
Types for Deadlock-freedom: The Synchronous Case

Samson Abramsky Simon Gay

Department of Computer Science, Department of Computer Science,

University of Edinburgh, Royal Holloway,
May�eld Road, University of London,

Edinburgh EH9 3JZ, UK. Egham, Surrey TW20 0EX, UK.
samson@dcs.ed.ac.uk S.Gay@dcs.rhbnc.ac.uk

Rajagopal Nagarajan

Department of Computing,
Imperial College of Science,

Technology and Medicine,
180 Queen's Gate,

London SW7 2BZ, UK
&

Electronics Research Laboratory,
University of California,
Berkeley, CA 94720, USA.
R.Nagarajan@doc.ic.ac.uk

June 18, 1997

Abstract

Many di�erent notions of \program property", and many di�erent methods of veri-

fying such properties, arise naturally in programming. We present a general framework

of Speci�cation Structures for combining di�erent notions and methods in a coherent

fashion. We then apply the idea of speci�cation structures to concurrency in the set-

ting of Interaction Categories. As a speci�c example, a certain speci�cation structure

de�ned over the interaction category SProc yields a new category SProcD whose type

system is strong enough to guarantee deadlock-freedom of concurrent processes. We

present some techniques for manipulating typed processes in this category, and show

that they allow us to reason about deadlock-freedom in synchronous networks, a class

of concurrent systems which incorporates both synchronous dataow programs and

systolic algorithms.

1

1 Introduction

Type Inference and Veri�cation are two main paradigms for constraining the behaviour of

programs in such a way as to guarantee desirable properties. Although they are generally

perceived as distinct, on closer inspection it is hard to make any very de�nite demarcation

between them; type inference rules shade into compositional proof rules for a program

logic. Indeed, type inference systems, even for the basic case of functional programming

languages, span a broad spectrum in terms of expressive power. Thus, ML-style types

[39] are relatively weak as regards expressing behavioural constraints, but correspondingly

tractable as regards e�cient algorithms for \type checking". System F types [24] are

considerably more expressive of polymorphic behaviour, and System F typing guarantees

Strong Normalization. However, System F cannot express the fact that a program of

type list[nat]) list[nat] is actually a sorting function. Martin-L�of type theory [41], with

dependent types and equality types, can express complete total correctness speci�cations.

In the richer theories, type checking is undecidable [47].

One might try to make a methodological distinction: post-hoc veri�cation vs. constructions

with intrinsic properties. However, this is more a distinction between ways in which Type

Inference/Veri�cation can be deployed than between these two formal paradigms.

We suggest that it is the rule rather than the exception that there are many di�erent

notions of \properties of interest" for a given computational setting. Some examples

follow.

� Even in the most basic form of sequential programming, it has proved fruitful to

separate out the aspects of partial correctness and termination, and to use di�erent

methods for these two aspects [19].

� In the �eld of static analysis, and particularly in the systematic framework of abstract

interpretation [28], a basic ingredient of the methodology is to use a range of non-

standard interpretations to gain information about di�erent properties of interest.

� In concurrency, it is standard to separate out classes of properties such as safety,

liveness, and fairness constraints, extending into a whole temporal hierarchy, and to

apply di�erent methods for these classes [34].

The upshot of this observation is that no one monolithic type system will serve all our

purposes. Moreover, we need a coherent framework for moving around this space of

di�erent classes of properties.

The basic picture we o�er to structure this space is the \tower of categories":

C0� C1� C2� � � �� Ck:

The idea behind the picture is that we have a semantic universe (category with structure)

C0, suitable for modelling some computational situation, but possibly carrying only a

very rudimentary notion of \type" or \behavioural speci�cation". The tower arises by

re�ning C0 with richer kinds of property, so that we obtain progressively richer settings for
performing speci�cation and veri�cation. Of course, non-linear patterns of re�nement|

trees or dags rather than sequences|can also be considered, but the tower su�ces to

establish the main ideas.

The remainder of this paper provides a detailed development of this idea in the setting of

interaction categories [1, 5, 6], with particular reference to synchronous systems. Section 2

introduces the notion of a speci�cation structure, which formalizes the idea of enriching a

2

semantic universe with a re�ned notion of property. Section 3 reviews the theory of inter-

action categories and de�nes SProc, a category of synchronous processes. In Section 4 we

explicitly state the requirements for a speci�cation structure to be de�ned over an interac-

tion category such as SProc, and in Section 5 we de�ne a particular speci�cation structure

over SProc. The result is a category SProcD, in which types are strong enough to specify

deadlock-freedom, and deadlock-freedom can be veri�ed compositionally. In Section 6 we

give an alternative presentation of this speci�cation structure, which is sometimes more

convenient for calculations, and prove that it is equivalent. As an application of the theory

developed in the rest of the paper, Section 7 analyses the construction of a class of syn-

chronous networks, which encompasses both synchronous dataow programs in languages

such as Signal [25] and Lustre [26], and systolic algorithms [20]. Finally we compare

our theory with other approaches, and discuss the possibilities for further developments.

