If a viscosity solution to Equation 2.21 exists, it is unique. At any point (y, t)
where h(y,t) is differentiable, it will satisfy the PDE in the ordinary sense.
The Hamiltonian which we will use is

_ : : T
H(y,p) = min {0, minmax p f(y, v, 6)} : (2.25)

15



Theorem 2.10. If J*(y,t) € C°(X x R_), then J*(y,t) is the unique vis-
cosity solution of

0

ST )+ HV,T (1) = 0 (2.26)
h(y,0) = g(z), (2.27)

where H is defined in Equation 2.25.

This theorem is very similar to Theorem 4.1 (a) of [5], where we add
the min with zero term so that J(y,t) can only decrease with time. While
we may not be able to find an analytic solution to Equation 2.26, we can
use the method of [13] to solve the problem numerically. This method gives
high-accuracy approximations of J* and is able to isolate kinks. This allows
us to characterize the safe and unsafe regions of the state space.

2.1.5 Safe Controllers

A safe control strategy v € T will ensure that if the state is near the bound-
ary of the backwards-reachable set, OPre(T'), then the state cannot enter
OPre(T). The optimal control strategy v* : D x X — U, will always try and
move the state away from the reachable set. That is

v (d,y) = argé;nf V(y,v(d),d) (2.28)
Y

We call the safe set of control strategies U, where

Us={v€T[3e>0,Vye X,V*(y) <e=Vd € D,y(d) =7"(d,y)}.
(2.29)
If we assume V' is differentiable, a safe controller is one for which on the
boundary of Pre(T'), the value of V' is increasing. That is,

U = {yeT|Vtel, x(t) € 0Pre(T) =
VV*(x ()" f((t), (v(d))(1), d(t)) > 0} (2.30)

2.2 Implementation

We use a two-step process to implement the Soft Walls controller. For the
first step, we start with a signed distance function [ such that Vy € X,

[(y)] = min [y —¢. (2.31)

16



We choose T' such that this has an analytic solution, so no computation
is involved here. Recall from Section 2.1 that 7' = {y € X | I(y) < 0}
and 0T = {y € R" | I(y) = 0}. We then sample the state space near T'
and approximate a viscosity solution of Equation 2.26 using the technique
presented in [13, Chapter 2|, which uses the level-set methods of [14]. This is a
numerical technique designed to give high-resolution approximations of V*(y)
near the boundary of Pre(7"). Computation moves backwards in discrete time
steps and terminates when the right side of Equation 2.26 gets close to zero.
Computation of the reachable set is performed off line, and the approximate
values of V*(y), for y in a finite set X; C X, are stored in a file. We let
V : X — R represent our approximation. So V(y) is our estimate of V*(y)
if y € Xy If y ¢ Xy, we get V(y) from trilinear interpolation.

We then simulate our controller using Ptolemy II [3]. Ptolemy II is a tool
for heterogeneous modelling, simulation, and design of concurrent systems.
We use the ODE solvers in Ptolemy II to simulate the aircraft dynamics.
We also use Ptolemy II for graphics rendering and interfacing with a user
who can give pilot input to the aircraft through a keyboard. This lets us
simulate our controller against a pilot. The system marches time along while
receiving data from a user, reading V from a file and drawing the graphics
on the screen. We can also make plots of the state and save our data in real
time.

In our simulations, we use a forward-Euler ODE solver to approximate our
dynamics. This solver is the only ODE solver in Ptolemy II which explicitly
solves each new integration value while marching time along at a constant
step size. This reduces the computation time that would be required to
converge to an implicit solution or to converge to the next value of time.
We let I; C I represent our set of sampling times. We let x4 : I — X
represent our sampled state values. We similarly define ugy and dy. Our
discrete dynamics model becomes

xd(tk:—&-l) = l‘d(tk) + h * f(xd(tk), Ud(tk), dd(tk)) (232)

where

Here h is a constant for all k.

