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Abstract

We give a denotational framework that describes concurrent processes in very general terms as sets

of possible behaviors. Compositions of processes are given as intersections of their behaviors. The

interaction between processes is through signals, which are collections of events. A system is determi-

nate if given the constraints imposed by the inputs there are exactly one or exactly zero behaviors.

Each event is a value-tag pair, where the tags can come from a partially ordered or totally ordered set.

Timed models are where the set of tags is totally ordered. Synchronous events share the same tag, and

synchronous signals contain events with the same set of tags. Synchronous systems contain synchro-

nous signals. Strict causality (in timed systems) and continuity (in untimed systems) ensure determi-

nacy under certain technical conditions. The framework is used to compare certain essential features of

various models of computation, including Kahn process networks, dataflow, sequential processes, con-

current sequential processes with rendezvous, and discrete-event systems.

1.  Introduction

A major impediment to further progress in heterogeneous modeling and specification of systems is

the confusion that arises from different usage of common terms. Terms like “synchronous”, “discrete
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event”, “dataflow”, and “process” are used in different communities to mean significantly different

things. To address this problem, we propose a formalism that will enable description and differentia-

tion of models of computation. To be sufficiently precise, this language is a mathematical one. It is

denotational, in the sense of Scott and Strachey [23], rather than operational, to avoid associating the

semantics of a model of computation with an execution policy. In many denotational semantics, the

denotation of a program fragment is a partial function or a relation on the state. This approach does not

model concurrency well [25], where the notion of a single global state may not be well-defined. In our

approach, the denotation of a program fragment (called a process) is a partial function or a relation on

signals.

We define precisely a process, signal, and event, and give a framework for identifying the essential

properties of discrete-event systems, dataflow, rendezvous-based systems, and process networks. We

give unambiguous definitions of timed systems and synchrony. These definitions sometimes conflict

with common usage in some communities, and even with our own prior usage in certain cases. We

have made every attempt to maintain the spirit of that usage with which we are familiar, but have dis-

covered that terms are used in contradictory ways (sometimes even within a community). Maintaining

consistency with all prior usage is impossible without going to the unacceptable extreme of abandon-

ing the use of these terms altogether. 

2.  The tagged signal model

2.1  SIGNALS

Given a set of values  and a set of tags , we define an event  to be a member of . I.e.,

an event has a tag and a value. We define a signal  to be a set of events. A signal can be viewed as a

subset of , or as a member of the powerset . A functional signal or proper signal is a

(possibly partial) function from  to . By “partial function” we mean a function that may be defined
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only for a subset of . By “function” we mean that if  and , then

. Unless otherwise stated, we assume all signals are functional. We call the set of all signals

, where of course . It is often useful to form a collection or tuple  of  signals. The set

of all such tuples will be denoted .

The empty signal (one with no events) will be denoted by , and the tuple of empty signals by ,

where the number  of empty signals in the tuple will be understood from the context. These are sig-

nals like any other, so  and . For any signal , , and for any tuple ,

, where by the notation  we mean the pointwise union of the sets in the tuple.

In some models of computation, the set  of values includes a special value ⊥ (called “bottom”),

which indicates the absence of a value. Notice that while it might seem intuitive that  for any

, this would violate  (suppose that  already contains an event at ). Thus, it is impor-

tant to view ⊥ as an ordinary member of  like any other member.

2.2  TAGS

Frequently, a natural interpretation for the tags is that they mark time in a physical system.

Neglecting relativistic effects, time is the same everywhere, so tagging events with the time at which

they occur puts them in a certain order (if two events are genuinely simultaneous, then they have the

same tag). For specifying systems, however, the global ordering of events in a timed system may be

overly restrictive. A specification should not be constrained by one particular physical implementation,

and therefore need not be based on the semantics of the physical world. Thus, for specification, often

the tags should not mark time. 

In a model of a physical system, by contrast, tagging the events with the time at which they occur
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may seem natural. They must occur at a particular time, and if we accept that time is uniform, then our

model should reflect the ensuing ordering of events. However, when modeling a large concurrent sys-

tem, the model should probably reflect the inherent difficulty in maintaining a consistent view of time

in a distributed system [6][13][18][22]. If an implementation cannot maintain a consistent view of

time, then it may be inappropriate for its model to do so (it depends on what questions the model is

expected to answer). 