2 Speci�cation Structures

The notion of speci�cation structure, at least in its most basic form, is quite anodyne, and

indeed no more than a variation on standard notions from category theory. Nevertheless,

it provides an alternative view of these standard notions which is highly suggestive, par-

ticularly from a Computer Science point of view. Similar notions have been studied, for a

variety of purposes, by Burstall and McKinna [35], O'Hearn and Tennent [42], and Pitts

[44].

De�nition 2.1 Let C be a category. A speci�cation structure S over C is de�ned by the

following data:

� for each object A of C, a set PSA of \properties over A".

� for each pair of objects A, B of C, a relation SA;B � PSA� C(A;B)� PSB .

We write 'ffg for SA;B('; f;) (\Hoare triples"). This relation is required to satisfy

the following axioms, for f : A! B, g : B ! C, ' 2 PSA, 2 PSB and � 2 PSC:

'fidAg' (1)

'ffg ; fgg� =) 'ff ; gg� (2)

The axioms (1) and (2) are typed versions of the standard Hoare logic axioms for \skip"

and \sequential composition" [19]. Given C and S as above, we can de�ne a new category

CS . An object of CS is a pair (A;') with A 2 ob C and ' 2 PSA. A CS-morphism

f : (A;')! (B;) is a morphism f : A! B in C such that 'ffg .

Composition and identities are inherited from C; the axioms (1) and (2) ensure that CS is

a category. Moreover, there is a faithful functor

C � CS

given by

A [(A;'):

In fact, the notion of \speci�cation structure on C" is coextensive with that of \faithful

functor into C". Given such a functor F : D ! C, we can de�ne a speci�cation structure

S by:

PSA = f' 2 obD j F (') = Ag

'ffg () 9� 2 D(';): F (�) = f

3

(by faithfulness, � is unique if it exists). It is easily seen that this passage from faithful

functors to speci�cation structures is (up to equivalence) inverse to that from S to C� CS .

A more revealing connection with standard notions is yielded by the observation that

speci�cation structures on C correspond exactly to lax functors from C toRel , the category

of sets and relations. Given a speci�cation structure S on C, the object part of the

corresponding functor R : C ! Rel is given by PS , while for the arrow part we de�ne

R(f) = f(';) j 'ffg g:

Then (1) and (2) become precisely the statement that R is a lax functor with respect to

the usual order-enrichment of Rel by inclusion of relations:

idR(A) � R(idA)

R(f) ;R(g) � R(f ; g):

Moreover, the functor C� CS is the lax �bration arising from the Grothendieck construc-

tion applied to R.

The notion of speci�cation structure acquires more substance when there is additional

structure on C which should be lifted to CS . Suppose for example that C is a monoidal

category, i.e. there is a bifunctor
 : C2! C, an object I , and natural isomorphisms

assocA;B;C : (A
B)
 C �= A
 (B
 C)
unitlA : I
 A �= A

unitrA : A
 I �= A

satisfying the standard coherence equations [33]. A speci�cation structure for C must then

correspondingly be extended with an action

A;B : PA � PB ! P (A
B)

and an element IS 2 PI satisfying, for f : A ! B, f 0 : A0 ! B0 and properties ', '0, ,

 0, � over suitable objects:

'ffg ; '0ff 0g 0 =) ('
 '0)ff
 f 0g(
 0)

(('
)
 �)fassocA;B;Cg('
 (
 �))
(IS
 ')funitlAg'

('
 IS)funitrAg':

Such an action extends the corresponding lax functor R : C ! Rel to a lax monoidal

functor to Rel equipped with its standard monoidal structure based on the cartesian

product.

Now assume that C is symmetric monoidal closed, with natural isomorphism symmA;B :

A
B �= B
 A, and internal hom(given by the adjunction

C(A
B;C) �= C(A;B(C):

Writing �(f) : A! B (C for the morphism corresponding to f : A
B ! C under the

adjunction, we require an action

(A;B: PA� PB ! P (A(B)

and axioms

('
)fsymmA;Bg(
 ')

(('()
 ')fevalA;Bg

4

('
)ffg� =) 'f�(f)g(('):

Going one step further, suppose that C is a �-autonomous category, i.e. a model for the

multiplicative fragment of classical linear logic [13], with linear negation (�)?, where for

simplicity we assume that A?? = A. Then we require an action

(�)?
A
: PA! PA?

satisfying

'?? = '

'(= ('
 ?)
?
:

Under these circumstances all of this structure on C lifts to CS . For example, we de�ne

(A;')
 (B;) = (A
B;'
A;B)

(A;')? = (A?; '?
A
)

(A;')((B;) = (A(B;'(A;B):

All the constructions on morphisms in CS work exactly as they do in C, the above axioms
guaranteeing that these constructions are well-de�ned in CS . For example, if f : (A;')!
(B;) and g : (A0; '0)! (B0; 0), then

f
 g : (A
A0; '
 '0)! (B
B0;
 0):

Moreover, all of this structure is preserved by the faithful functor C� CS .

The above example of structure on C is illustrative. Exactly similar de�nitions can be

given for a range of structures, including:

� models of classical (or intuitionistic) linear logic including the additives and expo-

nentials [11]

� cartesian closed categories [18]

� models of polymorphism [18].

2.1 Examples of Speci�cation Structures

In each case we specify the category C, the assignment of properties P to objects and the

Hoare triple relation.

