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Abstract

Bounded Scheduling of Process Networks

by

Thomas M. Parks
Doctor of Philosophy in Engineering — Electrical Engineering and Computer Sciences

University of Californiaat Berkeley
Professor Edward A. Lee, Chair

We present a scheduling policy for complete, bounded execution of Kahn process network programs. A pro-
gram is a set of processes that communicate through a network of first-in first-out queues. In a complete ex-
ecution, the program terminates if and only if all processes block attempting to consume data from empty
communication channels. We are primarily interested in programs that operate on infinite streams of dataand
never terminate. |n abounded execution, the number of data elements buffered in each of the communication
channels remains bounded.

The Kahn process network model of computation is powerful enough that the questions of termi-
nation and bounded buffering are undecidable. No finite-time agorithm can decide these questions for al
Kahn process network programs. Fortunately, because we are interested in programs that never terminate,
our scheduler hasinfinitetime and can guarantee that programs execute forever with bounded bufferingwhen-
ever possible. Our scheduling policy has been implemented using Ptolemy, an object-oriented simulation and
prototyping environment.
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Chapter 1

Process Networ ks

In the process network [24, 25] model of computation, concurrent processes communicate through
unidirectiona firgt-in, first-out (FIFO) channels. Thisisanatura model for describing signal processing sys-
tems where infinite streams of data samples are incrementally transformed by a collection of processes exe-
cuting in sequence or in parallel. Embedded signa processing systems are typically designed to operate in-
definitely with limited resources. Thusour goal isto execute process network programsforever with bounded

buffering on the communication channels whenever possible.

A process network can be thought of as aset of Turing machines connected by one-way tapes, where
each machine has its own working tape [24]. Many of the undecidable issues of the process network model
of computation are related to the halting problem for Turing machines. It iswell known that it isimpossible
to decide (in finite time) whether or not an arbitrary Turing machine program will halt. We wish to execute
process network programs forever, but because the hating problem is undecidable we cannot determine (in
finite time) whether thisis even possible. We also wish to execute process network programs with bounded
buffering on the communication channels. Because this question can betransformed into the hdting question,
aswe will show later, it is & so undecidable.

Thus there are two propertieswe might use to classify a process network program: termination and
boundedness. But first we must determine if these are actually properties of programs. Are termination and
boundedness determined by the definition of the process network, or could they depend on the execution order?
We want to execute programs indefinitely, but could we make a bad scheduling decision that turns a non-
terminating program into aterminating one? For an important class of programs, which we call Kahn process
networks, termination isa property of the program and does not depend on the execution order. However, the
number of data el ements that must be buffered on the communi cation channel s during execution does depend
on the execution order and is not completely determined by the program’s definition. We show later how
to transform an arbitrary Kahn process network so that it is strictly bounded: the number of data elements

buffered on the communication channel s remains bounded for al possible execution orders.

Because the questions of termination and boundedness are undecidableit isnot possibleto classify
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every programin finitetime. An agorithm can be devised that will find a“yes’ or “no” answer for many sys-
tems, but there will aways be some systems for which no answer can be obtained in finite time. 1t has been
shown for restricted forms of process networksthat both of these questionsare decidable and can be answered
for arbitrary systems that conform to the restricted model of computation. Thus, for these restricted modelsit
ispossibleto classify any program before beginning execution. We will discuss some of these restricted com-
putation models, but in thisthesis we address the more difficult problem of scheduling general Kahn process
networks.

In scientific computing, programs are designed to terminate. Infact, great effort isexpended to opti-
mize programsand ensure that they terminate as soon as possible. It would be unacceptable to have aprogram
that produced its results only after infinitetime. It would be even worse to have a scheduling a gorithm that
could require infinite time before even beginning execution of the program. However, many signal process-
ing applications are designed to never terminate. They have an infinite data set as input and must produce an
infinite data set as output. In thiscontext it is not strictly necessary to classify a program before beginning
execution. We can let the scheduler work as the program executes. Because the program is designed to run
forever without terminating, the scheduler has an infinite amount of timeto arrive at an answer. We will de-
velop agenera policy that describes a class of schedulers that satisfy our goals of non-terminating, bounded
execution for arbitrary Kahn process networks when thisis possible.

1.1 Kahn Process Networks

Kahn [24, 25] describes amodel of computation where processes are connected by communication
channelsto form anetwork. Processes produce data elements or tokens and send them al ong acommunication
channel where they are consumed by the waiting destination process. Communication channels are the only
method processes may use to exchange information. Kahn requires that execution of a process be suspended
when it attemptsto get datafrom an empty input channel. A process may not, for example, examineaninput to
test for the presence or absence of data. At any given point, aprocessiseither enabled or it is blocked waiting
for data on only one of itsinput channels: it cannot wait for data from one channel or another. Systems that
obey Kahn's model are determinate: the history of tokens produced on the communication channels do not
depend on the execution order [24].

Figures1.1, 1.2 and 1.3 show the definitions of three processes. We use pseudo code with a syntax
similar to C. All of these processes operate on integers or streams of integers. In our examples, theput and
get operationsare used to produce and consume singletokens, athoughthey could be generalized to consume
and produce multiple tokens simultaneoudly.

Individual processes can be defined in ahost language, such as C or C++ with the semantics of the
network serving as a coordination language. Care must be taken when writing code in the host language.
It may be tempting to use shared variables to circumvent the communication channels, but this may violate
Kahn's model and result in a nondeterminate system. With alittledisciplineit is not difficult to write deter-
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int stream W= process f(int streamU, int streamYV)

{
do
{
put (get (U), W ;
put (get (V), W;
} forever;
}

Figure1.1: A process that interleaves two streamsinto one.

(int streamV, int streamW = process g(int stream U)

{

do
{
put (get (U, V);
put (get (U), W ;
} forever;

Figure 1.2: A processthat distributeseven and odd elements of one stream to two streams.

int streamV = process h(int streamU, int x)

{
put (X, V);
do
put (get (U, V);
} forever;
}

Figure 1.3: A process that inserts an element at the head of a stream.
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Figurel.4: Graphical representation of aprocess network constructed with theprocesses defined infigures 1.1,
12and1.3.

minate programs. This use of host and coordination languages is the approach taken in our implementation

of process networks, described later in chapter 5.

Figure 1.4 shows agraphical definition of a network built with instances of the processes defined in
figures1.1, 1.2 and 1.3. Thetwo instances of process h producetheinitial tokensthat allow the program graph
to execute. Inthisexample, every processis part of a directed cycle, so output tokens must propagate around
thegraph to providethenext set of input tokensfor aprocess. Thisprocess network isstrictly bounded because
the directed cycles ensure that there are never more than two tokens buffered on any communication channel,
and it is non-terminating because the program can execute forever without stopping. We will later prove that
this program produces an infinite sequence of 0'sand 1's. X = [0,1,0,1,...]. Because of the determinate
nature of the computation model, this result is independent of the execution order: Kahn process networks

can be executed sequentially or in paralel with the same outcome.

This model of computation supports both recurrence relations and recursion. In arecurrence rela
tion, astream isdefined intermsof itself. Recurrence relationsappear as directed cyclesin theprogram graph,
asintheexampleof figure 1.4. Itisalso possibleto haverecursion, where aprocessisdefined interms of itself.
A simple example of thisisshown infigure 1.5. A more complicated exampleinfigure 1.6 showsarecursive
definition of process f from figure 1.1. The cons, first and rest operations are defined later in section 1.2.2.
As the process executes, it replaces itself by a subgraph. Thisis a recursive definition because the process
appears in the definition of this subgraph. Non-recursive reconfigurations, where a process does not appear in

the definition of the subgraph that replaces it, are also allowed.
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- Y J

Figure 1.5: Recursive definition of a process.

1.2 Mathematical Representation

We now review Kahn's formal, mathematical representation of process networks [24]. Communi-
cation channels are represented by streams and processes are functions that map streams into streams. This
allowsusto describe aprocess network by aset of equations. Theleast fixed point of these equationsisunique
and correspondsto the histories of the streamsin the network. Thusthese histories are determined by the def-
initionsof the processes and the network describing the communi cation between them. The number of tokens
produced, and their values, are determined by the definition of the system and not by the scheduling of oper-
ations. Thisisakey result that supportsfurther results later in thisthesis.

121 Streams

A stream is afinite or infinite sequence of data elements. X = [Xg, %2, X3, ...]. The empty stream is
represented by the symbol L. Consider a prefix ordering of sequences, where the sequence X precedes the
sequence Y (written X CY) if X isa prefix of (or isequal to) Y. For example, the sequence X = [0] isaprefix
of the sequence Y = [0, 1], which isin turn a prefix of Z=[0,1,2,...]. The empty sequence L isaprefix of
all sequences: YX, L C X. Any increasing chain X = (X1, X2, ...) WithX; E X, C - - - hasaleast upper bound
LX which can be interpreted as a limit:

limX = uX (1.1)

|—00
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Figure 1.6: Recursive definition of the process f from figure 1.1.
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Xl

Yl
X, f

Y2
XS

Figure 1.7: Graphical representation of afunctiona process with multipleinputsand outputs.

Theset of all streamsisacomplete partial order with C defining the ordering. Theorder iscomplete
because every increasing chain of streams has aleast upper bound that isitself a stream. Tuples of streams,
such as (Xg, X2), aso form acomplete partial order. Inthiscase (X1, X2) C (Y1, Y) if and only if X3 C Y; and
XoC Yo

1.2.2 Processes

A processis afunctiona mapping from input streams to output streams. For each process, we can
write an equation that describes this functiona mapping. For example, the following equation describes the

process shown in figure 1.7:
(Y1,Y2) = f( X1, X2, X3) (1.2
A functional mapping is continuousif and only if for any increasing chain X; C X C - - -

f(limX) = limf(X) (1.3)

i—o0 i—o0

Thelimit on theright hand sided of equation 1.3 existsif the function f maps an increasing chain into another

increasing chain. Such functions are monotonic:
XY = f(X) Zf(Y) (1.4)
The following functions, are examples of continuous mappings:
first(U) Returnsthefirst element of the stream U. By definition, first(L) = L.
rest(U) Returnsthe stream U with thefirst element removed. By definition, rest(L) = L.

cons(x,U) Inserts a new element x at the beginning of the stream U. By definition, cons(L,U) = L, and

cons(x, L) = [X].
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The processes described in figures 1.1, 1.2 and 1.3 can be defined by composing these three basic functions

and thus are a so continuous mappings:

f(U,V) = cons(first(U), cons(first(V), f(rest(U), rest(V)))) (1.5)
9(V) = (9:(V),62(V)) (16)
0;(U) = cons(first(U), gi(rest(rest(U)))) (1.7)

go(U) = cons(first(rest(U)), go(resi(rest(U)))) (18)

h(U,x) = cons(x,U) (1.9

The definition of process f infigure 1.6 isagraphical representation of the definition in equation 1.5

1.2.3 Fixed Point Equations

Using the mathematical representation of communication channels and processes, we can describe

aprocess network as a set of equations. The example from figure 1.4 can be described by the following equa

tions:
(T1, T2) = 9(X) (1.10)
=f(Y,2) (1.11)
Y = h(Ty,0) (1.12)
Z=Nh(Ty,1) (1.13)

This collection can be reduced to a single equation:
(Tl, Tz) = g(f(h(Tl, O), h(Tz, 1))) (114)

If the functions are continuous mappings over a complete partia order, then there is a unique least
fixed point for this set of equations, and that solution corresponds to the histories of tokens produced on the
communication channels[24]. For example, the least fixed point for the equation X = f(X) isthe least upper
bound of theincreasing chain [ L C f(L) Cf(f(L)) C ...]. Thisgivesus an iterative procedure to solve for
theleast fixed point. Intheinitial step, set al streamsto be empty. Inthisexample, thereisjust one stream, so
X% = L. Then for each stream compute X/ +1 = f(XJ) and repeat. For aterminating program, this procedure
will stop at some j where X1+1 = XI. For anon-terminating program, someor al of thestreamswill beinfinite
in length, so this procedure will not terminate. Instead, induction can be used to find the solution.

Returning to our previous example, the solution of the fixed point equation proceeds as follows:

(T, T2)° = (L, 1) (1.15)
(Ty, T2t = g(f(h(L,0),h(L,1))) = ([0],[1]) (116)
(T1, T2)? = g(f(h([0),0), (1), 1)) =([0,0],[1,1]) (117)
(T1, T2)* = g(f(n([0,0], 0),h([1, 1], 1))) = ([0,0,0],[1,1,1]) (118)
(Ty TZ)J'Jrl g(f(h(TJ 0),h(T},1))) =([0,0,0...],[1,1,1...]) (1.19)
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Using induction, we can prove that T; = [0,0,0...] and T, = [1,1,1...]. From thiswe conclude that Y =
h(T1,0) =[0,0,0...] and Z = h(T,,1) = [1,1,1...]. Thisgivesus X = f(Y,Z) =[0,1,0,1...] as clamed
earlier.

Fixed point equati ons can a so be used to describerecursive process networks. Continuousfunctions
on streams are themselves acompl ete partial order wheref C gif and only if VX, f(X) C g(X) [24]. If weuse
the recursive definition of f givenin figure 1.6 and equation 1.5, then the equations for our example become:

(T, T2) = g(f(Y, 2)) (1.20)
f(Y,Z) = cons(first(Y), cons(first(Z), f(rest(Y), rest(Z)))) (1.21)
Y =h(Ty,0) (1.22)
Z="h(T,0) (1.23)

Now the function f appears on the left-hand side along with the other unknowns.

1.3 Determinism

We say that a process network program is determinate if the results of the computation (the tokens
produced on the communication channels) do not depend on the execution order. Every execution order that
obeysthe semantics of the process network will producethe same result. Kahn uses thefact that the equations
for a process network have a unique least fixed point to prove that programs are determinate[24]. Karp and
Miller[26] provethat computation graphs, a restricted model of computation similar to process networks, are
also determinate.

1.3.1 Execution Order

We define the execution order of a process network to be the order of the get and put operations.
If X = [Xq,%2,X3...] is @ stream, then put(x;) represents the writing or production of the element x; and
get(x;) represents the reading or consumption of the element x;. A data element must be written before it
can beread, so put(x;) < get(x;) for every element of every stream in a process network. Thefirst-in, first-out
(FIFO) nature of the communication channels aso imposes the restriction that get(x;) < get(x;) if and only
if put(x;) < put(x;). We alow the possibility of some operations occurring simultaneously. For example, if
a process produces two elements x; and X1 Simultaneously, then put(x;) = put(Xi;+1). Processes introduce
additional restrictions. For example, if W = f(U,V), wheref isthe process defined in figure 1.1, then we have
the following restrictions. The process reads aternately from the two input streesmsU and V,

get(ui) < get(vi) < get(Uiya) < get(Vipy) < - (1.24)
The process writesto stream W after reading from each input streem U and V,

get(ui) < put(wy) < get(vi) < put(Woiyg) < - (1.25)
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Figure 1.8: A terminating process network.