In Soft Walls the disturbance may help us move away from the reachable
set if the pilot is trying to move away from the no-fly zone. We choose a
control strategy v which satisfies v € Us. Using Equation 2.30, we ensure
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that Vty € Iy, if x4(t;) € OPre(T), then

VV*(@q(te)" f(za(te), (v(da))(t), da(tr)) > 0. (2.34)

We let ud : X X D — U be a control strategy which always moves the
state away from the reachable set. In particular,

ul(wa(tr), da(t)) = min{]lv]| | VV (za(tr)" fzaltr), v, da(tr)) > 0} (2.35)

We can calculate this minimum analytically, using our dynamics equation
and input constraints. We omit this equation for ug because it is long and
not particularly revealing.

In our control input, we wish to decrease the bias to zero as we move
away from the reachable set. For some § > 0, we choose

ul(a(te), da(t) (v
walte) = 3 (6 = V(wati))u (walti), da(t)) 6 18 V(za(ti))
if V

0
(0,8) (2.36)
0 5

The theory behind the modified Hamilton-Jacobi-Isaacs equation allows
us to verify the safety of a continuous-time controller. It assumes a continuous-
time system as well as a continuous state space. In our implementation, we
discretize the state space to estimate V. We also discretize time in Ptolemy
IT to simulate the system. In addition we suffer round-off error effects from
using the computer. Under these conditions, we can no longer verify safety;
we can only simulate the system to check for unsafe behaviors.

The level set method of [13] provides high-resolution estimates of V', which
helps ensure the safety guarantee is generally met. The forward Euler integra-
tion method of Ptolemy II suffers errors in estimating the dynamics. When
the step size h is large, the integration suffers from truncation error; when h
is small the integration suffers from roundoff error [7]. In our simulations we
choose an ad-hoc value of h to be 0.33ms, corresponding to a 30H z refresh
rate of the images on the screen.

In spite of these numerical limitations, through simulation, we have not
been able to steer the aircraft through the no-fly zone. Figure 2.1 shows some
actual trajectories observed when the user tried different strategies.

Trajectories of the algorithm which uses knowledge of the pilot input are
shown in Figure 2.1. This trajectory assumes knowledge of the pilot input,
and the control is computed by Equation 2.36.
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User Held Steady

User Turned away
from No-Fly Zone

User Tried to Crash
into No-Fly Zone

Figure 2.1: A user tried the algorithm in Ptolemy II, and created these
trajectories, which depended on his input. This behavior is consistent with
that of Figure 1.1. This trajectory assumes knowledge of the pilot input, and
the control is computed by Equation 2.36.

2.2.1 A Note on Our Dynamics Equation

Recall our simple model of the aircraft dynamics:

T (t) s cos (1)
f Tpo(t) | u(t),d(t) | = ssinzp(t) |. (2.37)
wp(t) u(t) + d(t)

We mentioned in Chapter 1 that also limit the value of u(t) + d(t) to the
range [—M, M|, but we do not include this in our dynamics model. We will
now see why this is okay.

From differential game theory, an optimal control input will maximize the
Hamiltonian while the optimal disturbance will minimize the Hamiltonian
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[11]. In our case an optimal control input is one which tries to move the
state maximally away from the reachable set, while the optimal disturbance
input tries to move it maximally into the reachable set. If we let

(Va(2(t) Viala(t) Vilw(t)) = VV*(z(t)", (2.38)
then the Hamiltonian is
Vor(z(t))s cosxp(t) + Via(t)ssinay (t) + Vi(t) (u(t) + d(t)). (2.39)
At each time ¢, the optimal control and disturbance inputs are then

u*(z(t)) = 1.5MsgnVj(t), (2.40)
d*(z(t)) = —MsgnV(t), (2.41)

and the optimal Hamiltonian is
Vi (t)s coszp(t) + Via(t)ssinay () + 0.5M | V4 (t)]. (2.42)

In our computation of V*, we must assume u* and d* are applied [13]. At
each t then u(t) + d(t) = £0.5M. Because |u(t) + d(t)| will always be less
than M, we can use the dynamics in Equation 1.3 to calculate V* without
explicitly including the fact that we limit u(t) + d(t) to the range [—M, M|
for safety reasons.
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Chapter 3

Other Soft Walls Control
Approaches

In this section we present some results on two other Soft Walls control strate-
gies we have considered before using the method of Chapter 2.