Fortunately, there are a rich set of untimed models of computation. In these models, the tags are

more abstract objects, often bearing only a partial ordering relationship among themselves.

2.3  PROCESSES

In the most general form, a process  is a subset of  for some . A particular  is said to sat-

isfy the process if . An  that satisfies a process is called a behavior of the process. Thus a pro-

cess is a set of possible behaviors or a relation between signals. 

Intuitively,  should be the number of signals associated with the process, affecting it, being

affected by it, or both. However, it is often convenient to make  much larger, perhaps large enough to

include all signals in a system. Consider for example the two processes in figure 1. There, we can

P S
N

N s S
N∈

s P∈ s

N

N

FIGURE 1.  An interconnection of processes.
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define the processes as subsets of . 

A connection  is a particularly simple process where two of the signals in the -tuple are

constrained to be identical. For example, in figure 1,  where

 iff . (1)

There is nothing special about connections as processes, but they are sufficiently useful that we high-

light them.

Figure 1 shows a system. A system  with  signals and  processes (some of which may be

connections) is given by

, (2)

where P is the collection of processes , . For example, in figure 1, the overall system

may be given as . That is, any  that satisfies the overall system must satisfy

each of , , , and . 

Of course, a system is itself a process, making the two terms interchangeable. We will generally

use the word “process” to describe a part of a larger system, and “system” to describe an aggregation

of all processes and connections under consideration.

As suggested by the gray outline in figure 1, it makes little sense to expose all the signals of a sys-

tem as signals associated with the system. In figure 1, for example, since signals  and  are identi-

cal to  and  respectively, it would make more sense to “hide” two of these signals. 

Given a process , the projection  is defined by 
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iff there exists  such that

. (3)

Thus, in figure 1, we can define the composite process . This projection

operator removes one element at a time. It is sometimes useful to use a projection operator that leaves

only one element. The projection  is defined by 

 iff there exist  such that

. (4)

If the two signals in a connection are associated with the same process, as shown in figure 2, then

the connection is called a self-loop. For the example in figure 2, . For simplicity, we

will often denote self-loops with only a single signal.

Many systems have the notion of inputs, which are events or signals that are defined outside the

model. Formally, an input to a process is an externally imposed constraint  such that  is

the total set of acceptable behaviors. The set of all possible inputs  is a further characterization
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FIGURE 2.  A self loop.
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of a process. For example,  means that the first signal is specified

externally and can take on any value in the set of signals. But inputs could also be events within sig-

nals, in general.

A system or process is determinate if given all inputs it has exactly one behavior or exactly no

behaviors; i.e.  or  for each . Otherwise, it is nondeterminate. Thus,

whether a process is determinate or not depends on our characterization  of the inputs. Fortunately,

most interesting cases distinguish input and output signals, making the characterization  conceptu-

ally simple.

For many (but not all) applications, it is natural to partition the signals associated with a process

into input signals and output signals. Intuitively, the process does not determine the values of the

inputs, and does determine the values of the outputs. If , then  is a partition of

. A process  with  inputs and  outputs is a subset of . In other words, a process

defines a relation between input signals and output signals. An  tuple  is said to satisfy

 if . It can be written , where  is an -tuple of input signals for process

 and  is an -tuple of output signals for process . If the input signals are given by ,

then the set  describes the inputs, and  is the set of behaviors consistent

with the input .

So far, however, this partition does not capture the notion of a process “determining” the values of

the outputs. A process F is functional with respect to a partition if it is a single-valued mapping from
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 or some subset of  to . That is, if  and , then . In this case,

we can write , where :  is a (possibly partial) function. Such a process is obvi-

ously determinate for an appropriate input characterization . Given the input signals, the output sig-

nals are determined (or there is unambiguously no behavior). Formally, given a partition  and

a process  that is functional with respect to this partition, the process is determinate for input charac-

terization . We will mostly use the symbol  to denote functional

processes.