A sequential execution is atotal ordering of get and put operations. We can compare any pair of
operations and know if get(x;) < put(y;j) or put(y;) < get(x;), for example. A parallel executionisa partial
ordering of get and put operations. We may be able to compare some operations, such as put(x;) < put(x)
and get(x;) < get(xz). But we will not be able to compare other operations, such as get(x;) and put(xy).

Any execution order must satisfy the restrictionsimposed by the communication channels and the
processes. Unlike the restrictionsimposed by the semantics of the computation model, such as write-before-
read and FIFO channels, we may not always know therestrictionsimposed by aparticular process, depending
on the information available to us and the complexity of its definition. In some restricted process network
models, the processes are fully characterized. Generdly, there will be many possible execution orders that
satisfy these restrictions.

1.3.2 Termination

We proved earlier that al of the streams for the process network shown in figure 1.4 areinfinitein
length. Thus there are an infinite number of put operations. Consider the modified version of this program
shown in figure 1.8. The equation describing this process network is:

(T1, T2) = g(f(h(T1,0), T2)) (1.26)

The least fixed point for this equation is computed as follows:

(T1, )%= (L, 1) (1.27)
(T, T)* = g(f(h(L,0), 1)) = ([0], 1) (1.28)
(T2, T2)? = g(f(h([0],0), 1)) = ([0], L) (1.29)
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We can seethat (T, T2)? = (Ty, T2)* = ([0], L), so these streams (and all the othersin the network) have finite
length. Thusthere are only afinite number of put operations.

We see that termination is closely related to determinism. Kahn process networks are determinate
because a system of continuous functions over a complete partial order has a unique least fixed point. This
solutiondeterminestheval ue, and consequently thelength, of every streamintheprogram. If all of thestreams
arefiniteinlength, then the program must terminate. Otherwise, the program never terminates and produces at
least oneinfinitestream of data. Termination isdetermined compl etely by the definition of the process network
and is not affected by the particular choice of execution order [44].

The least fixed point solution determines the length of every stream, but it does not determine the
order in which the stream elements are produced. Consequently there are many possi bl e execution ordersthat
can lead to the least fixed point. A complete execution of a Kahn process network corresponds to the least
fixed point — none of the streams can be extended. A partial execution does not correspond to a fixed point
— oneor more of the streams can still be extended.

We define a terminating Kahn process network program to be one where all complete executions
have a finite number of operations. We define a non-terminating program to be one where all complete exe-
cutions have an infinite number of operations.

1.3.3 Boundedness

Even though the lengths of all streams are determined by the definition of a process network, the
number of unconsumed tokens that can accumulate on communi cation channel s depends on the choice of ex-
ecution order.

A communication channel isdefined to be strictly bounded by b if the number of unconsumed tokens
buffered onthe channel cannot exceed b for any compl ete execution of the process network. A strictly bounded
communication channel isonefor whichthere existsafinite constant b such that the channel isstrictly bounded
by b. A communication channdl is defined to be bounded by b if the number of unconsumed tokens cannot
exceed b for at least one complete execution of the process network. A bounded communication channel is
one for which there exists afinite constant b such that the channel isbounded by b.

A process network is defined to be strictly bounded by b if every channel in the network is strictly
bounded by b. A strictly bounded process network is one for which there exists afinite constant b such that
itisstrictly bounded by b. A process network is defined to be bounded by b if every channel in the network
is bounded by b. A bounded process network is one for which there exists a finite constant b such that it is
bounded by b. Thisisactually aweaker condition than insisting that the total number of unconsumed tokens
in the network be lessthan b. This allowsus to include recursive networks, where there can be an unbounded
number of channels, inour definition of bounded systems. A Kahn process network isdefined to be unbounded
if itisnot bounded. That is, a least one channel is not bounded for all complete executions of the process
network.

Our example from figure 1.4 isa strictly bounded program. Each process consumes tokens at the
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Figure 1.9: A bounded process network.

Figure 1.10: A strictly bounded process network.

same rate that it produces them, and the directed cycles in the graph prevent the production of new tokens
until the previously produced tokens are consumed. For al execution orders, there can never be more than 1
unconsumed token buffered on channelsY, Z, T; and T,, and no more than 2 unconsumed tokens on channel
X. Thuswe say that channelsY, Z, T; and T, are strictly bounded by b = 1, and channel X isstrictly bounded
by b= 2. The programistherefore strictly bounded by b = 2. However, the simplesystem shown infigure 1.9
isonly bounded. Whileit is possible to execute this system with bounded buffering, some execution orders
lead to unbounded token accumulation. If we activate process 1 but never activate process 2, which isone of
many possi bl e execution orders, then an infinite number of tokens accumul ate on the communi cation channel.

An arbitrary Kahn process network can be transformed so that it is strictly bounded. Thisisdoneby
adding a feedback channel for each data channel and modifying the processes so that they must read from a
feedback channel before writingto a data channel. We place b initial tokens on the feedback channels so that
all pairs of channels have b initial tokens. The number of tokensin adata channel cannot increase without a
corresponding decrease in the number of tokensin the feedback channel. Because the number of tokensfor a
feedback channel (or any channel) can never fall below zero, the datachannelsare strictly bounded. However,
these restrictions could introduce deadl ock, transforming a non-terminating program into a terminating one.
Figure 1.10 shows how our simplebounded system of figure 1.9 istransformed into astrictly bounded system.
Details of thisgraph transformation are presented in chapter 4.

1.4 Open and Closed Systems

In an open system thereare a set of input channelsthat provide datato the process network and a set
of output channels that receive the results. Consequently, each process has at |east one input and one output.
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Figure 1.11: A data source (1) constructed with external feedback connections.

In this case, the process network is not a complete system in and of itself, but isasub-system that is part of a
larger, external system.

In a closed system, there are no externa input or output channels. Processes that have no input
channelsare aways enabled and act as sources of data. Processes that have no outputsact as datasinks. Input
and output operationsfor this system are managed by individual processes. For example, a process may read
data samples from a sensor and produce them on astream. Or a process may consume datafrom a stream and
writeit to afile. In thiscase, the process network describes a complete system.

In Kahn’s process network model, attempting to get datafrom an input channel isthe only operation
that may cause the execution of a process to suspend. In closed systems, processes that have no inputs are
always enabled; they never attempt to get data from an empty channel. There may never be an opportunity to
activate other processes, which can be problematic. In an open system each process has at |east oneinput, so
it will be suspended whenever it attempts to get data from an empty channel. At this point, other processes
that are enabled can be activated.

Even if every process must have aninput, it ispossibleto build constructsthat are data sources, sub-
systems that require no input from the rest of the system. If feedback connections are allowed in the external
system, it is possible to construct a source by connecting an externa output to an externa input, as shown
infigure 1.11. Process 1 is self-enabling, it providesits own input and requires no input from the rest of the
system. A strongly connected subgraph, where thereis a directed path from any process to any other process
(including itself), can aso act as a data source, as shown in figure 1.12. Figures 1.13 and 1.14 show simi-
lar constructs for data sinks, subsystems that consume their own output and provide no datato the rest of the
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Figure1.12: A connected subgraph (1,2,3,4) that is a data source.
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Figure 1.13: A datasink (2) constructed with external feedback connections.
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Figure 1.14: A connected subgraph (1,2,3,4) that is a data sink.

J

system.

Kahn and MacQueen consider both open and closed systems: a program is described as a graph
with a set of input and output channels [24], or processes are used for input and output [25]. Pingali and
Arvind[37, 39, 38] consider open systems. |ndemand driven execution, thereisthe problem of synchronizing
with the external system so that inputs are provided only when demanded. Pingali puts gates on the inputs
to solve this problem[38]. This makes an open system resemble a closed system where processes (gates in
this case) act as data sources and there are effectively no external inputs. We will see an example of thisin
chapter 3.

Data driven execution of sources and demand driven execution of sinks can be problematic, as we
will demonstrate in chapter 3. Sources and sinks, either in the form of individual processes or subnetworks of
processes, are present in both open and closed systems. Thus, without lossof generality, we chooseto restrict
our discussion to closed systems.
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Chapter 2

Dataflow Process Networ ks

Dataflow isamodel of computationthat is closely related to process networks. Dataflow programs
can be described by graphs, just as process networks can be. The arcs of the graph represent FIFO queues
for communication, just as in process networks. The nodes of the graph represent actors. Instead of using
the blocking read semantics of Kahn process networks, dataflow actors have firing rules. These firing rules
specify what tokensmust be avail able a theinputsfor the actor to fire. When an actor fires, it consumes some
finite number of input tokens and produces some finite number of output tokens. A process can be formed
from repeated firings of a dataflow actor so that infinite streams of data may be operated on. We call these
dataflow processes33].

Breaking a process down into smaller units of execution, such as dataflow actor firings, makes effi-
cient implementations of process networkspossible. Restricting thetype of dataflow actors to those that have
predictable token consumption and production patterns makes it possible to perform static, off-line schedul-
ing and to bound the memory required to implement the communication channel buffers. Thus, for some re-
stricted forms of process networks, it is possible to satisfy our requirements for non-terminating execution

with bounded buffer sizes.

2.1 Mathematical Representation

Streams represent the sequences of tokens that flow aong the arcs in a dataflow graph, just asin
process networks. Dataflow actors are represented by functionsthat map input tokens to output tokens. This
isin contrast to the representation of processes as functionsthat map streams to streams.

Dataflow actors have firing rules that determine when enough tokens are available to enable the
actor. When thefiring rules are satisfied and sufficient input tokens are available, the actor fires. It consumes
afinite number of input tokensand produces a finite number of output tokens. For example, when applied to
an infiniteinput stream afiring function f may consume just one token and produce one output token:

f([x1,%,%3...]) = f(x1) (2.1
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To produce an infinite output stream, the actor must be fired repeatedly. A processes formed from repeated
firings of a dataflow actor is called a dataflow process [33]. The higher-order function map converts an actor
firing function f into aprocess F. A higher-order function takes a function as an argument and returns another
function. For simple dataflow actors that consume and produce a single token, the higher-order function map
behaves as follows[27]:

map(f)[xa, %2, %3 .] = [f(x1),f(x2), f(Xa) .. ] (22)

When the function returned by map(f) isapplied to the stream [X1, X, X3 . .], theresult isastream inwhich the
firing function f is applied point-wiseto the elements of that stream, [f(x1), f(X2),f(X3) . ..]. Themap function
can also be described recursively:

map(f)(X) = cons(f(first(X)), map(f)(rest(X))) (2.3)

The use of map can be generalized for firing functionsf that consume and produce multipletokens on multiple
streams [33]. We will see thisin more detail in the next section.

211 FiringRules

Firing rules specify the pattern of tokens that must be available at each input to enable an actor.
Actors with no input streams are always enabled. Once enabled, an actor can fire. Actors with one or more
input streams can have severa firing rules.

R:{ﬁlaﬁb"'aﬁN} (24)

An actor can fireif and only if one or more of thefiring rules are satisfied. For an actor with p input streams,
each firing rule R isa p-tuple of patterns, one pattern for each input.

ﬁi = (Ri,laRi,Za"'aRi,p) (25)

Each pattern R, ; isafinite sequence. For afiring rule R to be satisfied, each pattern R j must be a prefix of
the sequence of tokens available on the corresponding input, R, ; C X.

For an actor firing that consumes no tokens from an input, the pattern for that input isR; j = L.
Because L C X for any sequence X, any sequence of available tokensis acceptable, VX, R, j C X. Note that
an empty pattern R ; = L does not mean that the input must be empty. For an actor firing that consumes a
finite number of tokens from an input, the pattern is of theform R, ; = [*, *,---,*]. The symbol « is a token
wildcard. The sequence [«] isaprefix of any sequence with one or more tokens. The sequence [, ] isaprefix
of any sequence withtwo or moretokens. Only L isaprefix of [«]. For an actor firing that requiresinput tokens
to have particular values, the pattern R, ; includes this data value.

For example, the switch actor in figure 2.1(a) has asingle firing rule R = ([], [%]). It consumes
a single token from each of itsinputs. The first token is copied to either the “TRUE” or “FALSE” output
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Figure 2.1: The dataflow actors switch and select.

depending on the value of the control token. The select actor in figure 2.1(b) has two firing rules:

ﬁl = ([*]a 1, [F]) (2.6)
ﬁ2 = (J-a [*]a [T]) (27)

When the control token has the value “FALSE,” rule R, applies and one token is copied from the “FALSE”
input to the output. When the control token has the value “TRUE,” rule R applies and one token is copied
from the “TRUE” input to the output. Notice that the firing rules do not capture any information about the
number or values of tokens produced when an actor fires.

If X = (X1, X%, ..., Xp) arethe sequences of tokensavailable on an actor’sinputs, then thefiring rule
R issatisfied if

VRiER, RCX (2.8)

Firing rulesthat can be implemented as a sequence of blocking read operationsis defined to be se-
quential firing rules [33]. The firing rules of the select actor are sequentia: a blocking read of the control
input is followed by ablocking read of the appropriate data input.

An example of an actor with firing rules that are not sequentia is the non-determinate merge in
figure 2.2. Itsfiring rules are

Ro= (¢, L) (29)
Re= (L,[+]) (210)

Assoonasatokenisavailable on either input, it is copied to the output. If tokensare available on bothinputs,
then both firing rules are satisfied. There is ambiguity about which rule should be used. For actors with se-
quentia firing rules, thereis no such ambiguity. For any set of available tokens, no more than onefiring rule
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Figure 2.2: The non-determinate merge actor.

is satisfied. The merge actor is non-determinate because the order in which tokens are produced depends on
the order in which the inputs become available. The firing rules are not sequential because a blocking read
of either input failsto produce the desired behavior. A blocking read on oneinput causes tokens on the other
input to be ignored.

Now we can define map in terms of firing rules:
map(f) (cons(R, X)) = cons{(f(R), map(f)(X)) (212)

where Risafiring rule of f, and cons has been generalized to operate on p-tuplesof streams.

Because sequentia firing rules can be implemented as a sequence of blocking read operations,
dataflow processes are continuous when the firing rules are sequential [33]. Because networks of continu-
0us processes are determinate [24], dataflow process networks are determinate when each actor’sfiring rules
are sequential.

2.1.2 Execution Order

We define the execution order of a process network to be the order of the get and put operations.
When an actor fires, it consumes input tokens and produces output tokens. Because an actor firing is atomic,
an order on the firingsimposes an order on the get and put operations. Thus, we define the execution order of
a dataflow program to be the order of actor firings.

