
An Infrastructure for Numeric Precision Control in the Ptolemy

Environment

Seehyun Kim and Edward A. Lee
Department of Electrical Engineering and Computer Science

University of California

Berkeley, CA 94720 USA

Abstract|An abstract algorithm speci�cation with ide-

alized arithmetic must be made concrete with realis-

tic arithmetic in the �nal phase of the \algorithm-to-

implementation" design process in order to assess power

consumption, hardware cost, and execution speed. In this

paper, an infrastructure for re�ning an idealized model

to get an architecture-dependent speci�cation with �nite

precision is introduced. This infrastructure is built on top

of the Ptolemy environment.

I. Introduction

Data
ow is a powerful representation method for dig-

ital signal processing algorithms. One of its features is

that it can e�ectively reveal concurrency implied in an

algorithm by constructing a graph with nodes and arcs

according to the data dependencies. Nodes carry out a

certain computation using data tokens from input arcs,

and emit new tokens through output arcs. As a design en-

vironment, Ptolemy supports data
ow programming for

simulation and software synthesis. It also covers hetero-

geneous design which contains other computation mod-

els, such as discrete event, where graphs have di�erent

semantics.

An abstract algorithm speci�cation with idealized

arithmetic must be made concrete with realistic

arithmetic in the �nal phase of the \algorithm-to-

implementation" design process in order to assess power

consumption, hardware cost, and execution speed. Espe-

cially, when retargetting the speci�cation to general pur-

pose �xed-point processors or recon�gurable processors,

it's essential to �nd the optimum scaling and wordlength

information to maximize the performance for given hard-

ware cost.

In this paper, an infrastructure for re�ning an idealized

model to get an architecture-dependent speci�cation with

�nite precision is introduced. This infrastructure is built

on top of the Ptolemy environment.

II. Fixed-point Models in Ptolemy

Ptolemy is an environment for simulation, prototyp-

ing, and software synthesis for heterogeneous systems. It

uses object-oriented software technology to model each

subsystem in a natural and e�cient manner, and to in-

tegrate these subsystems into a whole. The kernel part

has been written in C++. The basic unit of modularity

in Ptolemy is the block, which is implemented with the

class \Block." A block contains a module of code that is

invoked at runtime, typically examining data present at

its input ports and generating data on its output ports.

The class \PortHole" is the base class for both input and

output ports. Also a block can have some states so that

it can preserve the current status until next execution.

There are several classes for type-speci�c states, such as

\FloatState."

A �xed-point system contains �xed-point blocks, which

deal with data of �nite precision. The �xed-point model

of a block would have either �xed-point ports or �xed-

point states. However, the �xed-point model may mal-

function due to the �nite wordlength e�ects. In order

to prevent frequent over
ows and excessive quantiza-

tion noise, all ports and states of the �xed-point type

have to be scaled properly and assigned with enough

wordlengths.

The �xed-point data type is implemented in Ptolemy

by the C++ class named \Fix". This class supports a

binary representation of a �nite precision number. In

�xed-point notation, the partition between the integer

part and the fractional part, which is the so-called bi-

nary point, lies at a �xed position in the bit pattern.

Its position represents a trade-o� between precision and

range.

The \Fix" data type has some parameters concerning

its interpretation. The total wordlength (\twl") indi-

cates the length of the bit stream representing a value.

The range of a variable is determined by the integer

wordlength (\iwl") which is the length of the left-hand

side bit stream to the binary point, while the fractional

wordlength (\fwl") means the length of the remaining

part and speci�es the precision.

In addition, the sign format (2's complement or un-

signed), precision reduction (rounding or truncation),

and the over
ow handling scheme are also parameterized.

III. Determination of Integer Wordlengths

Knowledge of the distribution is essential for estimat-

ing the range of a signal. It is easy to parameterize simple

distributions, such as uniform, Gaussian, Laplacian, by a

few statistical information. It is well known that speech

signals have a Laplacian distribution. However, it is not

possible to model all signals in practical systems by a



simple distribution. They can be non symmetric or mul-

timodal. Note that the estimated range of a multimodal

signal could be very conservative or too small if we em-

ploy the rule for unimodal distributions. The scheme for

estimating the range should be di�erent according to the

distribution. For instance, a Gaussian distribution can

be covered by the four times of the standard deviation

up to 99.99%. Thus, we can estimate the range of a sim-

ply distributed signal by means of the mean (�) and the

standard deviation (�). For the multimodal situation,

however, the standard deviation has a di�erent e�ect on

the range estimation process. This distribution requires

n�� to cover the distribution, where n is highly dependent

on the distribution. Not only the mean and the standard

deviation but the characteristics of the distribution are

important for estimating the range as well [1].