Consider possible partitions for the example in figure 1. Suppose that  and  are outputs of 

and  and  are inputs. This is suggested by the arrowheads in figure 3. If  is functional with

respect to the partition , then we will denote the process and its func-

tion as  rather than . Notice that the irrelevant signals fall in the input partition, since they cannot

logically be functions of other signals, as far as  is concerned.
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FIGURE 3.  A partitioning of the signals in figure 1 into inputs and outputs.
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Note that a given process may be functional with respect to more than one partition. A connection,

for example, is a process relating two signals, say  and , and it is functional with respect to either

 or .

A system  is said to be closed if it is functional with respect to the partition . It is

open if it is not closed.

Given a process  and a partition ,  is total with respect to this partition if for every

 there is an  such that . The signal tuple  is said to be accepted by pro-

cess . Many (if not most) useful processes are determinate and total. We henceforth assume that all

functional processes are total.

3.  Partially and totally ordered tags

A partially ordered tagged system is a system where the set  of tags is a partially ordered set.

Partially ordered means that there exists an irreflexive, antisymmetric, transitive relation between

members of the set [24]. We denote this relation using the template “<”. Of course, we can define a

related relation, denoted “≤”, where  if  or .

The ordering of the tags induces an ordering of events as well. Given two events  and

,  if and only if .

We are not alone in choosing to use partial orders to model concurrent systems. Pratt gives an

excellent motivation for doing so, and then generalizes the notion of formal string languages to allow

partial ordering rather than just total ordering [20]. Mazurkiewicz uses partial orders in developing an

algebra of concurrent “objects” associated with “events” [17]. Partial orders have also been used to
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analyze Petri nets [21]. Lamport observes that a coordinated notion of time cannot be exactly main-

tained in distributed systems, and shows that a partial ordering is sufficient [13]. He gives a mechanism

in which messages in an asynchronous system carry time stamps and processes manipulate these time

stamps. We can then talk about processes having information or knowledge at a consistent cut, rather

than “simultaneously”. Fidge gives a related mechanism in which processes that can fork and join

increment a counter on each event [7]. A partial ordering relationship between these lists of times is

determined by process creation, destruction, and communication. If the number of processes is fixed

ahead of time, then Mattern gives a more efficient implementation by using “vector time” [16]. Unlike

the work of Lamport, Fidge, and Mattern, we are not using partial orders in the implementation of sys-

tems, but rather are using them as an analytical tool to study models of computation and their interac-

tion semantics. Thus, efficiency of implementation is not an issue.

4.  Timed concurrent systems

A timed system is a tagged system where  is totally ordered. That is, for any distinct  and  in

, either  or . The use of the term “timed” here stems from the observation that in the

standard model of the physical world, time is viewed as globally ordering events. Any two events are

either simultaneous (have the same tag), or one unambiguously precedes the other. 

4.1  METRIC TIME

Some timed models of computation include operations on tags. At a minimum,  is an Abelian

group, in addition to being totally ordered. This means that there is an operation , called

addition, under which  is closed. Moreover, there is an element, called zero and denoted “0”, such

that  for all . Finally, for every element , there is another element  such

that . A consequence is that  is itself a tag for any  and  in . 
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T
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In a slightly more elaborate model of computation,  has a metric, which is a function

, where  is the set of real numbers, that satisfies the following conditions:

 for all , (5)

, (6)

 for all , and (7)

 for all . (8)

Such systems are said to have metric time . In a typical example of metric time,  is the set of real

numbers and , the absolute value of the difference.

4.2  CONTINUOUS TIME

Let  denote the set of tags in a signal . A continuous-time system is a metric timed sys-

tem  where  is a continuum (a closed connected set) and  for each signal  in any tuple

 that satisfies the system. A connected set is one where no matter how it is divided into two disjoint

sets, at least one of these contains limit points of the other. A closed set is one that contains the limit

points of any subset. Limit points, of course, are defined in the usual way using the metric.

4.3  DISCRETE-EVENT SYSTEMS

Many simulators are also based on a discrete-event model, including most digital circuit simula-

tors (see for example [8]). Given a system , and a tuple of signals  that satisfies the system, let

 denote the set of tags appearing in any signal in the tuple . Clearly  and the ordering

relationship for members of  induces an ordering relationship for members of . A discrete-event

system  is a timed system where for all , the ordering relationship for  is discrete. Intu-

itively, this means that any pair of ordered tags either has a finite number of intervening tags or one of

T
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the tags is maximal (has no tags above it). We explain this now precisely.