When all the firing rule patterns are of the form [, «, ..., x], we can define the state of a dataflow
graph to be the number of tokens on each arc. When some of the firing rule patterns are data-dependent, as
they are for the select actor, then the state of the graph must aso include the values of tokens on the control
arcs. As actors fire, the graph proceeds from one state to the next. The current state determines which actors
are enabled, and thusthe set of possiblenext states. Thisassumesthat actorsare defined functionally and have
no internal state that affects thefiring rules. Actor state must be represented explicitly with an arc connected
as aself loop so that its effects on the firing rules become apparent.
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2.2 Computation Graphs

Computationgraphs[26] areamodel of parallel computation similar to process networks. A parallel
computationisrepresented by afinitegraph. Thereisaset of nodesng, ..., n;, each associated with afunction
Oy,...,0. Thereisaset of arcsdy, ..., di, where abranch dp is a queue of data directed from one node n;
to another n;. Four non-negative integer constants Ap,Up, W), and T, are associated with each arc dp. These
parameters have the following interpretation:

Ap The number of datatokensinitially present on the arc dp.
Up The number of data tokens produced by the function O; associated with node n;.
W, The number of data tokens consumed by the function O; associated with node n;.

Tp A threshold that specifiesthe minimum number of tokensthat must be present ond, before O; can befired.
Clearly, Tp > W, must be true.

An operation O isenabled when thenumber of tokens present ond,, isgreater than or equal to T, for
every arc leading into n;. When it isfired, the operation O; consumes W, tokens from each input arc dp, and
produces U tokens on each output arc dy. These rules determine which execution sequences are possible.
Thus the firing rule patterns are al of the form [« «, ..., *] and any input sequence of length Ty, or greater
satisfies thefiring rules.

The execution of a computation graph is described by a sequence of non-empty sets of operations,
S,S,..., S, ... Initidly, §; isasubset of the enabled operationswith A, > T, for each input arc dp. When
the operationsin S, are fired, the data they consume may prevent them from being enabled, Ay — W, < Tp,
and the datathey produce may enable other operations, Aq+Uq > Tq. Each set Sy isasubset of the operations
enabled after al of the operationsin Sy_1 havefired.

Due to the restrictions placed on the computation model, Karp and Miller [26] are ableto give nec-
essary and sufficient conditionsfor computation graphs to terminate. They also give necessary and sufficient
conditionsfor the queue lengths to be bounded. Thus the questions of termination and boundedness are de-
cidablefor computation graphs, arestricted form of process network.

2.3 Synchronous Dataflow

Synchronous dataflow [31, 32] is a special case of computation graphs where Tp = W, for all arcs
in the graph. Because the number of tokens consumed and produced by an actor is constant for each firing,
we can statically construct afinite schedul e that isthen periodically repeated to implement adataflow process
network that operates on infinite streams of data tokens.

A synchronous dataflow graph can be described by a topology matrix I with one row for each arc
and one column for each node. Thisisonly apartia description because thereisno information regarding the
number of initial tokens on each arc. The element I';; is defined as the number of tokens produced on theith
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Figure 2.3: A bounded synchronous dataflow program.
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Figure 2.4: A sequence of actor firingsthat bringsthe program of figure 2.3 back to itsorigina state.

arc by the jth actor. A negative value indicates that the actor consumes tokens on that arc. Each row of the
matrix has one positive element for the actor that produces tokens on the corresponding arc and one negative
element for the actor that consumes tokensfrom the arc. If the same actor consumes and produces tokens on
thearc, thenentry I';; isthe difference between the number of tokens produced and the number consumed. All
the other elementsin the row are zero. For the system to be balanced, a non-trivial, positive repetition vector
T must be found that satisfies the balance equations:

re=0 (2.12)

where each element r; of the repetition vector specifies anumber of firingsfor the jth SDF actor, and Oisthe
zero vector.
For example, consider the synchronousdataflow graph infigure2.3. Actor 1 produces 2 tokenseach
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timeit fires, and actor 2 consumes 3 tokenseach timeit fires. For the system to be balanced, actor 2 must fire 2
timesfor every 3firingsof actor 1. Actor 1firesfirst, producing 2 tokens, showninfigure2.4(a). Actor 2isnot
enabled yet, so we fire actor 1 again. Now there are 4 unconsumed tokens on the arc, shown in figure 2.4(b),
and actor 2 can fire. It consumes 3 tokensleaving 1 on the arc, shown in figure 2.4(c). Actor 2 isno longer
enabled, so we fire actor 1 athird time. It produces 2 more tokens so that there are 3 on the arc, shown in
figure 2.4(d). Now actor 2 fires for a second time and consumes all 3 of the tokens on the arc. At this point
the graph has returned to its original state with no tokenson the arc, shown in figure 2.4(e).
The topology matrix for thissimple exampleis

r=[2 -3] (2.13)
Our intuitiontells us that the repetition vector that solves the ba ance equations should be
r=[3 21" (2.14)

Thiswould fire actor 1 three times and actor 2 twice so that the total number of tokens produced is equal to
the total number consumed. It is easy to verify that thisrepetition vector does indeed solve equation 2.12.

The state of a synchronous dataflow graph is the number of tokens on each arc. A complete cycle
is a sequence of actor firings that returns the graph to its original state. Because the total number of tokens
produced in a complete cycle is equa to the total number of tokens consumed, there is no net change in the
number of tokens. Because the number of actor firingsinthe cycleisfinite and the number of tokens produced
by each firing is finite, the number of unconsumed tokens that can accumulate before an arc returns to its
origina state is bounded. This finite sequence of firings can be repeated indefinitely so that the program can
execute forever with only a bounded number of unconsumed tokens accumulating on the arcs.

There can be many possiblefiring sequences for a given dataflow graph. In this example we have
chosen to firethe actors by repeating the sequence 1,1,2,1,2 but we could just as well have chosen thefiring se-
guencel1,1,1,2,2. If werepeat acompletecycle, afiring sequencethat isconsistent with the balance equations,
then only abounded number of unconsumed tokens can accumul ate beforethe graph returnstoitsinitia state.
The precise value of the bound depends on the firing sequence chosen. For the firing sequence 1,1,2,1,2 the
boundis4 tokens. For thefiring sequence 1,1,1,2,2 theboundis 6 tokens. There are a so firing sequences that,
when repeated, result in unbounded token accumul ation. These sequences do hot correspond to a solution of
the balance equations and thus do not form a complete cycle. Thefiring sequence 1,1,2 isan example of such
asequence. At the completion of thisfiring sequence thereisanet increase of 1 token onthearc. If thisfiring
sequence is repeated indefinitely, then the number of unconsumed tokens grows without bound. Aslong as
we restrict ourselves to firing sequences that represent finite compl ete cycles, we know that the program will
execute in bounded memory.

Consider the synchronous dataflow graph in figure 2.5. The topology matrix for this exampleis:

2 -3 0
r=11 o0 -1 (2.15)
0 -1 1
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Figure 2.6: A deadlocked synchronous dataflow program.

We can see that this graph is unbal anced because the only sol ution to the balance equationsisthe zero vector.
This program can still execute forever, but tokens accumul ate without bound.

We have seen how thebal ance equationshel p usidentify systemsthat can be executed with bounded
buffering of tokens on the arcs. However, the balance equations do not completely describe a synchronous
dataflow graph. We must also know the initia state of the graph, the number of initial tokens on each arc.
Even when the bal ance equations have anon-trivial positiveinteger solution, it may not be possibleto execute
aprogram indefinitely, or tokens may accumulate without bound if the program is executed indefinitely.

Consider the example in figure 2.6. The topology matrix for thisgraphis:

2 -3 0
r= -1 o 3 (2.16)
0 1 -2

The smallest integer solution to the balance equationsis
r=[(3 2 1] (2.17)

This system is balanced, but it is also deadl ocked because there are not enough initia tokens on the arcsin
the directed cycle. Initially only actor 2 is enabled. It can fire once, consuming al of the tokens that were
initially on itsinput and producing 1 token on its output. Actor 3 requires 2 tokensin order to fire, but only
lisavailable. There are no tokenson any of the other arcs, so we have reached deadlock: none of the actors
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Figure 2.7: A balanced synchronous dataflow program that requires unbounded memory.

can fire. Having a solution to the balance equationsis not enough to guarantee the existence of a complete
cycle. There must also be enough initial tokens on the directed cycles so that the program does not deadl ock.
Onesimpleway to test for the existence of acomplete cycleisthrough simulated execution[31, 32],
simply keeping track of the number of tokens on each arc without actually performing any computation. If a
complete cycle is found, then the program will not deadlock when executed. However, as we shall see, the
existence of acomplete cycleisonly a sufficient condition for ruling out deadlock. Even if acomplete cycle
does not exist, the program may not deadl ock when executed. Even so, thisisnot an insurmountableproblem.
Karp and Miller[26] give necessary and sufficient conditionsto detect deadlock in computation graphs.
Consider the example in figure 2.7. Notice that actors 1 and 2 can fire infinitely often, actor 3 can
fire only twice, and actor 4 can never fire. This program can run without terminating (actors 1 and 2 can fire
indefinitely) but suffers from unbounded accumul ation of unconsumed tokens (actor 3 can consume only 2 of

the tokens produced by actor 2). The topology matrix for this programis:

[ 1 -1 0 0]

-1 1 0
r= 1 -10 (2.18)

0O 1 3

i 0 -1 3|

The smallest, positive integer solution to the balance equationsis
r=[3 3 3 1] (2.19)

The balance equations have a non-trivial solution, but a complete cycle does not exist because there are not
enough initial tokens to alow actor 4 to fire. If the program is executed indefinitely, it settlesinto a cycle,
1,2,31,231,2,...,1,2, ..., that does not return the system to itsinitial state. Thusthe system is unbal anced
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despite thefact that the balance equations have a solution. A better definition of abalanced system isonefor
which the balance eguations have a solution and a complete cycle exists. An alternate view is to define this
as a deadlocked system because a complete cycle does not exist. However thisis counter-intuitive because
actors 1 and 2 can fire indefinitely.

We have seen that the balance equations help usidentify complete cycles. When each actor isfired
the number of times specified by T, thetotal number of tokens produced on each arcisequal to thetotal number
of tokens consumed. In acompletecycle, thereisno net changeinthetotal number of tokenson any arc, sothe
system returnstoitsinitia state with the same number of tokens on each arc. The total memory required for
the buffers associated with the arcs isbounded because there are a finite number of actor firingsin acomplete
cycle (as specified by the repetition vector), and each actor firing produces a finite number of tokens.

The existence of acomplete cycle alowsusto execute aprogram forever with bounded buffer sizes.
The balance equations specify the number of actor firingsin a complete cycle. Finding anon-trivial solution
to the balance equationsis necessary but not sufficient for a complete cycle to exist. Theinitia state of the
graph isaso required to determine whether a complete cycle exists.

2.4 Boolean Dataflow

Synchronous datafl ow programs can be completely analyzed because of the restricted nature of the
computation model. Balanced synchronous dataflow process networks can be executed forever in bounded
memory, which isour ultimate goal. But can we generdize synchronous dataflow to allow conditional, data-
dependent execution and still be able to anayze programs with techniques like the bal ance equations?

Boolean dataflow[9] is an extension of synchronous dataflow that alows conditiona token con-
sumption and production. By adding two simple control actors called switch and select, shown in figure 2.1
on page 19, we can build conditiona constructs such asif-then-else and do-whileloops. The switch actor gets
a control token and then copies a token from the input to the appropriate output, which is determined by the
Boolean value of the control token. The select actor gets a control token and then copies a token from the
appropriate input, which is determined by the Boolean value of the control token, to the output.

Consider the example in figure 2.8, where switch (actor 3) and select (actor 6) are used to build
an if-then-else construct. We can write balance equations for this program, but now the topology matrix has
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Figure 2.8: A balanced Boolean dataflow program.

symbolic entries:

(1 0 1 0 0|
01 _1 0 0 o0
01 O 0 o0 1 0
c_ oo @ -1 0 0 o0 220
00 PR 0 -1 0
00 1 0 —(1-P) O
00 0 P 0
(00 0o o0 1 -1

The variables P, and P, are unknowns, and we can solve the balance equationsin terms of these unknowns.
For this example, the balance equations I'F = 0 have a solution only if P, = P,. Thisrestriction is trivially
satisfied in this case because the control tokens are derived from the same source (actor 2). Thus the solution
isf=[1 1 1 (1-P) P 1 1] whereP=P, =P,

Assume for the moment that this program has afinite complete cycle, just as synchronous datafl ow
programs have complete cycles. If welet N be the number of control tokens produced by actor 2 in the com-
plete cycle and let T be the number of those tokens that have value“TRUE,” then we have P = % Now the
integer solution to the balance equationshastheform?=[ N N N (N—T) T N N ]'. Thesmal-
est integer solution occurs for N = 1, and the system returnsto itsinitia state, with no tokens on any arcs,

following a complete cycle.

Asin synchronousdatafl ow, finding asol utionto the bal ance equationsisnecessary but not sufficient
to guarantee the existence of a complete cycle. Consider the example in figure 2.9[16] with the following
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Figure2.9: A balanced, unbounded Boolean dataflow program.

topol ogy matrix:

(10 -1 0 0|
01 -1 0 0
01 O 0 o0 1 0
c_|0o0o@a-pm -2 o 0 21
00 P 0 -2 0o o0
00 0o 2 ~(1-P) ©
00 0o o0 P 0
(00 O 0 o0 1 -2

Thisis the same system we just studied except that actors 4 and 5 now consume and produce 2 tokens a a
time. Thesolutiontothebalance equationsist=[2 2 2 (1—-P) P 2 2 ]'. Againtheexistenceof
a solution does not depend on the value of P, so we might think that this system can be scheduled in bounded
memory just as the earlier example. But observe what happens when we attempt to find the minimal integer
solution. Using thesame definitionsof Nand T, wefindthatF=[ N N N ST T N N 7. Inorder
for thisto have an integer solution we requirethat N and T be even numbers. But we cannot guarantee this
without additional knowledge about the stream of control tokens produced by actor 2. Consider what happens
if it produces a“FALSE" token followed by along stream of “TRUE” tokens. Actor 4 has only one token
available, soitisnot enabled. Actor 5fires repeatedly, but al of thetokenson the“ TRUE” input of the select
(actor 6) accumul ate, as do thetokensonitscontrol input. Because thefirst control tokenwas“FALSE”, actor
6 iswaiting for tokens on the “FALSE” input.