1. C = Set , PSX = X , affgb
def
, f(a) = b.

In this case, CS is the category of pointed sets.

2. C = Rel , PSX = f�g, �fRg�
def
, 8x 2 A; y; z 2 B: xRy ^ xRz) y = z.

Then CS is the category of sets and partial functions.

3. C = Rel , PX = }X , SfRgT
def
, 8x 2 S: fy j xRyg � T .

This is essentially a typed version of dynamic logic [32], with the \Hoare triple

relation" specialized to its original setting. If we take

S
X;Y T = S � T

S?X = XnS

then CS becomes a model of classical linear logic.

5

4. C = Rel ; PSX = fC � X2 j C = Co; C \ idX = ?g

CfRgD
def
, xCx0; xRy; x0Ry0) yDy0:

C
D = f((x; x0); (y; y0)) j xCy ^ x0Dy0g

C?
X

= X2n(C [idX):

CS is the category of coherence spaces and linear maps [23].

5. C = Set ; PSX = fs : ! * X j 8x 2 X:9n 2 !:s(n) = xg;

sffgt
def
, 9n 2 w: f � s ' t � 'n

where 'n is the nth partial recursive function in some acceptable numbering [45].

Then CS is the category of modest sets, seen as a full subcategory of !-Set [11].

6. C = the category of SFP domains;

PSD = K
(D)(the compact-open subsets of D);

UffgV
def
, U � f�1(V).

This yields (part of) Domain Theory in Logical Form [3], the other part arising

from the local lattice-theoretic structure of the sets PSD and its interaction with

the global type structure.

7. C = games and partial strategies, as in [10], PA = all sets of in�nite plays, Uf�gV

i� � is winning with respect to U; V in the sense of [8]. Then CS is the category of

games and winning strategies of [8].

These examples show the scope and versatility of these notions. Let us return to our

picture of the tower of categories:

C0� C1� C2� � � �� Ck:

Such a tower arises by progressively re�ning C0 by speci�cation structures S1; : : : ; Sk so

that

Ci+1 = (Ci)Si+1 :

Each such step adds propositional information to the underlying \raw" computational

entities (morphisms of C0). The aim of veri�cation in this framework is to \promote" a

morphism from Ci to Cj , i < j. That is, to promote a C0 morphism f : A ! B to a Ck
morphism

f : (A;'1; : : : ; 'k)! (B; 1; : : : ; k)

is precisely to establish the \veri�cation conditions"

k^
i=1

'iffg i:

Once this has been done, by whatever means|model checking, theorem proving, manual

veri�cation, etc.|the morphism is available in Ck to participate in typing judgements. In

this way, a coherent framework for combining methods, including both compositional and

non-compositional approaches, begins to open up. In the remainder of the paper, we will

use speci�cation structures de�ned over interaction categories to construct type systems

for the speci�cation and veri�cation of concurrent systems.

6

3 The Interaction Category SProc

The theory of Interaction Categories has been proposed as a new paradigm for the se-

mantics of sequential and concurrent computation [1, 5, 6]. The term encompasses certain

known categories (the category of concrete data structures and sequential algorithms [14],

categories of games [8], geometry of interaction categories [9]) as well as several new cat-

egories for concurrency. The fundamental examples of concurrent interaction categories

are SProc [5], the category of synchronous processes, and ASProc [6], the category of asyn-
chronous processes. The category SProc will be de�ned in this section; later we will use a

speci�cation structure over SProc to construct another interaction category.

The general picture of interaction categories is that the objects are types, which we also

think of as speci�cations; the morphisms are concurrent processes which satisfy these

speci�cations; and composition is interaction, i.e. an ongoing sequence of communications.

The dynamic nature of composition in interaction categories is one of the key features,

and is in sharp contrast to the functional composition typically found in categories of

mathematical structures.

There is not yet a de�nitive axiomatisation of interaction categories, although some possi-

bilities have been considered [21]. The common features of the existing examples are that

they have �-autonomous structure, which corresponds to the multiplicative fragment of

classical linear logic [23]; products and coproducts, corresponding to the additives of linear

logic, and additional temporal structure which enables the dynamics of process evolution

to be described.

3.1 The Interaction Category SProc

In this section we briey review the de�nition of SProc, the category of synchronous

processes. Because the present paper mainly concerns the use of speci�cation structures

for deadlock-freedom, we omit the features of SProc which will not be needed in later

sections. More complete de�nitions can be found elsewhere [1, 21].

An object of SProc is a pair A = (�A; SA) in which �A is an alphabet (sort) of actions

(labels) and SA �
nepref ��

A
is a safety speci�cation, i.e. a non-empty pre�x-closed subset

of ��
A
. If A is an object of SProc, a process of type A is a process P with sort �A such

that traces(P) � SA. Our notion of process is labelled transition system, with strong

bisimulation as the equivalence [36]. It is convenient to work with synchronization trees

as canonical representatives of strong bisimulation classes. We will write ST(�) for the

set of synchronization trees over a label-set �. We will usually de�ne processes by means

of labelled transition rules. The process of type A with no transitions is called nilA, or

sometimes nil if the type is clear from the context. We use the notation P
a- P 0 for

labelled transitions, and P
s-�P 0 when a trace (sequence of actions) s is involved. The

empty trace is denoted ", and concatenation of traces s and t is simply written st. We do

not distinguish notationally between the action a and the trace containing only the action

a.