Let  denote the set of pairs  of tags such that . In fact,  is an alternative notation

to “<” for the ordering itself. Let  denote another relation where  if and only if 

and there exists a  such that . More generally, let  denote a relation where

 if and only if  and there exist  such that

. Finally, let  denote the transitive closure of the relation  (the rela-

tion  applied an arbitrary number of times). The relation  is then said to be discrete if

 [17]. This can be understood intuitively if we realize that the set  is the set of

all pairs  of tags such that  where there is no  such that ; i.e., it is the set

of ordered tags with no intervening tags. For a non-discrete ordering, this set might be empty. For

example, if  is the set of real numbers and  is the usual ordering of real numbers, . It

follows similarly when  is the set of rationals. Moreover, this definition of a discrete order precludes

Zeno-like situations, where an infinite sequence of events (e.g. events that occur closer and closer

together, converging on a particular time) are followed by other events in the order.

Note that this rather technical definition of discrete-event systems appears to be necessary to cap-

ture all common cases and to correspond well with intuition. For example, it is common for discrete-

event systems to take  to be the set of real numbers, so it would not do to restrict  to being count-

able. It also is not sufficient to declare that  is countable for all . If for a particular tuple

 of signals satisfying the system the tags  are the set of rational numbers, for example, this

would not correspond well with our intuition about what constitutes a discrete-event system. 
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In some communities, notably the control systems community, a discrete-event model also

requires that the set of values  be countable, or even finite [4][10]. This helps to keep the state space

finite in certain circumstances, which can be a big help in formal analysis. However, in the simulation

community, it is largely irrelevant whether  is countable [8]. In simulation, the distinction is techni-

cally moot, since all representations of values in a computer simulation are drawn from a finite set. We

adopt the broader use of the term, and will refer to a system as a discrete-event system whether  is

countable, finite, or neither.

4.4  SYNCHRONOUS SYSTEMS

Two events are synchronous if they have the same tag. Two signals are synchronous if all events in

one signal are synchronous with an event in the other signal and vice versa. A system is synchronous if

every signal in the system is synchronous with every other signal in the system. A discrete-time system

is a synchronous discrete-event system.

By this definition, the so-called Synchronous Dataflow (SDF) model of computation [14] is not

synchronous (we will say more about dataflow models below). The “synchronous languages” [1] (such

as Lustre, Esterel, and Argos) are synchronous if we consider , where  (bottom) denotes the

absence of an event. Indeed, a key property of synchronous languages is that the absence of an event at

a particular “tick” (tag) is well-defined. Another key property is that event tags are totally ordered. Any

two events either have the same tag or one unambiguously precedes the other. The language Signal [2]

is called a synchronous language, but in general, it is not even timed. It supports nondeterminate oper-

ations which require a partially ordered tag model. Cycle-based circuit simulators are discrete-time

systems.

4.5  CAUSALITY

We begin with a timed notion of causality, momentarily restricting our attention to timed systems.

V

V

V

⊥ V∈ ⊥
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Borrowing notation from Yates [26], a signal  is defined to be the subset of events in  with

tags less than or equal to tag . This is called a cut of . This generalizes to tuples  of signals or sets

 of tuples of signals, where  and  are tuples and sets of tuples of cut signals, respectively. A

functional process  is causal iff

 for all . (9)

Yates [26] considers timed systems with metric time where  is a tag1; a functional process  is

-causal if , the tuple of empty signals, and for all ,

. (10)

Intuitively, -causal means that the process incurs a time delay of . Yates proves that every network

of -causal functional processes is determinate.

We can define a similar notion for non-metric timed systems if they are also discrete-event sys-

tems. We say that tag  immediately precedes tag  in signal  if  and there is no 

such that ; i.e., there are no intervening tags in the signal. A non-metric timed discrete-event

functional process  is strictly causal iff

 for all  and  immediately preceding . (11)

Strictly causal processes are said to introduce delay as well, even though it is hard to interpret this

delay as a time delay without metric time.
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5.  Untimed Concurrent Systems

When tags are partially ordered rather than totally ordered, we say that the system is untimed. Untimed

systems cannot have the same notion of causality as timed systems. The equivalent intuition is pro-

vided by the monotonicity condition. A slightly stronger condition, continuity, will be sufficient to

ensure determinacy. These two conditions depend on a partial ordering of signals called the prefix

order.