The answer to the question of whether this system can be executed in bounded memory dependson
the values of the tokens produced on the control stream. It may turn out that the sequence of valueswill allow
the system to run in bounded memory, but without special knowledge about this stream, it isimpossible to
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provethis. We could reject this program because we can’t prove that it isbounded, or we could just execute
it and hope for the best.
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Chapter 3

Dynamic Scheduling of Process
Networks

Our goal isto devise ascheduling policy that will execute an arbitrary process network forever with
bounded buffering onthe communi cation channel swhenever possible. We have seenthat for restricted process
network models, such as synchronousdataflow, it ispossibleto construct afinite schedul ethat can be repeated
indefinitely for infinite execution in bounded memory. It isnot necessary for synchronous dataflow programs
tobestrictly bounded where buffer sizesremain bounded for al execution orders. Itisenoughfor the program
to be bounded, where at |east one execution order yiel ds bounded buffer sizes. Many Bool ean dataflow graphs
can be similarly analyzed, but this computation model is rich enough that the questions of termination and
boundedness are undecidable[9]. Some programswill yield to anaysis, but there will always be some graphs
that cannot be analyzed infinitetime. When static scheduling fails, it becomes necessary to resort to dynamic

scheduling of the program. A dynamic scheduler should satisfy two requirements:

Requirement 1 (Complete Execution) The scheduler should implement a compl ete execution of the of the
Kahn process network program. In particular, if the program is non-terminating, then it should be executed

forever without terminating.

Requirement 2 (Bounded Execution) The scheduler should, if possible, execute the Kahn process network

program so that only a bounded number of tokens ever accumul ate on any of the communication channels.

When these requirements conflict, such as for unbounded programs which require unbounded buffering of to-
kensfor acomplete execution, then requirement 1 takes precedence over requirement 2. We prefer acompl ete,
unbounded execution to a partial, bounded one.

Dynamic scheduling policies can generaly be classified as data driven, demand driven, or some
combination of thetwo. Somework hasbeen doneto rel ate datadriven and demand driven scheduling policies.
Pingali and Arvind [37, 39, 38] take the approach of transforming program graphs so that a data driven exe-
cution of the transformed program is equiva ent to a demand driven execution of the original program. Kahn
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and MacQueen advocate ademand driven policy [25]. Jagannathan and Ashcroft [22, 23, 2, 3, 21] present an
execution policy that they call “eazyflow.” 1t combines aspects of eager (data driven) execution with aspects

of lazy (demand driven) execution. We will discuss these policies and some of their shortcomings.

3.1 Decidablilty

Buck showed that Bool ean datafl ow graphs have computational capability equivalent to auniversa
Turing machine. Using just the switch and select actorstogether with actorsfor performing addition, subtrac-

tion, and comparison of integers, it is possible to construct a universal Turing machine [9].

3.1.1 Termination

Theorem 1 The problem of deciding whether a BDF graph will terminateis undecidable.

Because a Turing machine can be constructed as aBDF graph, solving theterminati on decision prob-
lem for BDF graphswould allow us to solve the halting problem. But because the halting problem is known
to be undecidable, the termination problem for BDF graphs must a so be undecidable. Because BDF graphs
are aspecia case of Kahn process networks, we have the following corollary.

Corollary 1 The problem of deciding whether a Kahn process network will terminateis undecidable.

3.1.2 Boundedness

Theorem 2 ([9]) The problem of deciding whether a BDF graph can be scheduled with bounded memory is
undecidable.

Buck proved thisby showing that solving the bounded memory decision problemwould alow usto
solve the halting problem, which is known to be undecidable. Again, because BDF graphs are a specia case

of Kahn process networks, we have the following corollary.

Corollary 2 The problem of deciding whether a Kahn process network can be schedul ed with bounded mem-

ory isundecidable.

3.1.3 Implications

How does decidability impact our goal of executing arbitrary process networks forever in bounded
memory whenever possi ble? Because termination and boundedness are both undecidabl e problems, we might
wonder if it iseven possibleto achieve thisgoal. When a question is undecidable, we cannot devise an ago-
rithm that will always arrive a an answer in finite time [17]. But because we want an infinite execution of a
program, wedo not need to arrive at an answer infinitetime. Our scheduling algorithm can operate asthe pro-

gram executes and need never terminate precisely because we do not want the program to terminate. Because
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termination is undecidable, we cannot always determine ahead of time whether or not a particular program
terminates. We cannot always identify bounded programs for the same reason. However, we will see that it
issimpleto devise a scheduling algorithm that will execute process networks forever whenever possible. We
can also devise methods of scheduling programs with bounded memory. Satisfying both requirements simul-
taneously is more difficult, but still possible, as we will show.

3.2 Data Driven Scheduling

Datadriven execution, where aprocessisactivated as soon as sufficient dataisavail able, satisfiesre-
quirement 1. Thispolicy always resultsin acompl ete execution of the program because execution stopsif and
only if all of the processes are blocked reading from empty communication channels. For strictly bounded pro-
grams, whereall executionslead to bounded buffer sizes for the communication channel s, both requirements 1
and 2 are satisfied: complete, bounded execution is guaranteed. But because the question of boundednessis
undecidable, we cannot always classify programs as strictly bounded, bounded or unbounded. For bounded
programs, only some of the execution orders|ead to bounded buffer sizes. Unfortunately, data driven sched-
ulers do not always find such execution orders when they exist. This can lead to unbounded accumulation of
tokens on the communi cation channels.

Here is an example of a data driven scheduling policy. Let a Kahn process network be described
by a connected graph G = (V, E) whereV isthe set of vertices corresponding to processes, and E isthe set of
directed edges corresponding to communication channels. Find the set Vg C V of al enabled processes in the
program graph G. By definition, a process can be in one of two states: blocked attempting to get data from
an empty channel, or enabled. If Vg isnot empty, Ve # 0, activate al of the processes in Vg. If dl of these
processes become blocked, repeat by finding a new set Vi of enabled processes.

Itisclear that thispolicy satisfiesrequirement 1 and executes a program indefinitely whenever pos-
sible. For a non-terminating program, there is always at least one enabled process, so Vg is never empty and
execution never terminates. Execution terminates only when Ve = 0, which indicates that all processes are
blocked. Thus execution under thispolicy terminatesif and only if the program in question terminates. How-
ever, it is not necessary to decide whether or not the program will terminate, so the fact that the termination
decision problem is undecidable does not affect us.

The process network described in figure 1.4 on page 4 can be executed forever in bounded memory
with datadriven scheduling, as discussed in section 1.3.3. Thisisthebehavior we desirefor anon-terminating,
strictly bounded program. However, we cannot classify every program as terminating or non-terminating,
bounded or unbounded before beginning execution. How does data driven scheduling behave for programs
that are not strictly bounded?

For unbounded programs, where all complete executions lead to unbounded accumulation of to-
kens, the only way to satisfy requirement 2 isto violate requirement 1 and implement only apartial execution
of the program, stopping before too many tokens accumulate on the channels. Because data driven schedul -
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(int streamV, int streamW = process d(int stream U)

{
do
{
int u=get(U;
put (u, V);
put (u, W;
} forever;
}

Figure 3.1: A process that duplicates a stream.

process p(int stream U)

{
do
{
print(get(U));
} forever;
}

Figure 3.2: A process that printsthe elements of a stream.

ing always results in a complete execution, it aso results in unbounded token accumulation for unbounded
programs. Consider again the dataflow process network in figure 2.7 on page 25. This unbounded program

executes indefinitel y with data driven scheduling, but an unbounded number of tokensaccumul ate.

For bounded programs, where some (but not al) complete executions lead to unbounded buffer
sizesfor thecommuni cation channel's, datadriven scheduling can lead to unnecessary accumul ation of tokens.
The dataflow process network in figure 2.3 on page 22 isnot strictly bounded, but can be executed forever in
bounded memory. In our previous discussion in section 2.3, we considered thefiring sequences 1,1,2,1,2 and
1,1,1,2,2. Both of these sequences can be repeated indefinitely with the dataflow process network executing
forever in bounded memory. However, thefiring sequence 1,1,1, . . . isaso apossible execution order for this
datafl ow process network. Because process 1 hasnoinputs, it never blocksgetting datafrom an empty channel
and so it isaways enabled. Once activated, this process never suspends. Without parallel execution, thereis
no opportunity to activate process 2, so every token produced by process 1 accumulates on the channel. Even
with the possibility of parallel execution, thereis nothing to prevent process 1 from producing datafaster than
it can be consumed by process 2.

The process network in figure 3.5 is another example of a bounded program where data driven
scheduling can lead to unnecessary accumulation of tokens. Figures 3.3, 1.3, 3.1, 3.4 and 3.2 give the def-
initionsof the processes used in thisexample. In simple data driven execution, all enabled processes are exe-
cuted until they block. Thisresultsin tokensbeing produced on streams X and Y at the samerate. But because
process m does not consume data from each of itsinputs at the same rate, tokens will accumulate on one or
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int streamV = process a(int streamU, int x)

{
do
{
put (get (U + x, V);
} forever;
}

Figure 3.3: A processthat adds a constant to each element of a stream.

int stream W= process m(int stream U, int streamYV)

{
int u=get(U;
int v = get(V);
do
{
if (u<v)
{
put(u, W;
u = get(U;
}
else if (u>v)
{
put(v, W;
v = get(V);
}
else /* u == v, discard duplicate */
{
put(u, W;
u = get(U;
v = get(V);
}
} forever;
}

Figure 3.4: A process that implements an ordered merge. Given two monotonically increasing sequences as
input, the output is also monotonically increasing. Values duplicated on the two inputs are removed.
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® & O ¢

Figure 3.5: A process network that merges two streams of monotonically increasing integers (multiples of 2
and 3) to produce a stream of monotonically increasing integerswith no duplicates. The processes are defined
infigures1.3, 3.1, 3.2, 3.3 and 3.4.
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the other of theinputs. In this case tokens accumul ate without bound on the channel for stream Y.

3.3 Demand Driven Scheduling

For bounded execution, we must ensure that data aready produced is consumed before even more
datais produced. We need a means of regulating data sources so that they produce data at the same rate that
it is consumed. Suspending processes only when they attempt to consume data from empty channelsis not
enough. We must also consider suspending processes when they produce data so that other processes have
an opportunity to consume that data. Thisis the approach taken by Kahn and MacQueen for demand driven
execution[25].

Demand driven scheduling policies avoid the unnecessary production of tokens by deferring the
activation of a process until itsoutput is needed asinput for another process. In thisway, we produce only the
data needed for thefina result. However, we will see examples where unbounded token accumulation is still

possible with demand driven scheduling.

3.3.1 Anticipation Coefficients

Kahn and MacQueen describe demand driven execution of process networkg[25]. A single process
is selected to drive the whole network. This driving process is specified in the program and is usually the
process that produces the ultimate output for the program. When a process attempts to consume data from
an empty input channel it is suspended, the channel is marked as hungry, and the producer process for that
channdl is activated. When this new process is activated, it may attempt to consume from an empty input
which would cause yet another process to be activated in turn. When a process produces data on a hungry
channdl, it is suspended and the waiting consumer processisactivated. Notethat thereisno transfer of control
when consuming from a channel that is not empty or when producing to a channel that is not hungry.

The example in figure 3.5 cannot be executed in bounded memory with data driven scheduling.
However, this program can be executed in bounded memory with demand driven scheduling. The subgraphs
that act as sources are regulated so that they produce data only when needed. As soon as a process produces
data on a hungry channel, it is suspended so that the destination process has an opportunity to consume that
data

In this demand driven scheme, there is never more than one active process at any time. Instead of
suspending a process as soon as it produces data on a hungry channel, it could be alowed to continue to run
in parallel with the waiting consumer process in anticipation of demands for its output. However, thereisthe
danger that the producer process may generate results that are never consumed, just as with data driven exe-
cution. Kahn and MacQueen solvethis problem by assigning anon-negativeinteger A, called the anticipation
coefficient, to each channel [25]. Once activated, a producer is not deactivated until there are A unconsumed
tokensonitsoutput. Kahn and MacQueen suggest that the value of A should be set when the channel is passed
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Figure 3.6: The cons operator together with corresponding demand propagation code.

as an input parameter to a new process. Aswe will show later, it may be necessary to change this value dy-

namically while the process network is executing in order to avoid causing an artificial deadlock.

3.3.2 Demand Propagation

Pingali and Arvind present adifferent approach to demand driven execution [37, 39, 38]. They give
amethod to transform agraph so that adatadriven execution of the new graph is equiva ent to ademand driven
execution of the original graph. For each arc inthe origina graph, they add anew arc to carry demand tokens
in the opposite direction. For every node in the origina graph, they add new nodes to propagate demands
along the new arcs.

There are only a few operators in the language used by Pingali and Arvind: cons, firgt, rest, fork,
simplefunctionsthat consume and produce singletokens, select, and the equivaent of switch. The cons, first,
and rest operators are the same ones described earlier in section 1.2.2. Thefork operator isequivalent to pro-
cessdinfigure 3.1 on page 34. The switch and select operatorswere discussed in section 2.1.1 and section 2.4.
Each operator in the language is transformed into a small program (in adlightly more genera language) that
includes demand propagation code.

For example, figure 3.6 shows how the cons operator istransformed. The cons operator consumes
only one token from its first input, and then consumes tokens from the other input. Thisis equivalent to a
select operator where the control stream isasingle “FALSE” token, followed by al “TRUE” tokens. Any
tokens after the first will never be consumed from the first input. If data driven execution were used, tokens
could be produced despite the fact that they will never be consumed. Thus we need to send a signal to the
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Figure 3.7: The fork operator together with corresponding demand propagation code.

source indicating when tokens are needed. For each input of the cons operator thereis a corresponding output
that produces these demands. For the output of the cons operator, there is a corresponding input that accepts
demands. Thefirst demand token is sent to first demand output. This allows the source to produce the token
consumed on the first input of the cons operator. Remaining demand tokens are sent to the other demand
output. Thus, no more tokens will be requested for the first input. All remaining requests are for the other
input.

Data driven execution of this small program is equivalent to demand driven execution of the cons
operator. Demand tokens propagate in a data driven manner, being sent along the appropriate path as soon as
they arrive. Once the demands have propagated to the source, tokenswill propagate forward in a data driven

manner. The cons operator can execute as soon as these tokens arrive.

Figure 3.7 shows how the fork operator is transformed. The fork operator consumes a token from
itsinput and copies it to each output branch. If data driven execution were used, tokens could be produced
before they have been demanded. The gate operators on each output of the fork prevent tokensfrom flowing
through until demand tokens have arrived. As demands arrive, they enable the corresponding gate and then
are merged into a single output demand stream. Demand tokens can arrive on either input in any order and
must be passed on as soon as they arrive. Thus we must use the non-determinate merge operator described
earlier in section 2.1.1. Fortunately this use of the merge operator does not introduce nondeterminism. Any
reordering that may occur on the merge output stream will not be apparent because the demand tokens do not
have values and they are indistinguishablefrom one another.