If P is a labelled transition system, traces(P) is the set of sequences labelling �nite paths

from the root. The set of sequences labelling �nite and in�nite paths is alltraces(P) and

the set of sequences labelling in�nite paths is inftraces(P). Equivalently, we may use the

following coinductive de�nition.

alltraces(P)
def
= f"g [fa� j P

a- Q; � 2 alltraces(Q)g

traces(P)
def
= f� 2 alltraces(P) j � is �niteg

7

inftraces(P)
def
= f� 2 alltraces(P) j � is in�niteg:

The fact that P is a process of type A is expressed by the notation P : A.

The most convenient way of de�ning the morphisms of SProc is to de�ne a �-autonomous
structure on objects, and then say that the morphisms from A to B are processes of

the internal hom type A(B. This style of de�nition is typical of interaction categories;

de�nitions of �-autonomous categories of games [8] follow the same pattern. Given objects

A and B, the object A
B has

�A
B
def
= �A � �B

SA
B
def
= f� 2 ��

A
B j fst
�(�) 2 SA; snd

�(�) 2 SBg:

The duality is trivial on objects: A?
def
= A. This means that at the level of types, SProc

makes no distinction between input and output. Because communication in SProc consists

of synchronisation rather than value-passing, processes do not distinguish between input

and output either.

The de�nition of
 makes clear the extent to which processes in SProc are synchronous.

An action performed by a process of type A
B consists of a pair of actions, one from the

alphabet of A and one from that of B. Thinking of A and B as two ports of the process,

synchrony means that at every time step a process must perform an action in every one

of its ports.

For simplicity, we shall work with �-autonomous categories in which A?? = A, and A(

B
def
= (A
B?)

?
; AOB

def
= (A?
B?)

?
. In SProc, we have A = A?, and hence AOB =

A (B = A
 B. Not all interaction categories exhibit this degeneracy of structure:

in particular the category SProcD of deadlock-free processes, which will be de�ned in

Section 6, gives distinct interpretations to
 and O.

A morphism p : A ! B of SProc is a process p of type A (B (so p has to satisfy a

certain safety speci�cation). Since A(B = A
B in SProc, this amounts to saying that
a morphism from A to B is a process of type A
B. The reason for giving the de�nition

in terms of(is that it sets the pattern for all interaction category de�nitions, including

cases in which there is less degeneracy.

If p : A ! B and q : B ! C then the composite p ; q : A ! C is de�ned by labelled

transitions.

p
(a;b)- p0 q

(b;c)- q0

p ; q
(a;c)- p0 ; q0

At each step, the actions in the common type B have to match. The processes being

composed constrain each other's behaviour, selecting the possibilities which agree in B.

An example of composition is shown in Figure 1. This ongoing communication is the

\interaction" of interaction categories. If the processes in the de�nition terminated after

a single step, so that each could be considered simply as a set of pairs, then the labelled

transition rule would reduce to precisely the de�nition of relational composition. This

observation leads to the SProc slogan: processes are relations extended in time.

The identity morphisms are synchronous bu�ers or wires: whatever is received by idA :

A ! A in the left copy of A is instantaneously transmitted to the right copy (and vice

versa|there is no real directionality). The following auxiliary de�nition helps to de�ne

the identity processes. If P is a process with sort � and S �nepref �� then the process

8

p

	�
�
�
�
�

(a; b0)
@
@
@
@
@

(a; b)

R

	�
�
�
�
�

(a0; b)
@
@
@
@
@

(a; b)

R

q

	�
�
�
�
�

(b; c)
@
@
@
@
@

(b00; c)

R

	�
�
�
�
�

(b; c)
@
@
@
@
@

(b0; c)

R

p ; q

?

(a; c)

	�
�
�
�
�

(a0; c)
@
@
@
@
@

(a; c)

R

Figure 1: Composition in SProc

P �S, also with sort �, is de�ned by the transition rule

P
a- Q a 2 S

P �S
a- Q�(S=a)

where S=a
def
= f� j a� 2 Sg. Note that the condition a 2 S in the transition rule refers to

the singleton sequence a rather than the action a.

It is useful at this point to de�ne the object A=s, where A is an object of SProc and s 2 SA:

�A=s

def
= �A

SA=s
def
= SA=s:

The identity morphism idA : A ! A is de�ned by idA
def
= id�SA(A where the process id

with sort �A(A is de�ned by the transition rule

a 2 �A

id
(a;a)- id:

Proposition 3.1 SProc is a category.

Proof To prove that composition is associative and that identities work correctly, the

strategy is to show that a suitable relation on processes is a bisimulation, and argue by

coinduction. To prove that p ;(q ;r) = (p ;q);r for all p : A! B, q : B ! C and r : C ! D,

the relation is

f(p ; (q ; r); (p ; q) ; r) j p 2 ST(�A(B); q 2 ST(�B(C); r 2 ST(�C(D)g:

To prove that p ; idB = p for all p : A! B, the relation is

f(p ; id; p) j p 2 ST(�A(B)g

9

where id has sort �B(B. In each case, the fact that the relation is a bisimulation follows

easily from the transition rules de�ning composition. �

The following de�nition will be useful later.