5.1  THE PREFIX ORDER FOR SIGNALS

A signal is a set of events. Set inclusion, therefore, provides a natural partial order for signals (vs.

tags). Instead of the symbol “< ” that we used for the ordering of tags, we use the symbol “⊂ ” for an

ordering based on set inclusion. This is an irreflexive antisymmetric transitive binary relation. The

reflexive version, of course, is “⊆ ”. Thus, for two signals  and ,  if every event in  is

also in .

In many of the models of computation that we will consider, the tags in each signal are totally

ordered by “< ” even if the complete set  of tags is only partially ordered. In this case, another natural

partial ordering for signals emerges; it is called the prefix order. For the prefix order, we write   

if every event in  is also in , and each event in  that is not in  has a tag greater than all tags in

. More formally, if both  and  are totally ordered,

   ⇔  and for all  and , , (12)

where  denotes the set of events in  that are not also in . Clearly, in our model, the empty

signal  is a prefix of every other signal, so it too is called bottom.

In partially ordered models for signals, it is often useful for mathematical reasons to ensure that

the partial order is a complete partial order (cpo). To explain this fully, we need some more definitions.

s1 s2 s1 s2⊆ s1

s2

T

s1 s2

s1 s2 s2 s1

s1 T s1( ) T s2( )
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An increasing chain in  is a set , where  is a totally ordered subset of  and for

any  and  in ,

   ⇔ . (13)

An upper bound of a subset  is an element  where every element in  is a prefix of . A

least upper bound (lub)   is an upper bound that is a prefix of every other upper bound. A complete

partial order (cpo) is a partial order where every increasing chain has a lub. From a practical perspec-

tive, this often implies that our set  of signals must include signals with an infinite number of events.

These definitions are easy to generalize to . For  and ,    iff each corre-

sponding element is a prefix, i.e.    for each . With this definition, if  is a cpo, so

is . We will assume henceforth that  is a cpo for all .

We can now introduce the untimed equivalent of causality.

5.2  MONOTONICITY AND CONTINUITY

We now generalize to untimed systems, connecting to well-known results originally due to Kahn

[12]. Our contribution here is only to present these results using our notation. A process  is mono-

tonic iff it is functional, and 

   ⇒   . (14)

A process :  is said to be continuous if it is functional and for every increasing chain

,  has a least upper bound  , and

(  ) =  . (15)

The notation  denotes a set obtained by applying the function  to each element of . The term

S st;t U∈{ } U T⊆ T

t1 t2 U

st1
st2

t1 t2≤

W S⊆ w S∈ W w

W

S

S
N

s1 S
N∈ s2 S

N∈ s1 s2

s1 i, s2 i, 1 i N≤ ≤ S

S
N

S
N

N

F

s s′ F s( ) F s′( )

F S
m

S
n→

W S
m⊆ F W( ) F W( )

F W F W( )

F W( ) F W
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“continuous” is consistent with the usual mathematical definition of continuity. For intuition, it may

help some readers to connect the definition to that of continuous functions of real variables. This is

easy if  is interpreted as a limit of the increasing chain. 

Fact: A continuous process is monotonic [12].

Proof: Suppose :  is continuous and consider two signals  and  in  where   

. Define the increasing chain . Then   = , so from continuity,

 = (  ) =   =  . (16)

Therefore   , so the process is monotonic.

Consider a composition  of continuous processes . Assume  for some .

In general, the composition may not be determinate. Consider a trivial case, where  and :

 is the identity function. This function is certainly continuous. Suppose we construct a closed

system  by composing  with a single connection, as shown in figure 4. Then any signal  sat-

isfies . Since there are no inputs to this process and it has many behaviors, it is not determinate.

We will now show that there is an alternative interpretation of the composition  that is func-

tional, and in fact is also continuous. Under this interpretation, any composition of continuous pro-

cesses is determinate. Moreover, this interpretation is consistent with execution policies typically used

F S
m

S
n→ s1 s2 S

m s1

s2 W s1 s2 s2 s2 …, , , ,{ }= W s2

F s2( ) F W F W( ) F s1( ) F s2( ),{ }

F s1( ) F s2( )

Q F1 F2 ... FM, , , Q S
N⊆ N

M 1= F1

S S→

Q F1

FIGURE 4.  A simple composition of continuous processes that is not determinate under a general 
interpretation, but is determinate under a least-fixed-point semantics. F1 is the identity function.