After the execution of a system is completed, the mean,

standard deviation, skewness, and kurtosis can be calcu-

lated using the statistics stored in each object. Then,

the statistical ranges of ports and states are estimated as

follows [2]: For unimodal and symmetric distributions,

the range (R) can be e�ectively estimated by

R = j�j + n � �; (1)

where n is proportional to �, the kurtosis. Note the fact

that for two symmetric distributions of an identical vari-

ance, the one of the larger kurtosis spreads more widely

than the other. Thus, a larger n is needed for estimating

the range of the signal with a larger kurtosis. Speci�cally,

we use n = k+5. Otherwise, the range is determined by

the absolute maximum value during the execution.

Finally, integer wordlengths are obtained from their

ranges, as shown in Eq. (2).

iwlmin = dlog
2
Re (2)

where dxe means the smallest integer larger than or equal

to x. Note that the estimated integer wordlength of a sig-

nal might have to be modi�ed according to its sensitivity

to the performance of the whole system. For example,

in the adaptation process of an LMS adaptive �lter, the

high precision of the error signal is crucial to the fast con-

vergence and less steady state prediction error. The error

signal might need more integer bits than the estimate for

better performance.

A. New Feature of the Ptolemy Kernel

To record the statistics during the simulation, a few

C++ classes have been developed.
� RecordedObj { base class. It keeps n-th order sum

of past values, and provides a few methods to deal

with statistical data.

� RecordedFloatState { inherited from RecordedObj

and FloatState. This class collects statistics of an

internal state of a �xed-point block.

� RecordedInSDFPort { inherited from RecordedObj

and InSDFPort, which is the class for the input port

in the SDF (Synchronous DataFlow) semantics.

� RecordedOutSDFPort { inherited from RecordedObj

and OutSDFPort, which is the class for the output

port in the SDF semantics.

� SDFREStar { inherited from RecordedObj and

SDFStar, which is the base class for all primitive

SDF blocks.

B. Generation of Models for Range Estimation

A range estimation model of the system can be gen-

erated by replacing blocks with range estimation blocks,

which perform the identical functions and in addition,

collect statistics during the execution.

An atomic block, which has no hierarchy, is described

by the Ptolemy preprocessor language (ptlang) [3]. A

range estimation block can be created by generating a

new ptlang �le from the original description in the pt-

lang speci�c editor provided in Tycho [4]. In this case

users �rst have to select ports and states whose ranges

are to be estimated. As an illustrative example, the pt-

lang description of a biquad �lter is shown in Fig. 1.

The �gure also shows the dialog box querying the user

to select ports and states to be examined. The ptlang

description of a range estimation model of the biquad

�lter block is shown in Fig. 2. Note that the type of

an input port, \input," and an output port, \output,"

was replaced with \recordedfloat," which used to be

\float." The generated range estimation model can be

loaded into the Ptolemy interpreter (ptcl) or the interac-

tive graphical interface (pigi).

With range estimation blocks, a range estimation

model can be generated from the original system graph

in the ptcl speci�c editor. If the graph has been drawn

in the Vem graphical editor, it can be easily converted

to a ptcl script by oct2ptcl, a builtin program [5]. In

order to generate a range estimation model, users �rst

have to specify a range estimation block for each block

to be replaced. Figure 3 shows a ptcl script for testing a

simple biquad �lter and a dialog box querying the user

to specify an implementation for a block. In the query

box a range estimation model, MyBiquadRE, has been se-

lected for the biquad �lter, MyBiquad. The ptcl script for

a range estimation model is shown in Fig. 4. Note that

the biquad �lter block has been replaced with the range

estimation block that was selected in Fig. 4.

C. Determination of Integer Wordlengths

The generated ptcl script of the range estimation

model can be executed in ptcl. Then using a new ptcl

command, calcrange, we can obtain estimated integer

wordlengths as shown in Fig. 5. For the \input, we are

suggested to assign 3 bits for the integer part.



IV. Generation of Fixed-point Models

A �xed-point model of the program graph is generated

by replacing 
oating-point blocks with �xed-point equiv-

alents. In case that the corresponding �xed-point block

does not exist, it will be generated by substituting �xed-

point variables for 
oating-point ones in the de�nition

of the 
oating-point block. Figure 6 shows a �xed-point

model of the biquad �lter in Fig. 1. Note that estimated

integer wordlengths are utilized in the �xed-point model;

the new state variables, \prec4 input," speci�es 3 inte-

ger bits and 14 fractional bits. Currently, the model uses

16 bits for representing the input signal. The optimal

wordlengths, which minimize the hardware cost and sat-

isfy the given performance criteria, can be found through

iterative execution [6].