De�nition 3.2 If A is an object of SProc and s 2 SA, then

�A(s)
def
= fa 2 �A j sa 2 SAg:

3.1.1 SProc as a �-Autonomous Category

The de�nitions of
 and (�)? can now be extended to morphisms, making them into

functors. If p : A ! C and q : B ! D then p
 q : A
 B ! C
D and p? : C? ! A?

are de�ned by transition rules.

p
(a;c)- p0 q

(b;d)- q0

p
 q
((a;b);(c;d))- p0
 q0

p
(a;c)- p0

p?
(c;a)- p0

?

The tensor unit I is de�ned by

�I

def
= f�g SI

def
= f�n j n < !g:

The following notation provides a useful way of de�ning the structural morphisms needed

to specify the rest of the �-autonomous structure. If P is a process with sort �, and

f : �* �0 is a partial function, then P [f] is the process with sort �0 de�ned by

P
a- Q a 2 dom(f)

P [f]
f(a)- Q[f]:

The canonical isomorphisms unitlA : I
A �= A, unitrA : A
 I �= A, assocA;B;C : A
 (B

C) �= (A
 B)
 C and symmA;B : A
 B �= B
 A are de�ned below. We use a pattern-

matching notation to de�ne the partial functions needed for the relabelling operations; for

example, (a; a) 7! ((�; a); a) denotes the partial function which has the indicated e�ect

when its arguments are equal.

unitlA
def
= idA[(a; a) 7! ((�; a); a)]

unitrA
def
= idA[(a; a) 7! ((a; �); a)]

assocA;B;C

def
= idA
(B
C)[((a; (b; c)); (a; (b; c))) 7! ((a; (b; c)); ((a; b); c))]

symmA;B

def
= idA
B [((a; b); (a; b)) 7! ((a; b); (b; a))]:

If f : A
B ! C then �(f) : A! (B(C) is de�ned by

�(f)
def
= f [((a; b); c) 7! (a; (b; c))]:

The evaluation morphism ApA;B : (A(B)
A! B is de�ned by

ApA;B
def
= idA(B [((a; b); (a; b)) 7! (((a; b); a); b)]:

All of the structural morphisms are essentially formed from identities, and the only di�er-

ence between f and �(f) is a reshu�ing of ports.

If P is a process of type A then P [a 7! (�; a)] is a morphism I ! A which can be

identi�ed with P . This agrees with the view of global elements (morphisms from I , in a

�-autonomous category) as inhabitants of types.

10

A

B C

D

Figure 2: Using the Cut rule to connect modules

Proposition 3.3 SProc is a compact closed category.

Proof Verifying the coherence conditions for
 is straightforward, given the nature of

the canonical isomorphisms as relabelled identities. The properties required of � and Ap

are equally easy to check. Since (�)? is trivial, it is automatically an involution. This

gives the �-autonomous structure; compact closure follows from the coincidence of
 and

O. �

The following result on relabellings will be useful later.

Lemma 3.4 If p 2 ST(�A(B), q 2 ST(�B(C) and f : �B ! �D is an isomorphism,

then

p[(a; b) 7! (a; f(b))] ; q[(b; c) 7! (f(b); c)] = p ; q:

Proof It follows from the de�nitions of relabelling and composition that the relation

f(p[(a; b) 7! (a; f(b))] ; q[(b; c) 7! (f(b); c)]; p ; q) j p 2 ST(�A(B); q 2 ST(�B(C)g

is a bisimulation. �

3.1.2 Compact Closure and Multi-Cut

As we have already seen the linear type structure of SProc is quite degenerate. Speci�ca-
tion structures can be used to enrich the speci�cations of SProc to stronger behavioural

properties. This will have the e�ect of \sharpening up" the linear type structure so that

the degeneracies disappear.

Our point here is that the looser type discipline of SProc can actually be useful in that it

permits the exible construction of a large class of processes within a typed framework.

In particular, compact closure validates a very useful typing rule which we call multi-cut.

(This is actually Gentzen's MIX rule [22] but we avoid the use of this term since Girard

has used it for a quite di�erent rule in the context of linear logic.)

The usual Cut rule
` �; A ` �; A?

` �;�

allows us to plug two modules together by an interface consisting of a single port [7], as

in Figure 2. This allows us to connect processes in a tree structure, as in Figure 3(a),

but not to construct cyclic interconnection networks as in Figure 3(b). The problem with

constructing a cycle occurs at the �nal step, when two processes must be plugged together

on two ports simultaneously as in Figure 3(c). Cyclic connections would be supported if

11

(a) (b) (c)

Figure 3: Cyclic and acyclic networks

we had the following binary version of the Cut rule:

` �; A1; A2 ` �; A?1 ; A
?
2

` �;�

or more generally the \multi-cut" rule:

` �;� ` �0;�?

` �;�0

This rule is not admissible in Linear Logic and cannot in general be interpreted in

�-autonomous categories. However it can always be canonically interpreted in a compact

closed category (and hence in particular in SProc) as the following construction shows.