F1

Q

s

s S∈

Q

Q
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for such systems (their operational semantics), and hence is an entirely reasonable denotational seman-

tics for the composition. This interpretation is called the least-fixed-point semantics.

Consider again a composition  of functional and continuous processes . Each

process  is a mapping from  to  for some  and . Since the  and  are in general different

for each process, a notation for the composition of functions can get complicated. Indeed, in standard

presentations, it does get complicated, using for example notation from the lambda calculus. Here, we

simplify the notation by observing that the function :  can be described instead as a func-

tion : , where  is the total number of signals in  and . Any signals in the output

of the function  that are not properly part of the output of  are simply copied from the input,

which includes all signals. Each function  is continuous because  is continuous. The process 

can now be illustrated as in figure 5, where  is the total number of signals in  that are not outputs of

one of , and .

We can now construct a continuous function :  that describes . First, let  denote the

Q F1 F2 ... FM, , ,

Fi S
m

S
n

m n m n

Fi S
m

S
n→

Fi′ S
N

S
p→ N Q p n≥

Fi′ Fi

Fi′ Fi Q

FIGURE 5.  A composition of continuous functional processes is functional and continuous.

Q, F

F1, F2, ... ,FM

q input signals q

p output signals p

q Q

F1 F2 ... FM, , , p N q–=

F S
q

S
p→ Q q
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tuple of  input signals, and let  denote the remaining  signals. The define :  as

. (17)

It turns out that the order in which we apply the individual function  does not matter, although we

do not show that here. We are looking for a fixed point  of this function,

. (18)

To find it, let , , be defined by

(19)

where  is the tuple of empty signals. Notice that since    and  is monotonic

(because it is continuous),   . By induction, the sequence  is an increasing chain.

Since  is a cpo, this increasing chain has a least upper bound,

 = . (20)

Moreover, since  is continuous,

 = ( , ) =  =   = . (21)

Hence, the least upper bound  is a fixed point of , so  is a behavior of the composite

process . Since it is a behavior of the composite process, then it is also a behavior of the individual

processes .

Moreover,  as defined in (20) is the unique least fixed point  of , meaning that it is a prefix of

q p p G S
N

S
p→

G q p,( ) F1′ q F2′ q …FM′ q p,( )…,( ),( )=

Fi′

p

G q p,( ) p=

pi S
p⊆ i 1 2 …, ,=

p1 G q Λ,( )=

p2 G q p, 1( )=

...

pn G q p, n 1–( )=
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Λ q Λ,( ) q p, 1( ) G

p1 p2 p1 p2 ..., ,{ }

S
p

p p1 p2 ..., ,{ }

G

G q p,( ) G q p1 p2 ..., ,{ } G q p1 p2 ..., ,{ },( ) p2 p3 ..., ,{ } p

p G s q p,( )=

Q
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any fixed point. To see this, consider any fixed point . Certainly,   , so   

(by monotonicity). Since  is a fixed point,   . By induction,    for

all . Hence,   , where  is given by (20). We have just proven a classic cpo fixed

point theorem.

Note that  as given by (20) is a uniquely defined function of . Let us call this function . If we

define this function to be the semantics (the meaning) of the composition , then the composition is

functional, and hence determinate. It is easy to show that it is a continuous function of  as well.

Under this least-fixed-point semantics, the value of  is figure 4 is , the empty signal. Under this

semantics, this is the only signal that satisfies the composite process, so the composite process is deter-

minate. Intuitively, this solution agrees with a reasonable execution of the process, in which we would

not produce any output from  because there are no inputs. This reasonable operational semantics

therefore agrees with the denotational semantics. For a complete treatment of this agreement, see Win-

skel [25].

Notice that the existence of multiple fixed points implies that for a given input constraint ,

the set  of signal tuples that satisfy the system has size greater than one, implying nondetermin-

ism. We are getting around this nondeterminism by defining the single unique signal tuple that satisfies

the system to be , the smallest member (in a prefix order sense) of the set , as long

as there is at least one behavior in . This minimum exists and is in fact equal to the least fixed

point, as long as the composing processes are continuous (every member of  is a fixed point, and

we have shown that there is a unique least fixed point). 