Figures 3.8 and 3.9 show how a small program is transformed. Demands for the program output
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cons add

-

cons

v

Figure 3.8: A process network program that computes Fibonacci numbers.
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Figure 3.9: The Fibonacci program with demand-propagation code added.
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(int streamV, int streamW = process x(int streamU, int y)

{

do

{
int u=get(U;
if (umdy == 0) put(u, V);
el se put(u, W;

} forever;

}

Figure 3.10: A process that separates a stream in to those values that are and are not evenly divisibleby a

constant.

Figure 3.11: A process network that requires unbounded buffering with demand driven execution. The pro-
cesses are defined in figures 1.3, 3.3, 3.1, 3.2 and 3.10.

flow through the graph to the gate operators at the program inputs where they alow the necessary data to
flow forward through the program graph and produce the results that were demanded. One drawback of this
approach isthe significant overhead required to propagate demands.

3.3.3 Unbounded Execution

Pingali and Arvind prove that a data driven execution of a transformed program is equivalent to
demand driven execution and will produce exactly theval ues required to compute thefinal output and no more.
But this does not preclude unbounded buffering of tokens. For example, if an unequa humber of demands
arrive for the branches of afork, then tokenswill accumulate at the input of one of the gate operators.

Just as the presence of multiple data sources is a problem in data driven scheduling, the presence
of multipledatasinksis a problem in demand driven scheduling. The program shown in figure 3.11 requires
unbounded buffering with simple demand driven scheduling. If processes pg and p; generate demands at the
same rate, then tokens will accumulate on one or the other of the outputs of process x because it does not
produce tokens on each of its outputs at the same rate. In this case tokens accumulate without bound on the
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input to process p;. If we could switch from demand driven scheduling to data driven scheduling at the point
where process x produces undemanded data, then process p; would be able to consume that data.

3.4 Combined Data/Demand Driven Scheduling

We have seen examples where data driven scheduling or demand driven scheduling can lead to an
unbounded accumulation of tokens. Eazyflow isahybrid dataflow model that combines aspects of data driven
(eager) and demand driven (lazy) scheduling [22, 23, 2, 3, 21]. In eazyflow, execution aternates between
demand driven and data driven. Data driven execution is begun when there is a token deficit and continues
until there is a token surplus, at which point demand driven execution resumes. Combined approaches, like
eazyflow, are more promising than data driven or demand driven scheduling aone, but gill fall short of our
goal.

In eazyflow, streamsare classified as eager or |azy, which determineswhether datadriven or demand
driven executionisused to produce stream values. Streams defined with functionsthat consume unpredictable
amounts of data (such as process min figure 3.4) or produce unpredictable amounts of data (such as process
xin figure 3.10) are classified as lazy. Streams defined with functionsthat consume and produce predictable
amounts of data (such as synchronous dataflow processes) are classified as eager, unless one or more of the
input streamsto thefunctionare lazy. If some of theinput streams arelazy, then the output stream isal so lazy.

For example, stream Z infigure 3.5 on page 36 islazy because process m consumes an unpredictable
(data dependent) number of tokens from each of itsinputs. The streams X and Y are eager. If thereisatoken
deficit and too few tokens are avail able when process m demandsthe next value of stream X, then data driven
execution of the subgraph that produces X is triggered. Execution of the subgraph is suspended once enough
tokens have been produced to overcome the deficit and to create a surplus.

Fixed thresholds that are parameters of the system define deficit and surplus [23]. The surplus
threshold serves the same purpose as Kahn and MacQueen’s anticipation coefficient [24]. Aswewill show, a
fixed threshold isinadequate because it may be necessary to adjust the threshold dynamically in order to avoid
causing an artificial deadlock.
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Chapter 4

Bounded Scheduling of Process
Networks

We now present a scheduling policy that simultaneously satisfies requirement 1 (compete execu-
tion) and requirement 2 (bounded execution): arbitrary Kahn process networks execute forever with bounded
buffering when possible. We give priority to requirement 1 and prefer a complete, unbounded execution to
a partia, bounded execution. Aswe showed earlier in section 3.2, data driven scheduling satisfies require-
ment 1 and aways yields a complete execution of a Kahn process network. In particular, non-terminating
programs execute forever. For a strictly bounded program, which has bounded buffering for any execution,
any scheduling policy satisfies requirement 2. Thus data driven scheduling satisfies both requirements 1 and
2 when applied to strictly bounded programs.

Not every program is strictly bounded. Some programs are bounded — they can be executed with
bounded buffer sizes for each of the communication channels, but some execution orders lead to unbounded
buffer sizes. Other programs are unbounded — all complete executions lead to unbounded buffer sizes. We
present a scheduling policy that aways executes non-terminating, bounded programs forever with bounded
buffer sizes. If the program is unbounded, then our policy will still execute it forever (we do not introduce
deadlock) butinthiscaseit isnot possibleto bound the buffer sizes. And of course execution under our policy

will terminate given a terminating program.

4.1 Program Graph Transformation

We transform a program graph G to produce a semantically equivalent graph GP that is strictly
bounded by b°. This transformation may introduce artificial deadlock so that a complete execution of the
transformed graph G represents only a partial execution of the origina graph G. We execute the transformed
program G° with data driven scheduling, or any other policy that satisfies requirement 1, until execution stops.
If execution of G° never stops, then we have succeeded in implementing a complete, bounded execution. If
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execution of G° stops and we discover that this complete execution of G represents a compl ete execution of
the original program G, then we have also succeeded in implementing a compl ete, bounded execution. How-
ever, if execution of G stopsand we discover that this compl ete execution represents only a partial execution
of the original program G, then we have chosen a bound b° that is too small. One or more of the channels
must buffer more than b° tokensin order to implement a compl ete execution of the program G. Thus we must
choose anew larger bound b® > b® and try again.

By definition, aKahn process network that isbounded by b has at east one compl ete execution such
that every channel is bounded by b. Even if we do not know its value, thisbound b exists and isfinite. Thus,
as we choose successively larger boundsb? < bt < b? < - - -, we will eventually discover a bound bN that is
greater than or equal tob. If the program graph G isbounded by b and we apply our transformation to produce
agraph GN that it is strictly bounded by bN with bN > b, then a complete execution of GN correspondsto a
complete execution of G. Thus we can achieve our goa of complete, bounded execution for any bounded
Kahn process network.

We begin with a process network described by a connected graph G = (V, E) with a set of vertices
V corresponding to the processes and a set of directed edgesE corresponding to the communication channels.
For each edge g = (Vm, Vn), add anew edge € = (vn, Vim) in thereverse direction. We call the channels corre-
sponding to these new edges feedback channel s because they introduce directed cycles, or feedback loops, in
the program graph. Let || bethe size of an edge g, the number of tokens stored in the buffer for the commu-
nication channel. Place b; — | | tokenson theedge € so that the total number of tokensfor the pair of edgesis
bi = |&|+ |€|. Frequently thereare no tokensinitially buffered on the communication channels, with |g| = 0
and |€| = by.

Modify each process so that it must consume one token from a feedback channel € for each token
that it produces on the corresponding data channel g. Also, a process must produce one token on a feedback
channel € for each token that it consumes from the corresponding data channel . This requires modified
semantics for the get and put operations, with no other modifications to the processes. Thus the number of
tokens on the pair of edges remains constant, b; = |g |+ |€]. In particular, the number of tokens on the data
channel isstrictly bounded |g | < b;. The program as awholeisstrictly bounded by b = maxb;, the maximum
of the boundsfor al channels.

Aswith data channels, processes block when attempting to get tokens from empty feedback chan-
nels. The tokens flowing a ong these feedback channels need not have values. They simply restrict the order
of execution and do not affect the values of thetokens on the data channels. Thistransformation preservesthe
process network model: aprocess blocks only when reading from an empty channel and channels are poten-
tially unbounded in size. Instead of adding feedback channels, we could modify the process network model
by directly limiting the capacity of thechannel s and requiringthat processes bl ock when writingto afull chan-
nel. For the rest of our discussion, we will dispense with the notion of blocking reads from empty feedback
channelsin favor of blocking writesto full channels.

The feedback channels are similar to the demand arcs in Pingali and Arvind's graph transforma-
tion[37, 39, 38] or the acknowledgment arcs of Dennis' static dataflow model [13, 14, 1, 18]. Directly bound-
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ing the capacity of a channel is similar to Kahn and MacQueen'’s anticipation coefficients [25].

Limiting the capacity of the channels (either directly or indirectly with feedback channels) places
additional restrictionson the order inwhich get and put operationscan take place. Thetransformed graph com-
putes the same result as the original graph with the possible exception that we may have introduced deadlock.
A complete execution of the transformed graph may be only a partial execution of the original graph.

This graph transformation is one way to dividethe set of all possible executionsinto a hierarchy of
subsets. Let O bethe set of execution orders for the original program graph, and let O' be the set of execution
orders for the transformed graph that it is strictly bounded by b'. The set of execution orders for the trans-
formed program is a subset of the execution orders for the origina graph, O' C O. Also, if we transform the
graph for two different valuesb' and b, then O' C Ol if b' < bl. If we choose abound b' such that there are
no infinite executions in O' even though there are infinite executionsin O, then we have introduced artificial
deadl ock.

4.2 Bounded Scheduling

If a program is bounded, then there exists afinite least upper bound b and an execution order such
that the size of each buffer never exceedsb. We choose aninitia estimate b of b and transform the program so
that it is strictly bounded by b°. If we happen to choose b° > b, then a complete execution of the transformed
program corresponds to a compl ete execution of the original program. Execution of the transformed program
terminatesif and only if execution of the original program would also terminate. We call thissituation, where
al processes are blocked reading from empty channels, true deadlock. If we choose b? < b, then execution
could also stop if one or more processes are blocked writing to full channels. We call this situation artificial
deadlock.

We choosean initial bound b® and transform the original graph so that it isstrictly bounded by limit-
ing the capacity of each communication channel to b°. We then execute thistransformed program graph with
an execution policy, such as data driven execution, that satisfies requirement 1. If execution stopsdueto arti-
ficia deadlock, with one or more processes blocked writing to full channels, then we increase the capacities
of al channels in the network to b! > b° so that now the program is strictly bounded by b*. After increasing
the channel capacities, we continue execution from the point where we left off. Each timethat execution stops
dueto artificial deadlock, we increase the capacities of al the channels and continue.

If the program is bounded with a finite least upper bound b, then eventually our estimate will in-
crease to meet or exceed that bound bN > b, and we will be able to execute the program forever with bounded
buffering, simultaneoudly satisfying both requirements 1 and 2. If the program is unbounded, execution re-
peatedly stops dueto artificial deadlock, and we increase the channel capacities repeatedly and without limit.
There is no bound on the buffer requirements for the communication channels, but the execution will con-
tinue indefinitely (or until system resources are exhausted). So we see that requirement 1 is given priority
over requirement 2: we continue to execute unbounded programs as long as possible, preferring a compl ete,
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Figure4.1: A bounded process network inwhich different channels can have different bounds. The processes
are defined infigures 3.3, 1.3, 3.1, 3.10, 3.4 and 3.2.

unbounded execution to a partial, bounded execution. If the origina program would terminate, then execu-
tion of thetransformed program may stop several timesdueto artificial deadlock, but eventually executionwill
stop dueto atrue deadlock where al processes are blocked reading from empty channels and no processesare
blocked writing to full channels.

So we see that this bounded scheduling policy has the desired behavior for terminating and non-
terminating programs, strictly bounded, bounded and unbounded programs. Thisis important because ter-
mination and boundedness are undecidable. There will always be programs that we cannot classify, so our
scheduling policy must have a reasonable behavior for all types of programs.

Part of the elegance of this approach is that any scheduling policy that satisfies requirement 1 can
be used for the transformed graph: data driven, demand driven or some combination of the two. We have
modified the graph is such a way that any scheduler works — any execution leads to bounded buffering on
the communication channels.

4.3 Reducing Buffer Bounds

So far we have set all the channel capacities to the same value. Data driven execution could make
use of al available capacity, requiring large amounts of storage for unconsumed tokens. Some form of de-
mand driven or hybrid execution policy could be employed to avoid using all available capacity. We can also
set different capacity limitsfor different channels. However, we must be careful when doing this so that we
preserve bounded buffer sizes.

Consider the process network in figure 4.1. An increasing sequence of integersis split into two
streams: a stream of valuesthat are evenly divisibleby 5, and a stream of valuesthat are not evenly divisible
by 5. These streams are then merged to again form astream of increasing integers. Initially, valuesO and 1 are
consumed by processm. The value 0 is sent to the output, then process m waits for the next multiple of 5 to
beavailable. Inthemeantime, the values 2, 3 and 4 queue up on the other channel. Once the value 5 becomes
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available and is consumed by process m, the values 2, 3 and 4 are copied from theinput to the output. We see
that the channel for the stream of valuesthat are not multiplesof 5 must have a capacity of at least 3. All other
streams can have a capacity as small as 1.

If we begin by setting the initial capacities of al channelsto 1, and increase all channel capacities
by 1 each time the program deadlocks, then every channel ends up with a capacity of 3. There are 7 channels
in this example, so the total capacity of the system is 21. Thisis higher than the minimum of 9 if we allow
different channel s to have different capacities. If we generalize thisexample so that the divisor in processxis
N instead of 5, then we see that storage requirementsare 7N if we make the capacity limitsthe same for each
channel. The minimum storage required in thisexampleis N+ 4. If N isalarge number, then the difference
between 7N and N + 4 can be quitelarge.

It is not strictly necessary to increase the capacity of every buffer. When execution stops due to
artificial deadlock, one or more processes are blocked writing to full channels. Increasing the capacity limits
of channels that are not full does not allow execution to continue. It is necessary to increase the capacity of
one or more of the full channels. It isimportant not to increase the largest buffer (unless al full buffers are
the same size) because this could lead to unbounded growth of that buffer. We will show that it is sufficient
to increase the full channel with the smallest capacity.

Instead of increasing the capacity of all the channels, we can increase the capacity of only the full
channel with the smallest capacity. One possible sequence of deadlocks that occur with this policy and data
driven executionisshownin figure4.2. Initialy al channel capacitiesare 1 infigure 4.2(a). At severa points
thereis atiethat must be broken, asin figure 4.2(c). Our arbitrary choices led to the distribution of channel
capacities shown in figure 4.2(e).