3.1 Solution for Half-Space No-Fly Zone

This chapter describes a Soft Walls controller designed by Xiaojun Liu [4].
This controller worked well in simulations, and we prove its safety here. We
will consider a particular no-fly zone in this chapter, a half-space in R2.
We let T' = {z(t) € X | z,1(t) > 0}. See Figure 3.1. Here z(0) € Init =
{r € X | zp(t) < —2s/M}. This choice of Init is important in verifying our
controller.

One parameter we use in this controller design is 7 : X — Ry, 7(z(t))
is, the minimum time it takes for the pilot to hit the no-fly zone from state
x(t), given zero control input. That is

T(z(t)) = rd%%l{ t ‘ x(t+1)€dT }, (3.1)
where

. t+t
r(t+1t) = /t f(x(s),0,d(s))ds. (3.2)

Finding 7(z(t)) is equivalent to minimizing the cost function
R t+i
h(z(t+1t)) + / g(z(s),d(s))ds (3.3)
¢
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No-Fly
Zone

Figure 3.1: The no-fly zone

where forallt € I, h: X - Rand g: X x D — R are

h(z(t)) = 0 (3.4)
gla(t),dt)) = 1 (3.5)
For notational convenience, let us assume x(t) € (—m,w]. We define

d* : X — D as the optimal disturbance at state z. That is, if d(t) = d*(z(t)),
d will minimize 7(x(t)) at each t € I.

Lemma 3.1. Forallt € I,

T(])@)) _ ‘:Bh(t)\*J\/S[inxh(tﬂ . frpz(t) if ZL'p1<t) < w
‘”5}“‘ — ﬁ arcsin <| sin xp,(t)] + Mwm( )) if 2, > W
(3.6)
with
M ifa(t) <0
dzt) =<0  ifazu(t)=0 (3.7)

—-M if {L‘h(t) >0

Proof. Along the optimal trajectory, the optimal cost-to-go J* : X x [ — R
will satisfy the Hamilton-Jacobi-Bellman equation [2]:

g(a(t), d"(x(t))) + Ve (x(t), ) Vg J* (x(t), 1) f(2(1),0,d* (2(1)) =

0
(
T (a(t),t +7(z(t)) = h
(
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Here J*(z(t),t) = 7(x(t)). We prove the lemma by proving that Equation
3.8 is satisfied for all ¢ using d*(x(t)) and 7(z(t)).

Case 1. (zx(t) = 0) Since |sinxp(t)| = 0, zp1(t) < —s|sinz,(t)|/M is
trivially satisfied, and J*(2(t),t) = —2,(t)/s. Here d*(z(t)) = 0. Since
d*(z(t)) = 0, xh( t) = 0 will remain true for all times ¢ > ¢. We see that
VoI (z(t),t) = (=1/5,0,0)" and V,J*(2(t),t) = 0. Then

g(@(t), d*(@(t))) + Vi (x(t), ) Vg I (x(t), 1) f(2(t),0,d" (x(t))) =
1+ _?13 cosxp(t) =1—cos0=0. (3.10)

Case 2. ((z4(t) > 0)A(zp(t) < 7S|szh(t)|)) Here xp,(t) will be decreasing
to zero, since d*(z(t)) = —M. If z,(t + (525) becomes zero at some time
t + 6t, then d*(z(t)) = 0. When z,(t) > 0, |sinz,(t)| = sinxy(t), and
J*(x(t),t) = (zn(t) —sinay(t)) /M — zp1(t)/s. We see that Vo J*(x(t),t) =
(=1/5,0,(1 — cosxp(t))/M)T and V,J*(x(t),t) = 0. Then

ga(t), d*(x(t)) + VT (x(t), ) Vo I (x(t), 1) f(2(t),0,d"(z(t))) =

1 1— t
1= Lscosay(t) — i cosmnld)

. i =0.