For the example in figure 4,  (any signal seems to satisfy the process, for  defined as in

p′ Λ p′ G q Λ,( ) G q p′,( )

p′ G q Λ,( ) p′ G q pn,( ) pn= p′

n 1 2 ..., ,= p p′ p

p q F

Q

q

s λ

F1

I S
N⊆

Q I∩

min Q I∩( ) Q I∩

Q I∩

Q I∩

Q S= Q
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equation (2)), and  (there are no inputs, so the inputs impose no constraints). Thus .

The least fixed-point semantics dictates that we take the behavior to be ,

the empty signal.

6.  Models of Computation

A variety of models have been proposed for concurrent systems where actions, communications, or

both are partially ordered rather than totally ordered.

6.1  KAHN PROCESS NETWORKS

Let  denote the tags in signal . In a Kahn process network,  is totally ordered for each

signal , but the set of all tags  may be partially ordered. In particular, for any two distinct signals 

and , it could be that . Processes in Kahn process networks are also constrained

to be continuous, and least-fixed-point semantics are used so that compositions of processes are deter-

minate.

For example, consider a simple process that produces one output event for each input event.

Denote the input signal , where  if the index . Let the output be

. Then the process imposes the ordering constraint that  for all .

Lamport [13] also considers a model for distributed systems that is similar to this one where events

occur inside processes, instead of in signals. The set of events inside a process is totally ordered, thus

giving the process a sequential nature. Partial ordering constraints exist between events in different

processes, thus modeling communication. This perspective is only slightly different from our model

for Kahn processes, where partial ordering constraints between events are imposed by the causal

behavior of processes, rather than the communication between them. The notion of sequential events

defining a process, however, is useful when specializing Kahn process networks to dataflow.

I S= Q I∩ S=

min Q I∩( ) min S( ) λ= =

T s( ) s T s( )

s T s1

s2 T s1( ) T s2( )∩ ∅=

s1 e1 i,{ }= e1 i, e1 j,< i j<

s2 e2 i,{ }= e1 i, e2 i,< i
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6.2  SEQUENTIAL PROCESSES

A sequential process can be modeled by associating a single signal with the process, as suggested in

figure 6(a), where the events  in the signal  are totally ordered. The sequential actions in the pro-

cess (such as state changes) are represented by events on the signal.

6.3  RENDEZVOUS OF SEQUENTIAL PROCESSES

The CSP model of Hoare [11] and the CCS model of Milner [19] involve sequential processes that

communicate via rendezvous. Similar models are realized in the languages Occam and Lotos. This

idea is depicted in figure 6(b). In this case  is totally ordered for each . Moreover, rep-

resenting each rendezvous point there will be events , , and  in signals , , and  respec-

tively, such that

, (22)

where  is the tag of the event .

Note that although the literature often refers to CSP and CCS as synchronous models of computa-

tion, under our definition they are not synchronous. They are not even timed. The events in  and 

that are not associated with rendezvous points have only a partial ordering relationship with each other.

This partial ordering becomes particularly important when there are more than two processes. More-

over, if a process can reach a state where it will rendezvous with one of several other processes, the

FIGURE 6.  A sequential process (a) and communicating sequential processes (b).
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composition is nondeterminate because of this partial order.

The Ada language also has rendezvous, although the implementation is bit different. In Ada,

remote procedure calls (RPC) are used to communicate. This could be modeled using figure 6(b) as

follows. A procedure in  corresponds to a sequence of events , , ...,  in signal .

These events would be constrained to lie between a calling event  in signal  and a return event

 in . These latter two events would be constrained to lie between two events in . Ada also

supports nondeterminism in its rendezvous mechanism, in the form of “select” statements. By issuing

a select statement, process  can rendezvous with any of several RPC calls. It is easy to see how par-

tial ordering constraints on events can adequately model this style of nondeterminism.

6.4  DATAFLOW

The dataflow model of computation is a special case of Kahn process networks [15]. A dataflow pro-

cess is a Kahn process that is also sequential, where the events on the self-loop signal denote the firings

of the dataflow actor. The firing rules of a dataflow actor are partial ordering constraints between these

events and events on the inputs. A dataflow process network, is a network of such processes.