Let � = A1; : : : ; Am, �
0 = B1; : : : ; Bn, � = C1; : : : ; Ck and write

~A = A1
 � � �
Am; ~B = B1
 � � �
 Bn; ~C = C1
 � � �
 Ck

~C? = (C1
 � � �
 Ck)
? �= C?

1
 � � �
 C
?
k :

Suppose that the proofs of ` �;� and ` �0;�0 are interpreted by morphisms

f : I ! ~A
 ~C g : I ! ~B
 ~C?

respectively. Then we can construct the required morphism h : I ! ~A
 ~B as follows.

I
� - I
 I

f
 g - (~A
 ~C)
 (~B
 ~C?)

~A
 ~B

h

?
�� ~A
 I
 � � �
 I
 ~B �

evaluate ~A
 (C1
 C
?
1)
 � � �
 (Ck
 C

?
k)

~B

?

�

Note that in a compact closed category I = ? so A? = A(I . Arrows labelled by � are

canonical isomorphisms, and the morphism evaluate is id
 Ap
 � � �
 Ap
 id.

In the case where k = 1 this construction is the internalization of composition in the

category (using the autonomous structure) so it properly generalizes the standard inter-

pretation of Cut. Some related notions, arising in work on coherence in compact closed

categories, can be found in the literature [15, 29].

12

3.2 Products, Coproducts and Non-determinism

The binary coproduct functor � is de�ned on objects by

�A�B
def
= �A +�B

SA�B
def
= finl�(s) j s 2 SAg

[finr�(s) j s 2 SBg:

If p : A! C and q : B ! D then p� q : A�B ! C �D is de�ned by

p� q
def
= p[(a; c) 7! (inl(a); inl(c))]

+ q[(b; d) 7! (inr(b); inr(d))]:

The insertions inlA;B : A! A �B and inrA;B : B ! A�B are de�ned by

inlA;B
def
= idA[(a; a) 7! (a; inl(a))]

inrA;B
def
= idB[(b; b) 7! (b; inr(b))]

and, for p : A! C, q : B ! C, [p; q] : A� B ! C is

[p; q]
def
= p[(a; c) 7! (inl(a); c)]

+ q[(b; c) 7! (inr(b); c)]:

In these de�nitions, the operation + on processes means non-deterministic sum of labelled

transition systems (i.e. the standard CCS +).

Proposition 3.5 The above de�nitions make A� B a coproduct of A and B.

Proof Suppose p : A ! C and q : B ! C. We �rst need to check that inl ; [p; q] = p.

The de�nitions of [p; q] and composition mean that

inl ; [p; q]
(a;c)- inl ; p0[(a; c) 7! (inl(a); c)] () p

(a;c)- p0:

Since inl = id[(a; a) 7! (a; inl(a))], Lemma 3.4 shows that

inl ; p0[(a; c) 7! (inl(a); c)] = id ; p0 = p0:

Hence inl ; [p; q] and p are bisimilar.

Symmetrically, inr ; [p; q] = q.

Now suppose that h : A � B ! C with inl ; h = p and inr ; h = q. There is a trivial

possibility to dispose of: if h = nil then p = nil and q = nil, and [p; q] = nil = h.

Otherwise, the type of h means that its �rst transition has one of two forms: either

h
(inl(a);c)- h0

or

h
(inr(b);c)- h0:

In the �rst case, because inl ; h = p, we have p
(a;c)- p0 with inl ; h0 = p0. The safety

speci�cation of A � B means that we can consider h0 as a morphism inl(A) ! C, where

the object inl(A) is de�ned by

�inl(A)
def
= finl(a) j a 2 �Ag

Sinl(A)
def
= finl�(s) j s 2 SAg:

13

Now we have

p0[(a; c) 7! (inl(a); c)] = (inl ; h0)[(a; c) 7! (inl(a); c)]

= inl[(a; inl(a)) 7! (inl(a); inl(a))] ; h0

= idinl(A) ; h
0

= h0:

Similarly, in the second case we have q
(b;c)- q0 and h0 = q0[(b; c) 7! (inr(b); c)].

Finally, note that the �rst transition of h is the same as that of either p[(a; c) 7! (inl(a); c)]

or q[(b; c) 7! (inr(b); c)] as appropriate. Hence h is bisimilar to p[(a; c) 7! (inl(a); c)] +

q[(b; c) 7! (inr(b); c)], which is the de�nition of [p; q]. �

Since � is a coproduct, its dual is a product; because all objects of SProc are self-dual,

this means that A�B is itself also a product of A and B|so, in fact, a biproduct.

We will use the notation A N B for the product of A and B, in line with the standard

notation for the additive connectives of linear logic [23]. In SProc, A N B is the same

object as A � B, but we will use the product notation when we want to emphasise the

product properties. Exploiting the self-duality of SProc objects, we can de�ne projections

and pairing as follows.

�A
def
= inl?

�B
def
= inr?

hp; qi
def
= [p; q]?

There is also a zero object 0 which has �0

def
= ? and S0

def
= f"g.

Proposition 3.6 The object 0 is initial and terminal in SProc.