The time required for z,(t) to go to zero is 0t = x,(t)/M. From our
dynamics,

thon(6)/M i
Ty (t+30t) = w,(t) + / scosxp(t)dt
t

ttxp (t)/M o
= xp,(t) + / scos(xp(t) + M(t —t))dt
s s
= x,(t) — % sin 0 + 77 50 xp(t)

= z,(t)+ % sin , (¢) (3.11)
Since we require that z,;(t) < —ssinwz,(t)/M, z,(t) will reach zero before
the target is reached. Then d*(x(t + dt)) = 0 and the time remaining before
collision is now 7(x(t)) — xp(t)/M = —sinx,(t)/M — 2, (t)/s = —xp(t +
6t)/s. We have already verified the solution is optimal for any time ¢ when
d*(z(t) = 0 in Case 1.
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Case 3. ((zx(t) < O)A(zp(t) < W)) This proof is nearly identical
to the proof of Case 2, so we omit it here.

Case 4. ((zn(t) > 0) A (zpu(t) > =220l Here a,(t) will be de-
creasing, but as we saw in Case 2, it will never reach zero, so the optimal

disturbance d*(z(t) = —M will remain constant for all £ until collision. Here
J*(x(t),t) = th(t) — 47 arcsin (sin:z:h(t) + M%“”) Again V;J*(x(t),t) = 0
and

= [1 - (sinxh(t) + @)]—1
Vx(t)J*(.T(t),t) = 0 NE (3.12)
UM L cos ap(t) [1 - (sin xp(t) + M)} )

S

Then

g(l‘(t), d* (:L‘(t)) + VtJ*(x<t)7 t)vx(t) J*(l’(t), t)Tf(:E(t), 0, d*(l‘(t))) =
Mxpl(t))} -

1 — cos () {1 = <sm o (t) + —

— 1+ cosz(t) [1 - (sin 2 (t) + M)} o 0. (3.13)

S

Case 5. ((zn(t) < 0)A(zp1(t) > W)) This proof is nearly identical
to the proof of Case 4, so we omit it here.

[
Lemma 3.2. (7(z(t)) is continuous with respect to t.

Proof. We know z(t) is continuous with respect to ¢, because f(z,u,d) is con-
tinuous and u(t) and d(t) are bounded. It is easy to see that 7(z()) is contin-
uous with respect to x(t) whenever z,(t) # 0 and x, () # —s|sinxp(t)|/M.
If $h(t) = 0,

xp(t) — sinxy(t) B T (1) _ I (1)
M S S
o a(t) Fsinan(t)  xp()
i - (3.14)
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xljw(t) — % arcsin <sin zp(t) + M) = % arcsin <Mxp1 (t)) =

—mj\;/}(t) — % arcsin (— sinay,(t) + ngl(t)) (3.15)
If 2,1 (t) # —s|sinzy(t)|/M,
7Ol I N A Mapn (@) _ Jea@)] _
A g et (|smxh(t)| +— ) == -
[zn (@) = [sinzn(t)] 2 (t)
- 2L (3.16)

Because the composition of continuous functions is continuous functions is
continuous [17], 7(z(t)) is continuous with respect to t. O

We can now use 7(xz(t)) to synthesize a safe controller.

Theorem 3.3. Let ul : X — U be

L5M sgn (1) if T(a(t) < 2
wla(t) = § ot (r(2(t) — 57) sgn an(t) if 7(2(t) € (37, 57]  (317)
0 if 7(2(t) > &

where sgn : R — R is

. if 0
sgn r = Sena 1 a (3.18)
1 if a =0.