For example, consider a dataflow process  with one input signal and one output signal that con-

sumes one input event and produces one output event on each firing, as shown in figure 7. Denote the

input signal by , where  if the index . The firings are denoted by the signal

P2 e2 1, e2 2, e2 n, s2

e3 1, s3

e3 2, s3 s1

P2

P

s1
P

s2

s3

FIGURE 7.  A simple dataflow process that consumes and produces a single token on each firing.

1 1

s1 e1 i,{ }= e1 i, e1 j,< i j<
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, and the output by , which will be similarly ordered. Then the inputs and

outputs are related to the firings as . A network of such processes will establish a par-

tial ordering relationship between the firings of the actors.

More interesting examples of dataflow actors can also be modeled. The so-called switch and select

actors, for example, are shown in figure 8. Each of them takes a Boolean-valued input signal (the bot-

tom signal) and uses the value of the Boolean to determine the routing of tokens (events). The switch

takes a single token at its left input  and routes it the top right output  if the Boolean in  is true.

Otherwise, it routes the token to the bottom right output .

The partial ordering relationships imposed by the switch and select are inherently more compli-

cated than those imposed by the simple dataflow actor in figure 7. But they can be fully characterized

nonetheless. Suppose the control signal in the switch is given by , where the index

 denotes the first event on ,  the second, etc. Suppose moreover that the Booleans are

encoded so that . Let

 for . (23)
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FIGURE 8.  More complicated dataflow actors.
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Denote the input signal by  and the output signals by  and  for

indexes ,  and . Then the ordering constraints imposed by the actor are

(24)

. (25)

The firings of the actor (not shown explicitly) would lie between these two input/output events.

6.5  DISCRETE-EVENT SIMULATORS

In a typical discrete-event simulator, sequential processes are interconnected with signals that con-

tain events that explicitly include time stamps. These are the only types of systems we have discussed

where the tags are explicit in the implementation. Each sequential process consists of a sequence of fir-

ings, as in dataflow, but unlike dataflow, events are globally ordered, so the firings are globally ordered.

Indeed, the operational semantics of a discrete-event system is to execute the firings sequentially in

time as follows. Find the event on the event queue with the smallest tag. Find the process for which the

signal that contains this event is an input. Fire the process, and remove the event from the event queue.

When events are produced in a firing, place them in the event queue sorted by tag. This operational

semantics is completely consistent with our denotational semantics.

In some discrete-event simulators, such as VHDL simulators, tags contain both a time value and a

“delta time.” Delta time has the interpretation of zero time in the simulation. But it is used to avoid the

ambiguity of having events with exactly the same tag, which could result in nondeterminism. In the

denotational and operational semantics, the time value and delta time together determine the ordering

of tags.

7.  Heterogeneous Systems

It is assumed above that when defining a system, the sets  and  include all possible tags and

s1 e1 i,{ }= s3 e3 k,{ }= s4 e4 m,{ }=

i 0> k 0> m 0>

e3 k, e1 bk,>

e4 m, e1 m bm–( ),>
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values. In some applications, it may be more convenient to partition these sets and to consider the par-

titions separately. For instance,  might be naturally divided into subsets , , ... according to a

standard notion of data types. Similarly,  might be divided, for example to separately model parts of

a heterogeneous system that includes continuous-time, discrete-event, and dataflow subsystems. This

suggests a type system that focuses on signals rather than values. Of course, processes themselves can

then also be divided by types, yielding a process-level type system that captures the semantic model of

the signals that satisfy the process.

8.  Conclusions

We have given the beginnings of a framework within which certain properties of models of computa-

tion can be understood and compared. Of course, any model of computation will have important prop-

erties that are not captured by this framework. The intent is not to be able to completely define a given

model of computation, but rather to be able to compare and contrast its notions of concurrency, com-

munication, and time with those of other models of computation. The framework is also not intended

to be itself a model of computation, so it should not be interpreted as some “grand unified model” that

when implemented will obviate the need for other models. It is too general for any useful implementa-

tion and too incomplete to provide for computation. It is meant simply as an analytical tool.
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