Increasing thesmallest full channel guaranteesthat every full channel will eventually beincreased if
necessary to unlock the program. If the same channel isincreased repeatedly, then eventually it will no longer
be smallest. If some full channel other than the smallest isincreased, then some buffers could grow without
bound. Consider what would happen if only the largest full channel were increased, for example. Choosing
the smallest channel prevents thisfrom happening. The advantage of this policy isthat some channels have
smaller capacitiesthan if al channel capacities were increased.

4.4 Dataflow Scheduling

These results for bounded scheduling of process networks can be applied to dataflow. But because
thefiring of adataflow actor isatomic, we cannot directly use thetechnique of limiting the capacities of chan-
nels. When an actor fires, it consumes input tokens and produces output tokens. Once initiated, the firing
cannot be suspended. In particular, it cannot be suspended when it produces output tokens. In general we
do not know how many tokens afiring will produce, if any. Thus we cannot determineif firing an actor will
produce enough tokensto exceed the capacity limit of a channel.

Instead we classify dataflow actors as deferrable or non-deferrable. We define an actor to be de-
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Figure4.2: The sequence of deadlocksthat occur when only the smallest full buffer isincreased. At each step,
the indicated processes are blocked writing to the indicated full channels. The capacities of the channels are
indicated at each step.
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ferrable when it is enabled (enough tokens are available at the inputs to satisfy itsfiring rules), but one or
more of its output channels has sufficient tokens to satisfy the demand of the destination actor. In order to
preserve bounded buffering when possible, a dataflow actor should not add tokens to an edge when there are
already enough tokensto satisfy the demand of the destination actor on that edge (enough tokensare available
to match the applicable firing rule pattern for the destination).

If a dataflow program is bounded, then there exists a finite bound b such that no actor consumes or
produces morethan b tokensin afiring. There could be as many asb — 1 tokens on achannel withthe demand
il unsatisfied. An actor could produce as many as b tokens when fired, so there could be asmany as2b — 1
tokenson achanndl. If deferrable actors are never fired, then there will never be more than 2b — 1 tokenson
any channel.

For a dataflow program described by agraph G = (V, E), data driven execution would find the set
Ve of enabled actors and fire al of them. Instead, we find the subset Vp C Vg of deferrable actors. Only the
non-deferrableactorsin Ve — Vp arefired. Then the new set V£ of enabled actors and the new set of deferrable
actors are computed, and the actors in Vit — V[ are fired. This repeats as long as VL — V is not empty. If
execution stops, then V£ — V5 must be empty. All enabled actors are deferrable, so VE = .

At this point, we must fire a deferrable actor to satisfy requirement 1. For each deferrable actor v,
let ¢j be the maximum of the buffer sizes for that actor’s output channels that have satisfied demands. If we
choose to fire the actor with the minimum value for ¢;, then we can aso satisfy requirement 2.

The motivation for thisis similar to our motivation for increasing the capacity of the smallest full
channel. Each deferrable actor has at least one output channel with a satisfied demand. In some sense, such
channels are full. In general we do not know which channel(s) an actor firing will produce tokens on, so we
must consider the largest such channel buffer for each actor. This determinesthe valuec; for each deferrable
actor, and we choose to fire the actor with the smallest value for c;. If thisactor firing could produce as many
asbtokenson achannd that already has abuffer size of ¢;. Thusthe maximum buffer sizefor the entiregraph
would be max(max(c;), min(c;) + b). If thisactor firing produces no tokens, or produces tokens on a channel
other than the one that determined c;, then the maximum buffer size could be smaller.

If the same actor isfired repeatedly, then eventually it will no longer have the smallest valuefor cj,
or it will no longer be enabled. If some other actor were fired, then some buffers could grow without bound.
Consider what would happen if only the actor with the largest value for ¢j werefired. Choosing theactor with
the smallest value of ¢ preventsthisfrom happening.
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Chapter 5

| mplementation in Ptolemy

Ptolemy [10] isan object oriented simulation and prototyping environment. A basic abstraction in
Ptolemy is the domain, which realizes a computational model. Examples of domains include synchronous
dataflow (SDF), Bool ean dataflow (BDF), dynamic dataflow (DDF) and discrete-event (DE). Subsystems can
be described with an appropriate domain and domainscan be mixed torealize an overall system simulation. In
addition to mixed-domain simulation, Ptolemy also supports code generation for the dataflow domains [40].
The theory presented in this thesis has been implemented in Ptolemy as the Process Network (PN) domain.
The PN domain includes al the dataflow domains (SDF, BDF and DDF) as subdomains. This hierarchical
rel ationship among the domainsis shownin figure 5.1. The model of computation for each domainisastrict
subset of the model for the domain that containsit.

The nodes of a program graph, which correspond to processes or dataflow actors, are implemented
in Ptolemy by objects derived fromtheclass St ar . Thefiring function of adataflow actor isimplemented by
the r un method of St ar . The edges of the program graph, which correspond to communication channels,
are implemented by the class Geodesi ¢. A Geodesi c isafirst-in first-out (FIFO) queue that is accessed
by the put and get methods. The connections between stars and geodesics are implemented by the class
Por t Hol e. Each Por t Hol e hasaninterna buffer. The methodssendDat a andr ecei veDat a transfer
data between this buffer and aGeodesi ¢ usingtheput and get methods.

Several existing domainsin Ptolemy, such as Synchronous Dataflow (SDF) and Boolean Dataflow
(BDF), implement dataflow process networks by scheduling the firings of dataflow actors. The firing of a
dataflow actor isimplemented as afunction call to ther un method of a St ar object. A scheduler executes
the system as a sequence of function calls. Thus, therepeated actor firingsthat make up adataflow processare
interleaved with the actor firings of other dataflow processes. Before invoking ther un method of a St ar
the scheduler must ensure that enough datais availableto satisfy the actor’sfiring rules. This makesit neces-
sary for a St ar object to inform the scheduler of the number of tokensit requires from itsinputs. With this

information, a scheduler can can guarantee that an actor will not attempt to read from an empty channel.

By contrast, the PN domain creates a separate thread of execution for each node in the program
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PN

Figure5.1: The hierarchy of dataflow domainsin Ptolemy.

graph. Threads are sometimes called lightwei ght processes. M odern operating systems, such as Unix, support
the simultaneous execution of multiple processes. There need not be any actual paralelism. The operating
system can interl eave the execution of the processes. Withinasingleprocess, there can bemultiplelightweight
processes or threads, so there are two levels of multi-threading. Threads share a single address space, that
of the parent process, allowing them to communicate through simple variables. There is no need for more

complex, heavyweight inter-process communi cation mechanisms such as pipes.

Synchronization mechanisms are available to ensure that threads have exclusive access to shared
dataand cannot interfere with one another to corrupt shared data structures. Monitorsand condition variables
are avail able to synchronize the execution of threads. A monitor isan object that can be locked and unlocked.
Only onethread may holdthelock on amonitor. If athread attemptstolock amonitor that isaready locked by
another thread, it is suspended until the monitor isunlocked. At that point it wakes up and tries again to lock
the monitor. Conditionvariables allow threads to send signal sto each other. Condition variables must be used
in conjunction with a monitor; athread must lock the associated monitor before using a condition variable.

The scheduler in the PN domain creates athread for each node in the program graph. Each thread
implements a datafl ow process by repeatedly invokingther un method of aSt ar object. The scheduler itself
does very littlework, leaving the operating system to interleave the execution of threads. The put and get
methods of the class Geodesi ¢ have been re-implemented using monitorsand condition variables so that a
thread attempting to read from an empty channel isautomatically suspended, and threads automatically wake
up when data becomes available.

Theclasses Pt Thr ead, Pt Gat e, and Pt Condi t i on definetheinterfacesfor threads, monitors,
and condition variables in Ptolemy. Different implementations can be used as long as they conform to the
interfaces defined in these base classes. At different pointsin the development of the PN domain, we experi-
mented with implementations based on Sun’s Lightweight Process library, AWESIME (A Widely Extensible
Simulation Environment) by Dirk Grunwald [20], and Solaristhreads[41, 15, 28, 30, 29, 42, 43]. The current
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Figure5.2: The class derivation hierarchy for threads. Pt Thr ead isan abstract base class with several pos-
sible implementations. Each Dat aFl owPr ocess refersto aDat aFl owSt ar .

implementation is based on a POSIX thread library by Frank Miller [34, 35, 19, 36]. Thislibrary, which runs
on severd platforms, isbased on Draft 6 of the standard. Parts of our implementation will need to be updated
to be compliant with the final POSIX thread standard.

By choosing the POSI X standard, we improvethe portability of our code. Sun and Hewlett Packard
aready include an implementation of POSIX threads in their operating systems, Solaris 2.5 and HPUX 10.
Having threadsbuiltintothekernel of theoperating system, as opposed to auser library implementation, offers
the opportunity for automatic parallelization on multiprocessor workstations. Thus, the same program runs
properly on uniprocessor workstations and multiprocessor workstations without needing to be recompiled.
Thisisimportant because it would beimpractical to maintain different binary executables of Ptolemy for each
workstation configuration.

5.1 Processes

Figure 5.2 showsthe class derivation hierarchy for the classes that implement the processes of Kahn
process networks. The abstract base class Pt Thr ead defines the interface for threads in Ptolemy. The class
Posi xThr ead provides an implementation based on the POSIX thread standard. Other implementations



56 CHAPTER 5. IMPLEMENTATION IN PTOLEMY

using AWESIME [20] or Solaris[41] arepossible. TheclassPNThr ead isat ypedef that determineswhich
implementationisused in the PN domain. Changing the underlyingimplementation simply requires changing
thist ypedef . The class Dat aFl owPr ocess, whichisderived from PNThr ead, implements a dataflow
process. The St ar object associated with an instance of Dat aFl owPr ocess is activated repeatedly, just
as adataflow actor is fired repeatedly to form a process.

511 PtThread

Pt Thr ead isan abstract base class that defines the interface for al thread objectsin Ptolemy. Be-
cause it has purevirtual methods, it isnot possibleto create an instance of Pt Thr ead. All of themethodsare
virtual so that objects can bereferred to asageneric Pt Thr ead, but with the correct implementati on-specific
functionality.

The class Pt Thr ead has two public methods.

virtual void initialize() = 0;
This method initiaizesthe thread and causes it to begin execution.

virtual void terminate() = O;
This method causes execution of the thread to terminate.

The class Pt Thr ead has one protected method.

virtual void run() = 0;
This method defines the functionality of the thread. 1t isinvoked when the thread begins execution.

5.1.2 PosixThread

The class Posi xThr ead providesan implementation for the interface defined by Pt Thr ead. It
does not implement the purevirtual methodr un, soitisnot possibleto create an instance of Posi x Thr ead.
Thisclass adds one protected method, and one protected data member to those aready defined inPt Thr ead.

static void* runThi s(Posi xThr ead*);
This static method invokesther un method of the referenced thread. This providesa C interface that
can be used by the POSIX thread library.

pt hread_t t hread;
A handle for the POSIX thread associated with the Posi x Thr ead object.

pthreadattr_t attributes;
A handle for the attributes associated with the POSI X thread.

i nt detach;
A flag to set the detached state of the POSIX thread.
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voi d Posi xThread: :initialize()
{
/1 Initialize attributes.
pthread_attr_init(&attributes);
/1 Detached threads free up their resources as soon as they exit.
/1 Non-detached threads can be joined.
detach = 0;
pt hread_attr_setdetachstate(&attributes, &detach);
/1 New threads inherit their priority and scheduling policy
/1 fromthe current thread.
pt hread_attr_setinheritsched(&attributes, PTHREAD | NHERI T_SCHED);
/1 Set the stack size to sonething reasonably large. (32K)
pthread_attr_setstacksi ze(&attributes, 0x8000);
/] Create a thread.
pt hread_create(& hread, &attributes, (pthread_func_t)runThis, this);
/1 Discard tenporary attribute object.
pt hread_attr_destroy(&attributes);
}

Figure5.3: Thei ni ti al i ze method of Posi xThr ead.
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voi d Posi xThread: :term nate()

{
/1 Force the thread to terminate if it has not already done so.
/1 1s it safe to do this to a thread that has already terninated?
pt hr ead_cancel (t hread);

/1 Now wai t .
pt hread_j oi n(t hread, NULL);
pt hr ead_det ach( & hr ead) ;

Figure5.4: Thet er m nat e method of Posi xThr ead.

Dat aFl owPr ocess( Dat aFl owSt ar & s)
star(s) {}

Figure5.5: The congtructor for Dat aFl owPr ocess.

Thei ni ti al i ze method, shown in figure 5.3, initializes attributes, then creates athread. The
thread is created in a non-detached state, which makes it possible to later synchronize with the thread as it
terminates. The controlling thread (usually the main thread) invokesthet er m nat e method of athread
and waits for it to terminate. The priority and scheduling policy for the thread are inherited from the thread
that creates it, usually the main thread. A function pointer to ther unThi s method and thet hi s pointer,
which pointsto the current Posi x Thr ead object, are passed as argumentsto thept hr ead_cr eat e func-
tion. This creates athread that executesr unThi s, and passest hi s asanargument tor unThi s. Thus, the
r un method of the Posi xThr ead object is the main function of thethread that is created. Ther unThi s
method is required because it would not be good practice to pass a function pointer to the r un method as
an argument to pt hr ead_cr eat e. Although the r un method has an implicit t hi s pointer argument by
virtue of the fact that it is a class method, thisisreally an implementation detail of the C++ compiler. By us-
ingther unThi s method, we make the pointer argument explicit and avoid any dependencies on a particular
compiler implementation.

Thet er m nat e method, shown in figure 5.4, causes the thread to terminate before deleting the
Posi xThr ead object. First it requests that the thread associated withthe Posi x Thr ead object terminate,
usingthept hr ead_cancel function. Then the current thread is suspended by pt hr ead_j oi n togivethe
cancelled thread an opportunity to terminate. Once termination of that thread is complete, the current thread
resumes and desall ocates resources used by the terminated thread by calling pt hr ead_det ach. Thus one
thread can cause another to terminate by invokingthet er m nat e method of that thread.
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voi d Dat aFl owPr ocess: : run()

{

/1 Configure the star for dynamic execution.
star. set Dynam cExecuti on( TRUE) ;

/] Fire the Star ad infinitum
do

{
if (star.waitPort()) star.waitPort()->receiveData();
} while(star.run());

Figure5.6: Ther un method of Dat aFl owPr ocess.

5.1.3 DataFlowProcess

The class Dat aFl owPr ocess isderived from Posi xThr ead. It implements the map higher
order function described in section 2.1. A Dat aFl owSt ar is associated with each Dat aFl owPr ocess
object.

Dat aFl owSt ar & st ar;
Thisprotected datamember refersto the dataflow star associated withtheDat aFl owPr ocess object.