Proof The only safe trace for 0 is the empty trace, so a morphism A! 0 cannot make

any transitions and must be nil. Similarly for a morphism 0! A. �

When a category has biproducts and a zero object, it is possible to de�ne a commutative

monoid structure on each homset [33]. If p; q : A! B then p+ q : A! B is de�ned by

p+ q
def
= A

�A! A� A
[p;q]
! B

= A
hp;qi
! B � B

rB! B

where �A

def
= hidA; idAi is the diagonal and rB

def
= [idB; idB] the codiagonal. The unit is

de�ned by 0A!B

def
= A! 0! B.

In SProc, this construction yields the non-deterministic sum of CCS (when strong bisim-

ulation is taken as the notion of equivalence). The proof of Proposition 3.6 shows that

the unique morphisms into and out of 0 are nil processes, and so 0A is also nil. To un-

ravel the de�nition of +, consider the composition hp; qi ;rB. Pairing creates a union of

the behaviours of p and q, but with disjointly labelled copies of B. Composing with rB

removes the di�erence between the two copies. A choice can be made between p and q at

the �rst step, but then the behaviour continues as behaviour of p or behaviour of q.

3.2.1 Time

So far, all of the constructions in SProc have been esentially constructions on relations,

extended uniformly through time. The next step is to de�ne an operator which allow the

temporal structure of the morphisms to be manipulated.

14

The basic construction dealing with time is the unit delay functor �. It is de�ned on

objects by

��A
def
= f�g+ �A

S�A
def
= f"g [f�� j � 2 SAg:

It is notationally convenient to write � instead of inl(�), assuming that � 62 �A. Given

f : A! B, � f : �A! �B is de�ned by the single transition � f
(�;�)- f .

It is straightforward to check that � is indeed a functor. In fact it is a strict monoidal

functor.

Proposition 3.7 There are isomorphisms

monA;B : (�A)
 (�B)! �(A
 B)

(natural in A and B) and monunit : I ! � I.

Proof monunit : I �= � I is de�ned by monunit
(�;�)- idI .

monA;B : (�A)
 (�B) �= �(A
B) is de�ned by monA;B
((�;�);�)- idA
B .

In both cases the inverse is obtained by considering the process as a morphism in the

opposite direction. It is easy to check that these are isomorphisms and thatmon is natural.

�

The most important feature of � is that it has the following unique �xed point property

(UFPP) [1].

Proposition 3.8 For any objects A and B, and any morphisms f : A ! �A and g :

�B ! B, there is a unique morphism It(f; g) : A! B such that

A
f - �A

B

It(f; g)

?
�

g
�B
?

� It(f; g)

commutes.

Proof The equational condition that the square commute, namely It(f; g) = f ;

� It(f; g) ; g, can be read as a guarded recursive de�nition of It(f; g). It is standard

in concurrency theory that such a de�nition has a unique solution [36]. �

We will not go into the applications of this property in the present paper, except to

mention that it supports guarded recursive de�nitions [1, 21] and is an important part of

a proposed axiomatisation of interaction categories [21]. The notation It(f; g) is intended

to suggest iteration.

4 Speci�cation Structures over Interaction Categories

4.1 The Sequence of De�nitions

Suppose C is a �-autonomous category with a notion of a set of processes of each type,

written Proc(A) (a process P of type Amay be identi�ed with a morphism P : I ! A). The

15

following sequence of steps provides a convenient way to de�ne a speci�cation structure

S. This sequence will be used in the present paper when de�ning speci�cation structures

over SProc; it mirrors the sequence already used in the de�nition of SProc itself.

1. De�ne PSA for each A.

2. For each A, de�ne a relation of satisfaction: j=A � Proc(A)� PSA.

3. De�ne (�)?
A
.

4. De�ne
A;B and hence OA;B
and(A;B.

5. De�ne the Hoare triple relation by �ffg'
def
, f j=A(B �('.

6. Verify that the desired structure of C, including the �-autonomous structure, lifts to

CS .

For reference, we will now list the de�nitions and conditions which are needed to lift the

relevant structure of C to CS . In the present paper, we are interested in the �-autonomous
structure, products and coproducts, the unit delay functor, and the UFPP.

4.2 �-Autonomous Structure

For every pair A, B of objects we need an operation

A;B : PSA� PSB ! PS(A
 B):

When writing this and similar operations, we will usually omit the subscripts. To de�ne the

functor
 : CS � CS ! CS we need, for every �; '; ; � 2 PSA; PSB; PSC; PSD, f : A! C

and g : B ! D,

�ffg ; 'fgg�) (�
 ')ff
 gg(
 �):

Then

(A; �)
 (B;')
def
= (A
 B; �
A;B '):

We need IS 2 PSI in order to de�ne the tensor unit in CS by (I; IS).

To lift the symmetric monoidal structure of C to CS we need the following conditions, for

every �; '; 2 PSA; PSB; PSC.

(�
 ('
))fassocA;B;Cg((�
 ')
)

(IS
 �)funitlAg�
(�
 IS)funitrAg�

(�
 ')fsymmA;Bg('
 �)

For each object A we need an operation

(�)?
A
: PSA! PS(A

?)

and we can then de�ne

(A; �)?
def
= (A?; �?A):

In order to de�ne the functorial action of (�)? on CS we need, for every �; ' 2 PSA; PSB
and f : A! B,

�ffg') '?
B
ff?g�?