Due to the operator overloading capability of C++ we

could obtain a bit-wise exact �xed-point block, in which

all the operations including computation and assignment

are conducted in the bit-accurate level, just by replacing

the type of variables. Even if a �xed-point block exists

already, it is possible to generate another functionally

equivalent �xed-point block in order to model a di�er-

ent structure for computation. Thus, with architecture-

speci�c �xed-point blocks we can construct a more pre-

cise �xed-point model of the program graph. Note that

the �nite wordlength e�ects are highly dependent on the

implementation architecture. The ptcl script for a �xed-

point simulation model is shown in Fig. 7. Note that the

biquad �lter block has been replaced with a �xed-point

block, MyBiquadFix.

It is also possible to specify the precision for the signal

on an arc. In this case all the data tokens passing on this

arc would be reformatted to the given precision.

V. Concluding Remarks

An infrastructure for re�ning an idealized program

graph with 
oating-point arithmetic into an architecture-

dependent speci�cation with �nite precision has been

constructed. This infrastructure would be helpful to fur-

ther studies such as self-tuning systems.

References

[1] S. Kim, A Study on the Fixed-point Implementation of Digi-
tal Signal Processing Algorithms, Ph.D. thesis, Seoul National
University, Feb. 1996.

[2] S. Kim, K.-I. Kum, and W. Sung, \Fixed-point optimization
utility for C and C++ based digital signal processing pro-
grams," IEEE Transactions on Circuits and Systems, Part
I, 1996, submitted.

[3] J. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt, \Ptolemy:
A framework for simulating and prototyping heterogeneous sys-
tems," Internatioal Journal of Computer Simulation, special
issue on Simulation Software Development, vol. 4, pp. 155{182,
1994.

[4] C. Hylands, E. A. Lee, and H. J. Reekie, \The Tycho user
interface system," in Proc. The 5th Annual Tcl/Tk Workshop
'97, Boston, Massachusetts, July 1997.

[5] University of California at Berkeley, The Almagest: Vol.1 {
Ptolemy 0.7 User's Manual, 1997.

[6] Wonyong Sung and Ki-Il Kum, \Wordlength determination
and scaling software for a signal 
ow block diagram," in Proc.
International Conference on Acoustics, Speech and Signal Pro-
cessing, Apr. 1994, vol. 2, pp. 457{460.

Fig. 1. A ptlang description for a biquad �lter and a dialog box
querying the user to select ports and states to be examined.

defstar {
name { MyBiquadRE }
...

input {
name { input }
type { recordedfloat }

}
output {

name { output }
type { recordedfloat }

}
defstate {

name { d1 }
type { float }
default { "-1.1430" }

}
...

defstate {
name { state1 }
type { recordedfloat }
default { "0.0" }
desc { internal state. }
attributes { A_NONCONSTANT|A_NONSETTABLE }

}
...

}

Fig. 2. The ptlang description of a range estimation model of the
biquad �lter block.



Fig. 3. A ptcl script for testing a simple biquad �lter and a dialog
box querying the user to specify an implementation for a block.

reset
newuniverse testBiquadRE

star MyBiquad0 MyBiquadRE
star IIDGaussian1 IIDGaussian
star Fork2 Fork

numports Fork2 output 2
star XMgraph3 XMgraph
connect IIDGaussian1 output Fork2 input
connect Fork2 output#1 MyBiquad0 input
connect Fork2 output#2 XMgraph3 input
connect MyBiquad0 output XMgraph3 input

Fig. 4. The ptcl script for a range estimation model of the graph
shown in Fig. 3.

Fig. 5. Execution of the range estimation model and its result.

defstar {
name { MyBiquadFix }
...

input {
name { input }
type { fix }

}
output {

name { output }
type { fix }

}
...

defstate {
name { state1 }
type { fix }
default { "0.0" }
desc { internal state. }
attributes { A_NONCONSTANT|A_NONSETTABLE }

}
...

go {
Fix t = Fix (input%0) - Fix (d1) * Fix (state1) -

Fix (d2) * Fix (state2);
Fix o = t * Fix (n0) + Fix (state1) * Fix (n1) +

Fix (state2) * Fix (n2);
output%0 << o;
state2 = Fix (state1);
state1 = t;

}
...

defstate {
name { prec4_input }
type { string }
default { "4.12,TSR" }
desc { precision for input }

}
defstate {

name { prec4_state1 }
type { string }
default { "4.12,TSR" }
desc { precision for state1 }

}
...

}

Fig. 6. The ptlang description of a �xed-point model of the biquad
�lter block.

reset
newuniverse testBiquadFix

star MyBiquad0 MyBiquadFix
star IIDGaussian1 IIDGaussian
star Fork2 Fork

numports Fork2 output 2
star XMgraph3 XMgraph
connect IIDGaussian1 output Fork2 input
connect Fork2 output#1 MyBiquad0 input
connect Fork2 output#2 XMgraph3 input
connect MyBiquad0 output XMgraph3 input

Fig. 7. The ptcl script for a �xed-point model of the �lter test
graph shown in Fig. 3.