The constructor, shown in figure 5.5, initializesthe st ar member to establish the association between the
thread and the star.

The r un method, shown in figure 5.6, is defined to repeatedly invoke ther un method of the star
associated with thethread, just as the map function forms a process from repeated firings of a dataflow actor.
Some dataflow stars in the BDF domain can operate with static scheduling or dynamic, run-time scheduling.
Under static scheduling, a BDF star assumes that tokens are avail able on control inputs and appropriate data
inputs. Thisrequiresthat the scheduler be aware of the values of control tokens and the data portsthat depend
on thesevalues. Because our scheduler hasno such specia knowledge, these stars must be properly configured
for dynamic, multi-threaded execution in the PN domain. Starsin the BDF domain that have been configured
for dynamic execution, and starsin the DDF domain dynamically inform the schedul er of data-dependent fir-
ing rules by designating a particular input Por t Hol e with thewai t Port method. Data must be retrieved
from the designated input before invoking the star’sr un method. The star’sr un method isinvoked repeat-
edly, until it indicates an error by returning “FALSE.”

5.2 Communication Channels

Figure 5.7 shows the class derivation hierarchy for the classes that implement the communication
channels of Kahn process networks. The classes that implement the communication channels provide the
synchronization necessary to enforce the blocking read semantics of Kahn process networks. The classes
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Figure5.7: Theclassderivationhierarchy for monitorsand conditionvariables. Pt Gat e andPt Condi ti on
are abstract base classes, each with several possible implementations. Each Cri ti cal Secti on and
Pt Condi ti onreferstoaPt Gat e.

Pt Gat e, Posi xMoni tor andCri ti cal Secti on provideamutua exclusion mechanism. The classes
Pt Condi ti on and Posi xCondi t i on provide a synchronization mechanism. The class PNGeodesi ¢
uses these classes to implement a communi cation channel that enforces the blocking read operations of Kahn
process networks and the blocking write operations required for bounded scheduling.

The abstract base class Pt Gat e defines the interface for mutual exclusion objectsin Ptolemy. The
classPosi xMoni t or providesan implementation of Pt Gat e based on the POSIX thread standard. Other
implementations are possible. The class PNVbni t or isat ypedef that determines which implementation
isused inthe PN domain. Changing the underlyingimplementation simply requireschanging thist ypedef .

The abstract base class Pt Condi t i on defines the interface for condition variables in Ptolemy.
The class Posi xCondi t i on providesan implementation based on the POSIX thread standard. Other im-
plementations are possible. The class PNCondi ti onisat ypedef that determineswhich implementation
isused inthe PN domain. Changing the underlyingimplementation simply requireschanging thist ypedef .

TheclassCri ti cal Secti on providesaconvenient method for manipulating Pt Gat e objects,
preventing some common programming errors. The class PNGeodsesi ¢ usesal of these classes to imple-

ment a communication channel.

5.2.1 PtGate

A Pt Gat e can be locked and unlocked, but only one thread can hold the lock. Thus if a thread
attemptstolock aPt Gat e that isalready locked by another thread, it is suspended until the lock is released.

virtual void lock() = O;
This protected method locks the Pt Gat e aobject for exclusive use by one thread.
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voi d Posi xMonitor:: I ock()

{

pt hr ead_mut ex_| ock( &t ex) ;

/1 Guarantee that the nutex will not remain | ocked

/1 by a cancelled thread.

pt hr ead_cl eanup_push((voi d(*) (void *)) pt hread_mut ex_unl ock, &mutex);
}

Figure5.8: Thel ock method of Posi xMoni t or .

voi d Posi xMoni tor::unl ock()

{
/1 Renove cl eanup handl er and unl ock.
pt hr ead_cl eanup_pop( TRUE) ;

}

Figure5.9: Theunl ock method of Posi xMoni t or .

virtual void unlock() = 0;
This protected method rel eases the lock on the Pt Gat e object.

5.2.2 PosixMonitor

The class Posi xMoni t or provides an implementation for the interface defined by Pt Gat e. It

has a single protected data member.

pt hr ead_mut ex_t thread;
A handle for the POSIX monitor associated with the Posi xMoni t or object.

The implementations of thel ock and unl ock methods are shown in figures 5.8 and 5.9.

5.2.3 CriticalSection

The class Cri ti cal Secti on provides a convenient mechanism for locking and unlocking
Pt Gat e objects. Its constructor, shown in figure 5.10 locks the gate. Its destructor, shown in figure 5.11

Critical Section(PtGate* g) : mutex(Q)
{

}

if (nutex) nutex->lock();

Figure 5.10: The constructor of Cri ti cal Secti on.
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“Critical Section()
{

}

i f (mutex) nutex->unlock();

Figure5.11: Thedestructor of Cri ti cal Secti on.

unlocks the gate. To protect a section of code, smply create a new scope and declare an instance of
Critical Section. ThePt Gat e islocked assoonastheCri ti cal Secti on isconstructed. When
execution of the code exits scope, the Cri ti cal Sect i on destructor is automatically invoked, unlocking
the Pt Gat e and preventing errors caused by forgetting to unlock it. Examples of thisusage are showninfig-
ures5.16 and 5.15. Because only onethread can hold thelock onaPt Gat e, only one section of code guarded
in thisway can be active at agiventime.

5.2.4 PtCondition

The class Pt Condi ti on defines the interface for condition variables in Ptolemy. A
Pt Condi ti on provides synchronization through the wai t and noti fy methods. A condition vari-
able can be used only when executing code within a critical section (i.e. when aPt Gat e islocked).

Pt Gat e& non;
This data member refers to the gate associated with the Pt Condi t i on object.

virtual void wait() = O;
This method suspends execution of the current thread until notification is received. The associated
gate is unlocked before execution is suspended. Once notification is received, the lock on the gate is

automatically reacquired before execution resumes.

virtual void notify() = 0;
This method sends notification to one waiting thread. If multiple threads are waiting for notification,
only oneis activated.

virtual void notifyAll() = 0;
This method sends notification to al waiting threads. If multiple threads are waiting for notification,
all of them are activated. Once activated, al of the threads attempt to reacquire the lock on the gate,
but only one of them succeeds. The others are suspended again until they can acquire the lock on the
gate.

5.25 PosixCondition

The class Posi xCondi ti on provides an implementation for the interface defined by
Pt Condi ti on. The implementations of the wai t, notify and noti fyAl | methods are shown
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voi d Posi xCondition::wait()

{
}

pt hr ead_cond_wai t (&condi ti on, &mutex);

Figure5.12: Thewai t method of Posi xCondi ti on.

voi d Posi xCondi tion::notify()
{

}

pt hr ead_cond_si gnal (&condi tion);

Figure5.13: Thenot i f y method of Posi xCondi ti on.

infigures5.12, 5.13 and 5.14.

5.2.6 PNGeodesic

TheclassPNGeodesi ¢, whichisderived fromtheclassGeodesi c defined inthe Ptolemy kernel,
implements the communication channels for the PN domain. In conjunction with the Pt Gat e member pro-
vided inthe base class Geodesi ¢, two condition variables provide the necessary synchronization for block-
ing read and blocking write operations.

Pt Condi ti on* not Enpty;
This datamember pointsto a condition variable used for blocking read operations when the channel is
empty.

Pt Condi ti on* not Ful | ;
This data member pointsto a condition variable used for blocking write operations when the channel
isfull.

int cap;
This datamember represents the capacity of the communication channel and determineswhen itisfull.

The sl owGet method, shown in figure 5.15, implements the get operation for communication
channels. The entire method executes withinacritical section to ensure consistency of the object’s datamem-

voi d Posi xCondition::notifyAll ()
{

}

pt hr ead_cond_br oadcast (&condi tion);

Figure5.14: Thenoti f yAl | method of Posi xCondi ti on.
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Particl e* PNCeodesi c:: sl owGet ()
{
/1 Avoid entering the gate nore than once.

Critical Section region(gate);

while (sz < 1 & notEnpty) not Enpty->wait();
sz--; Particle* p = pstack.get();

if (sz < cap & notFull) notFull->notifyAl();
return p;

Figure5.15: The sl owGet method of PNGeodesi c.

voi d PNCeodesi c: : sl owPut (Particl e* p)

{
/1 Avoid entering the gate nore than once.
Critical Section region(gate);
while (sz >= cap & notFull) notFull->wait();
pstack. putTail (p); sz++;
i f (notEnpty) notEnmpty->notifyAl();

}

Figure5.16: The sl owPut method of PNGeodesi c.

bers. If the buffer isempty, then the thread that invoked sl owCGet is suspended until notificationisreceived
on not Enpt y. Dataisretrieved from the buffer, and if it is not full notificationis sent onnot Ful | to any
other thread that may have been waiting.

The sl owPut method, shown in figure 5.16, implements the put operation for communication
channels. The entire method executes withinacritical section to ensure consistency of the object’s datamem-
bers. If the buffer isfull, then thethread that invoked s| owPut issuspended until notificationisreceived on
not Ful | . Datais placed in the buffer, and notification is sent on not Enpt y to any other thread that may
have been waiting.

Theset Capaci t y method, showninfigure5.17, isused to adjust the capacity limit of communi-
cation channels. If the capacity isincreased so that achannel isnolonger full, notificationissent onnot Ful |

to any thread that may have been waiting.

voi d PNCGeodesi c: : set Capacity(int c)
{

cap = c;
if (sz <cap & notFull) notFull->notifyAl();

Figure5.17: Theset Capaci t y method of PNGeodesi c.
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ThreadScheduler

| i waSchadiilar |
PosixScheduler

PNThreadScheduler PNScheduler

Figure 5.18: The class derivation hierarchy for schedulers. Thr eadSchedul er isan abstract base class
with severd possibleimplementations. Each PNSchedul er refersto aPNThr eadSchedul er.

5.3 Scheduling

Figure5.18 showsthe class derivation hierarchy for the classes that implement the dynamic schedul -
ing of Kahn process networks. The classes Thr eadSchedul er and Posi xSchedul er provide mecha
nisms for initiating and terminating groups of threads. These classes are used by PNSchedul er to create
threads for each node in the program graph. The class SyncDat aFl owPr ocess implements the threads

for the nodes.

5.3.1 ThreadScheduler

The abstract base class Thr eadSchedul er defines the interface of a container class for manipu-

lating groups of threads. It has three public methods.

virtual void add(PtThread*) = O;
Thismethod adds a Pt Thr ead object to the container.

virtual void run() = 0;
This method causes al threads in the container to begin execution. It isintended that only the threads
belonging to a particular Thr eadSchedul er object be affected by this method. This would
permit multiple Thr eadSchedul er objects to exist and operate without interfering with each
other. However, in practice this may not be possible. Often this causes al threads belonging to al
Thr eadSchedul er objectsto be activated.

virtual ~ThreadSchedul er();
This method terminates and del etes all threads in the container.
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/] Start or continue the running of all threads.

voi d Posi xSchedul er::run()

{
/1 Initialize attributes.
pthread_attr_t attributes;
pthread_attr_init(&attributes);
/1 Lower the priority to let other threads run
pt hr ead_get schedattr (mai nThread, &attri butes);
pthread_attr_setprio(&attributes, mnPriority);
pt hr ead_set schedattr (mai nThread, attributes);
/1 When control returns, restore the priority of this thread
/] to prevent others from running.
pt hr ead_get schedatt r (mai nThread, &attri butes);
pthread_attr_setprio(&attributes, maxPriority);
pt hr ead_set schedattr (mai nThread, attributes);
/1 Discard tenporary attribute object.
pt hread_attr_destroy(&attributes);

}

Figure5.19: Ther un method of Posi xSchedul er .

5.3.2 PosixScheduler

The class Posi xSchedul er provides an implementation of Thr eadSchedul er based on
the POSIX thread standard. Other implementations are possible. The class PNThr eadSchedul er isa
t ypedef that determines which implementation is used in the PN domain. Changing the underlying im-
plementation simply requires changing thist ypedef .

Theadd method of Posi xSchedul er simply athread toan internal list implemented by theclass
Thr eadLi st . Ther un method, which isshown in figure 5.19, allows all threads (not just thosein thelist)
to run by lowering the priority of the main thread. If execution of the threads ever stops, control returnsto the
main thread and itspriority israised again to prevent other threadsfrom continuing. ThePosi xSchedul er
destructor invokesthe Thr eadLi st destructor, whichisshowninfigure5.20. It causes al threadsinthelist
to terminate.

5.3.3 PNScheduler

TheclassPNSchedul er controlstheexecution of aprocess network. Three datamembers support
synchronization between the scheduler and the processes.

PNThr eadSchedul er * t hr eads;
A container for the threads managed by the scheduler.
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/] Destructor. Delete all threads.
/1 This assunmes that the threads have been dynanically all ocated.
Thr eadLi st:: " Thr eadLi st ()

{
// Delete all the threads in the |ist.
for (int i =size(); i >0; i--)
{
Posi xThread* t = (Posi xThread*) get AndRenove();
t->term nate();
LOG DEL; delete t;
}
}

Figure 5.20: The destructor of Thr eadLi st .

PNMoni tor* nonitor;

A monitor to guard the scheduler’s condition variable.

PNCondi ti on* start;
A condition variable for synchronizing with threads.

int iteration;
A counter for regulating the execution of the processes.

The cr eat eThr eads method, shown in figure 5.21, creates one process for each node in the
program graph. A SyncDat aFl owPr ocess is created for each Dat aFl owSt ar and added to the
PNThr eadSchedul er container.

It is often desirable to have a partial execution of a process network. The class
SyncDat aFl owPr ocess, which is derived from Dat aFl owPr ocess, supports this by synchro-
nizing the execution of a thread with thei t er ati on counter that belongs to the PNSchedul er. The
r un methods of PNSchedul er and SyncDat aFl owPr ocess implement this synchronization. The
PNSchedul er r un method, showninfigure5.22, incrementsthei t er at i on count to giveevery process
an opportunity to run. The SyncDat aFl owPr ocess r un method, shown in figure 5.23, ensures that the
number of invocations of the star’sr un method does not exceed thei t er at i on count.

Thei ncr easeBuf f er s method is used during the course of execution to adjust the channel ca-
pacities according to the theory presented previously in chapter 4. Each time execution stops, the program
graph is examined for full channels. If there are any full channels, then the capacity of the smallest oneis
increased.
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/1 Create threads (datafl ow processes).
voi d PNSchedul er: : creat eThreads()

{
Gal Starlter nextStar(*gal axy());
Dat aFl owSt ar * st ar;
LOG NEW threads = new PNThreadSchedul er;
/1 Create Threads for all the Stars.
whi l e((star = (DataFl owSt ar*) next Star ++) !'= NULL)
{
LOG_NEW SyncDat aFl owPr ocess* p
= new SyncDat aFl owPr ocess(*star, *start,iteration);
t hr eads- >add( p) ;
p->initialize();
}
}

Figure5.21: Thecr eat eThr eads method of PNSchedul er .