If (0) € Init, then for alld € D and allt > 0, x(t) ¢ T.

Proof. Consider the states where 7(z(t)) = 2/M. From Equation 3.6, we see
that if 1 (t) < —s|sinwz,(t)|/M, then 7(z(t)) = 2/M if

S

pi(t) = 57 (Jen(t)] = [sina(t)] - 2). (3.19)

For these values of z(t), the condition that x,(t) < —s|sinz,(t)|/M is
equivalent to the condition that |x,(¢)| < 2. Clearly, for all |z,(t)] < 2,
zp(t) <0if 7(z(t)) = 2/M.
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If 2,,(t) > —s|sinzy(t)|/M, then 7(x(t)) = 2/M if
Tp(t) = 7% [sin(|zn(t)| — 2) — | sinxp(t)]] (3.20)

For these values of z(t), the condition that x,;(t) > —s|sinz,(t)|/M is
equivalent to the condition that |z, (t)| > 2. Here z,1(t) < 0 only if |z (t)] <
/2 + 1, since for values greater than this, sin(|z,(t)| — 2) — |sinzp(t)] > 0.

For our initial condition x(0) € Init and from Equation 3.6, the minimum
possible value of 7(z(0)) is 2/M, which occurs when z,(t) = 0 and z,(t) =
—2s/M. Using Lemma 3.2, this means that if at any time ¢, z(f) € T,
7(z(t)) = 2/M, for some t < t.

If 7(x(t)) = 2/M, at time ¢, and z5,(t) > 0, then u'(z(t)) = 1.5M. This
value will decrease only if 7(x(%)) > 2/M for some t > t.

Whenever the u'z(t)) = 1.5M and x,(t) € [0,pi), the pilot input that
maximizes x, (t) is d(z(t)) = —M. To see this, we let, g(z(t),t) = scos(fot [utz(s))+
d(x(s))]ds). Then z,(t) = [ g(x(s),s)ds. The pilot input which maxi-
mizes g(x(t), t) will minimize [ [ufz(s)) + d(x(s))]ds, assuming [, [ulz(s)) +
d(xz(s))]ds € [0,pi). By the Hamilton-Jacobi-Bellman equation, d(z(t)) =
— M, will minimize this function.

For 7(x(t)) = 2/M and z,(t) € [0,pi/2), 7,1 (t) will increase until time ,
when ff[u%(s)) +d(z(s))] = w/2. If xp(t) > 7/2, x,1(t) will be decreasing.
If z,(t) € [0,pi/2), given the pilot input d(x(t)) = —M which maximizes
2,1 (t) in for times in the range [t,#], then £ = t + 2(7/2 — 2, (t)) /M. At that

time
() = zpu(t) + /tfscos (Sﬂh(t) + @)

2s . M(t —t
= zu(t) + a7 om (xh(t) + %) Tp (1) +
2s . mw
= x,(t) + ]
2s
= z,(t) + 3 (3.21)

Since z1(t) = = (zt)h — sinzy(t) — 2) in this case, 2, (1) = < (zp(t) —
sinzy(t)) <0, since Vo > 0,z > sin .

Whenever z;(t) = m, we can see that 7(z(t)) < n/M from Equation 3.6,
so the bias will eventually decrease as xj(t) increases by the continuity of
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7(x(t)). Therefore, if x,(t) > 0, we know that the bias will prevent = from
entering the target set. The proof is similar if x(t) < 0, so we omit it here.
m

We have proved u' is a safe controller. See [4] for results from this control
strategy.
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3.2 A Geometric Approach

This is a solution first proposed by Ashwin Ganesan. I present it here as a
method we have considered but not implemented. This solution is based on
the geometry of aircraft trajectories. I

Figure 3.2: The dot represents the aircraft, which is moving along the center
trajectory. The circle trajectories represent turns at r,,;,, which in this case
equals 2s/M.

If the aircraft banks left or right with with rate of change in heading
+M/2, it will follow one of the trajectories in figure 3.2. Now suppose we
wish to prevent the aircraft from entering the no-fly zone. As the aircraft
approaches the no-fly zone boundary, one of the minimum-turning-radius
trajectories from figure 3.2 will intersect the no-fly zone boundary O(7T).
As long as the other trajectory has not yet intersected the boundary, the
aircraft can still avoid entering the interior of the no-fly zone by moving
along this trajectory. At the instant the second trajectory intersects the
boundary, we can force the aircraft to fly along the second trajectory by
applying u(t) = +£1.5M. Then even if the pilot applies d(t) = FM, the
aircraft will turn away from the no-fly. This situation is depicted in figure
3.3. We can change the bias to zero at the point when (and if) the other
trajectory no longer intersects the no-fly zone or its boundary.

We would like the control bias u to increase and decrease from zero grad-
ually, so as not to shock the pilot. If we use this method there will be
discontinuities in u. We abandoned this strategy when we could not develop
a good way to increase and decrease the bias gradually and still guarantee
safety.
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No Fly—Zone No Fly—Zone -

Figure 3.3: On the left picture, the aircraft can still avoid the no-fly zone
by banking right. On the right picture, the aircraft must be forced to bank
right at a rate greater than or equal to —M /2.
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Chapter 4

Conclusions and Future Work

Soft Walls is a new approach to aviation security. From a technical stand-
point, Soft Walls is a control system strategy. Under this framework, it is a
collision avoidance problem.

When our dynamics equation is Lipschitz continuous, we can guarantee
collision avoidance by describing the unsafe set of states through a cost func-
tion. We can then model our problem as a game between controllable and
uncontrollable inputs. With this formulation we estimate a verifiably safe
controller using the Hamilton-Jacobi-Isaacs equation. Simulation validates
this strategy.

One drawback of this strategy is that solving the game requires us to
solve a problem over the entire state space. The computation and storage
required to solve this problem grows exponentially with the number of states
[13].

The approach of Section 3.1 uses a particular dynamics equation for the
aircraft and a particular no-fly zone geometry. In this case, we were able to
derive a safe controller which guarantees the aircraft will always avoid the
no-fly zone. This controller is based on the minimum time required for the
aircraft to reach the no-fly zone. The advantage of this approach is that it
requires only a small amount of online computation.

This approach has two disadvantages. The first is that it depends heavily
on the dynamics equation we choose. Changing the dynamics would require
resolving the minimum-time-to-reach function and the control input function.
This may be difficult or impossible to do. Changing the shape of the no-fly
zone would have the same consequence.

The approach of Section 3.2 uses a particular dynamics equation, but it
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puts only very limited restrictions on the shape of the no-fly zone. It works
by analyzing the trajectories of the aircraft if it is forces to turn right or left,
and then forces a turn when necessary.

While this approach removes the restrictions on the no-fly zone, it still
was solved for a particular dynamics. It also uses no blending to gradually
increase the bias from zero. It is unclear how to do this or how to extend
this method under different dynamics.

For these reasons, the game formulation of Chapter 2 is the most promis-
ing of these control strategies, because it does not depend on the system
dynamics or the no-fly zone shape. Research on appropriate discretizations,
of both time and space may reduce the computational complexity of this
approach. The research question here is how can you discretize the problem
to get useful results? Since the system will be implemented in discrete-time,
the formulation should be extended to discrete-time.

Another research topic is that of robustness. In particular, how can you
make the system safe with respect to real-life factors such as uncertainty in
state information and the timing jitter in a discrete-time realization of the
system? This is ongoing research, and we will address these questions. The
answers, we hope, will have applications far beyond Soft Walls.
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