/1 Run (or continue) the sinulation.
i nt PNSchedul er::run()
{
if (SinControl::haltRequested())
{
Error::abortRun(*gal axy(), " cannot continue.");
return FALSE;
}
while((currentTine < stopTime) && !SinControl:: halt Requested())
{
/1 Notify all threads to continue.
{
Critical Section region(start->monitor());
iteration++;
start->notifyAll();
t hreads->run();
whil e (increaseBuffers() &% !SinControl::haltRequested())
{
t hreads->run();
}
current Ti me += schedul ePeri od;
}
return ! SimControl:: haltRequested();
}

Figure5.22: Ther un method of PNSchedul er .
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voi d SyncDat aFl owPr ocess: : run()

{

int i = 0;

/1 Configure the star for dynamic execution.
star. set Dynam cExecuti on( TRUE) ;

/] Fire the star ad infinitum

do
{
/1 Wait for notification to start.
{
Critical Section region(start.nonitor());
while (iteration <= i) start.wait();
i = iteration;
}

if (star.waitPort()) star.waitPort()->receiveData();
} while (star.run());

Figure 5.23: Ther un method of SyncDat aFl owPr ocess.
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/1 Increase buffer capacities.
/1 Return number of full buffers encountered.
i nt PNSchedul er: :increaseBuffers()
{
int fullBuffers = 0;
PNGeodesi c* smal | est = NULL;
/1 Increase the capacity of the smallest full geodesic.
Gal Starlter nextStar(*gal axy());
Star* star;
while ((star = nextStar++) != NULL)
{
Bl ockPortlter nextPort(*star);
Por t Hol e* port;
while ((port = nextPort++) !'= NULL)
PNGeodesi c* geo = NULL;
if (port->isltQutput()
&& (geo = (PNCeodesic*)port->geo()) != NULL)
{
if (geo->size() >= geo->capacity())
ful | Buf f er s++;
if (smallest == NULL
| | geo->capacity() < smallest->capacity())
smal | est = geo;
}
}
}
}
if (smallest !'= NULL)
smal | est - >set Capaci ty(smal | est->capacity() + 1);
return full Buffers;
}

Figure5.24: Thei ncr easeBuf f er s method of PNSchedul er .
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Chapter 6

Conclusion

We have presented a scheduling policy for Kahn process networksthat simultaneously satisfies our
two requirements of non-termination and bounded buffering when possible. We do thisby limiting the capac-
ities of all communication channels and then increasing these capacities as needed to avoid deadl ock.

We rely on the fact that Kahn process networks are determinate. The results produced by executing
aprogram are unaffected by the order in which operationsare carried out. In particul ar, deadl ock isa property
of the program itself and does not depend on the details of scheduling. Buffer sizes for the communication
channels, on the other hand, do depend on the order in which get and put operationsare carried out. By lim-
iting the channel capacities, we place additiona restrictions on the order of get and put operations. We have
reduced the set of possible execution orders to those where the buffer sizes never exceed the capacity limits.
If our model of computation were nondeterminate, the channel historiescould be affected by scheduling deci-
sions. In particular, one wrong scheduling decision could cause the system to deadl ock or require unbounded
buffering on one or more channels.

Our approach has some drawbacks. Execution of the entire program comes to a stop each time we
encounter artificial deadlock, which can severely limit paralelism. Artificial deadlock occurswhen the capac-
ity limitsare set too low, causing some processes to block writing to afull channel. All scheduling decisions
are made dynamically during execution. We now discuss some topics for future research that may improve

upon our policy.

6.1 Static Capacity Assignments

For simple process network models, such as synchronous dataflow process networks [31, 32] we
can completely analyze a program and determine exactly what buffer sizesare required for the communication
channels. By solving the balance equations, as described in section 2.3, we determine how many times each
dataflow actor isfired in a complete cycle. We aso know how many tokens are consumed and produced by
each actor firing, so weimmediately have abound on thebuffer sizesfor thecommunication channels. Similar
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analysis can sometimes (but not always) be done for Boolean dataflow process networks [9], as discussed in
section 2.4. We could apply these analysis techniques to entire process networks, or to subsystems that obey
the restricted synchronous or Boolean dataflow models. Thiswould allow usto assign static capacity limits
for someor all of the communication channels. There would be no need to adjust these capacities dynamically
during execution, and we can also pre-allocate memory so that there is no run-time overhead associated with

memory allocation.

6.2 SmpleDirected Cycles

Limitingthechannel capacitiesisequiva ent to adding feedback channels, converting every connec-
tionintoadirected cycle. Itisthe presence of thedirected cyclesthat limitstoken productionto give usstrictly
bounded buffer sizes. Some systems, such as the onein figure 1.4 on page 4 are dready strictly bounded be-
cause every processispart of adirected cycle. There isno need to create additional directed cycles by adding
feedback channelsto every connection. This suggests that we could add fewer feedback channels and still
have strictly bounded programs. This could give us more parallelism because there would be fewer directed
cyclesin the program graph.

Also, just because there is a directed cycle in the program graph, there is no guarantee that token
production depends on token consumption. When we added feedback channels to every connection, we set
up rules about how reads and puts proceed. Before writingto a data channel, a process must read from the cor-
responding feedback channel. By design thereisa dependency between a given output and the corresponding
feedback input. Thereisasimilar dependency between inputsand their corresponding feedback outputs. Thus
we know that thisdirected cycle does actually limit token production. For less general process models, such
as synchronous dataflow and Boolean dataflow, the dependencies between inputs and outputs are known. In
these cases, directed cycles can be analyzed to determineif they limit token production (and thus bound token
accumulation) or if they introduce deadl ock.

In our implementation we directly limit channel capacities and have blocking write and blocking
read operationsthat simply increment or decrement a counter to keep track of the number of tokens buffered
onachannel. If we reduce the number of feedback connections, then we cannot use this optimization. Instead
we must make actual connections and send tokens across these feedback channels. This adds overhead that
could exceed any savingsrealized by reducing the number of directed cycles. Future research could examine
the effectiveness of the “ optimizations’ we are about to discuss.

6.2.1 K-Bounded Loops

In Culler’swork on K-bounded loops[11, 12], he forms a directed cycle around the body of aloop
in order to limit the number of unconsumed tokensthat can accumulate in adataflow program. Thus, instead
of forming a directed cycle for every connection, he forms a directed cycle from the outputs of a group of
dataflow actorsto their inputs. Figure 6.1 shows the original loop structure, and figure 6.2 shows Culler’skK-
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Figure 6.2: Culler’sK-bounded |oop graph schema.
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bounded loop structure. A sync actor isinserted to to collect the outputs of theloop body and providetrigger
tokensto agatethat isinserted to regul ate the flow of tokensto theinputs. The number of initia trigger tokens
on the gate's input, k, bounds the number of loop invocationsthat can proceed in parale. Histechniqueis
only applied in cases where the program subgraph of theloop body is simple enough that the bound could be
aslow as k = 1 without introducing deadlock. But setting the bound so low limits buffering requirements on
the communication channels, but it also severely limits parallelism. He examines strategies for setting k that
balance parallelism and resource requirements for token storage.

One interesting difference with our approach is that no processes (or dataflow actors) need to be
modified. We modified the semantics of the get and put operations. Culler’s approach isto splice afew new
actors into the graph, requiring no modification of the semantics of the model of computation.

6.2.2 Macroscopic Demand Propagation

Pingali’ smicroscopic demand propagation algorithm (Micro-Prop [37]), described in section 3.3.2,
isvery similar to our approachinthat feedback channel sare added for every connection. He describesamacro-
scopic demand propagation a gorithm (Macro-Prop [39]) which adds fewer feedback channels. Pingdi iden-
tifies so called “steady state” sections of program loops. These sections are acyclic graphs that produce one
set of output tokensfor each set of input tokens. Thusthere is no data-dependent consumption or production
of tokens. Demand propagation code is added for the program sections as a whole instead of for individual
operations as in the Micro-Prop algorithm. The Micro-Prop agorithmis used for demand-propagation code
between the program sectionsidentified by Macro-Prop. Pingali provesthat programs produced by the Macro-
Prop al gorithm have the same i nput/output behavior as programs produced by the Micro-Prop algorithm. Thus
we get equivalent programs with less overhead for demand propagation.

We could use some of these graph transformati ontechniquesto i dentify sectionsof process networks
which will remain strictly bounded if surrounded by a feedback connection.

6.3 Hybrid Static/Dynamic Scheduling

Whether we set some channel capacities statically, or introduce simple directed cycles, we are still
scheduling all processes dynamically. Instead, we could analyze program graphs (or sections of graphs) that
conform the the synchronous dataflow model or Boolean dataflow model. By solving the ba ance equations
we determine how many times each dataflow actor isfired in acomplete cycle. We can then construct a static
schedule for a complete cycle and define the firing function of a large-grain dataflow actor to be one cycle
of this schedule. We can now construct a single dataflow process from thislarge-grain actor. Thisgivesus a
hybrid scheduling framework where a fine-grain program graph is converted into a large-grain graph where
scheduling of thelarge-grain graph is done dynamically, but the schedul e within each large-grain process has
been constructed statically.

This ensures that communication channel s connecting statically scheduled actors remain bounded,
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and the overhead of dynamic scheduling and synchronization is reduced. Similar clustering techniques are
already used in Ptolemy for synchronous and Boolean dataflow [4, 5, 9]. However, these techniques require
that the resulting large-grain dataflow actor still obey the same dataflow model as its fine-grain components:
SDF actors combine to produce a large-grain SDF actor and BDF actors combine to produce a large-grain
BDF actor. This restriction makes it possibleto derive firing rules for the large-grain actors so that they can
betreated the same asfine-grain actors by schedul ers. We make no such restriction because we are scheduling
the large-grain actor as a process and have no need to define firing rulesfor it. We simply rely on the blocking
read semantics of Kahn process networks.

6.4 Code Generation

The PN domain implementation described in chapter 5 isasimulation domainin Ptolemy. An exe-
cution of a process network runs as part of Ptolemy. Instead, we could generate a C program that implements
the process network. This requiresonly that a C compiler and suitable multi-threading mechanism be avail-
ablefor thetarget platform; thereisno need to support al of Ptolemy. Thismakesit feasibleto usethe process
network model to program embedded systems with limited resources.

Ptolemy aready supports the generation of programs from dataflow graphs[40]. For synchronous
dataflow process networks and some bool ean dataflow process networks, a static interleaving of process exe-
cution can be compiled into the C program itself so that true multi-threadingis not necessary. Separate C pro-
grams are generated for each processor of a multiprocessor system. This code generation mechanism could
be extended to create programs with multiple threads that are dynamically scheduled.

6.4.1 ReactiveC

One advantage of a multi-threaded programming styleis that when control returns to a suspended
process, it resumes execution at the point where it left off. 1t does not have to begin from a procedure entry
point. When implemented in C++, the firing function for a dataflow actor is complicated by the need to test
and maintain state, as showninfigure 6.3. Thisisrequired so that the actor performs a different function each
timeit isfired. Reactive C [6, 8] isa C pre-processor that automatically generates the swi t ch statement
to achieve this functionality. Figure 6.4 shows how the same function might be implemented if Reactive C
were extended to the C++ language. If get and put operations were writtenin Reactive C++, asin figures 6.5
and 6.6, then this function could be implemented in a multi-threaded style asin figure 6.7. Reactive C [6, 8]
has been used as the basis of a process network language [7] that is very similar to Kahn and MacQueen’s
language [25]. The implementation of the GET operation is similar to the example in figures 6.5. Figure 6.8
shows how a select process would be implemented in thislanguage.

Reactive C issimply apre-processor that generates C programs. These programsinterleave the ex-
ecutions of multiple processes to simulate parallelism. There very little overhead for context switching, and
there isno need to maintain a separate stack for each thread, as in POSIX threads. It would be interesting to
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voi d go()
{
switch(state)
{
case O:
control . receiveData();
if (control %) input = truel nput;
el se i nput = fal sel nput;
wai t For (i nput) ;
state = 1,
br eak;

case 1:
i nput . recei veData();
out put %9 = i nput %9;
out put . sendDat a() ;
wai t For (control);
state = O;

Figure 6.3: The C++ code for the select dataflow actor.

voi d go()

control . receiveData();

if (control %9) input = truelnput;
el se input = fal sel nput;
wai t For (i nput) ;

st op;

i nput . recei veDat a();
out put %9 = i nput %9;
out put . sendDat a() ;
wai t For (control);

Figure 6.4: The Reactive C++ code for the select dataflow actor.

Particl e* PNCGeodesi c:: sl owGet ()

{
while (sz < 1) stop;
sz--; Particle* p = pstack.get();
return p;

}

Figure 6.5: The Reactive C++ code for the get operation.
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voi d PNCGeodesi c: : sl owPut (Particl e* p)

{
while (sz >= cap) stop;
pstack. putTail (p); sz++;
}
Figure 6.6: The Reactive C++ code for the put operation.
go
{
control . receiveData();
if (control 9%9) input = truelnput;
el se input = fal sel nput;
i nput . recei veDat a();
out put %9 = i nput %9;
out put . sendDat a() ;
}

Figure 6.7: The multi-threaded code for the select dataflow actor.

PROCESS sel ect (Channel control, Channel t, Channel f, Channel out)
{

VAR i nt val;
for(;;)
{

CGET(control, val);
if (val) PUT(out, GET(t));
el se PUT(out, GET(f));

Figure 6.8: A reactive select process.
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extend thisto the C++ language (Reactive C++) and to implement the PUT operation as in figure 6.6 to sup-
port the bounded scheduling theory developed in thisthesis. Reactive C++ could be used to implement the
PN domain in Ptolemy, and Reactive C could be used as a target language for code generation.

6.4.2 POSIX Threads

One advantage of using POSI X threadsisthe opportunity for parallel execution. When threads are
built into the operating system, programs can be automatically paralelized. The same program can execute
on uniprocessor workstationsand multiprocessor workstationswithout the need to recompile. When multiple
processors are available, multiplethreads can execute in parallel. Even on uniprocessor workstationsthereis
an advantage to multi-threaded execution: the possibility to overlap communication with computation. While
onethread is blocked waiting for afile access to complete, another thread can continue to do useful work.

We could generate C programs that use POSI X threads to implement process networks. If we gen-
erate C++ programs instead of C, then we can used exactly the same classes as Ptolemy uses to implement
threads.
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