A
:

16

The operations

OA;B
: PSA � PSB ! PS(AO B)

(A;B : PSA� PSB ! PS(A(B)

can be de�ned by

� OA;B
'

def
= (�?

A

A?;B? '?B)

?

A?
B?

�(A;B '
def
= (�

A;B? '?B)
?

A
B?

and the property ?S by

?S
def
= I?

S
:

To lift the closed structure we need, for every �; '; 2 PSA; PSB; PSC and f : A
B ! C,

(�
 ')ffg) �f�(f)g('()

and

((�(')
 �)fAp
A;B
g':

4.3 Products and Coproducts

For every pair A, B of objects we need an operation

NA;B : PSA� PSB ! PS(AN B):

This enables the product in CS to be de�ned on objects by

(A; �)N (B;')
def
= (AN B; � NA;B '):

For functoriality, it must be the case that for every �; '; ; � 2 PSA; PSB; PSC; PSD,

f : A! C and g : B ! D,

�ffg ; 'fgg�) (� N ')ff N gg(N �):

Additionally, we need
(� N ')f�Ag�
(� N ')f�Bg'

and, for f : C ! A, g : C ! B,

 ffg�; fgg') fhf; gig(�N '):

The treatment of coproducts is dual.

4.4 Unit Delay

For each object A we need an operation

�A : PSA! PS(�A)

in order to de�ne the unit delay on CS by

�(A; �)
def
= (�A; �A �):

For functoriality we need, for each f : A! B and �; ' 2 PSA; PSB,

�ffg') � �f� fg�':

Lifting the UFPP to CS requires that if f : A! �A and g : �B ! B with �; ' 2 PSA; PSB,

�ffg� �; �'fgg') �fIt(f; g)g':

17

5 A Speci�cation Structure for Deadlock-Freedom

Throughout this paper, deadlock means termination. A more re�ned treatment might

consider unsuccessful termination as deadlock; the view taken here is that all termination

is unsuccesful. In fact, given the synchronous nature of SProc, successful termination is

not especially interesting because all processes would have to terminate simultaneously. A

process may have both terminating and non-terminating behaviours, but a deadlock-free

process is one which has no maximal �nite behaviours. For example, the process a:b:nil

can deadlock; the process P de�ned by P = a:P + b:nil can deadlock although it can also

generate the in�nite trace a! ; the process Q de�ned by Q = a:b:Q is deadlock-free.

Deadlock-freedom is not preserved by composition: two processes may individually be

deadlock-free, but when forced to communicate they could deadlock each other by being

unable to agree on a sequence of actions to perform. For example, if the CCS processes P

and Q are de�ned by P = a:b:P and Q = �a:c:Q then composing them means forming the

process (P j Q) n fa; b; cg. In this process, P and Q can communicate for a single step,

but then deadlock occurs because P must do b next while Q can only do c.

In order to construct a category of deadlock-free processes which are guaranteed to remain

deadlock-free when composed with each other, more information is needed than just the

fact that a process runs forever. The rest of this section describes one approach to building

suitable extra information into the types, by constructing a speci�cation structure over

SProc. In Section 6 we de�ne an alternative speci�cation structure, and prove that the

two are equivalent.

The �rst construction of a speci�cation structure for deadlock-freedom takes a property

over a type to be a set of processes of that type. This is clearly the most general notion

of property, and has no inherent connection with deadlocks. For these properties to say

anything about deadlock-freedom, the sets of processes must be carefully chosen in a way

which will now be described.

5.1 Fundamentals

De�nition 5.1 A process P of type A converges, written P #, if whenever P
s-�Q

there is a 2 �A and a process R such that Q
a- R.

Convergence means deadlock-freedom; the reason for the choice of terminology is an anal-

ogy with proofs of strong normalisation in Classical Linear Logic [23, 4].

De�nition 5.2 Given processes P and Q of type A, the process PuQ of type A is de�ned

by

P
a- P 0 Q

a- Q0

P uQ
a- P 0 uQ0:

For each type A, the orthogonality relation on the set of processes of type A is de�ned by

P ? Q
def
, (P u Q)# :

If P and Q are orthogonal, then they represent possible projections, in the shared type, of

two successfully communicating processes. For example, if R : A! B and S : B ! C then

the behaviours of R and S in their ports of type B can be described as processes P and

Q of type B; orthogonality of P and Q corresponds to non-deadlocking communication

between R and S when they are combined into R ; S.

18

Because only deadlock-free processes are of interest in this section, it is convenient to re-

strict attention to those types of SProc whose safety speci�cations do not force termination.
Such types are called progressive.

De�nition 5.3 An object A of SProc is progressive if

8s 2 SA:9a 2 �A:sa 2 SA:

The full subcategory of SProc consisting of just the progressive objects is denoted by SProcpr .

SProcpr inherits all the structure of SProc, apart from the zero object. The speci�cation

structure for deadlock-freedom will be de�ned over SProcpr .

De�nition 5.4 For each object A of SProcpr , Proc(A) is the set of convergent processes

of type A. The orthogonality relation is extended to sets of processes by de�ning, for

U; V � Proc(A) and P : A,

P ? U
def
, 8Q 2 U:P ? Q

U ? V
def
, 8P 2 U:P ? V:

Orthogonality then generates an operation of negation on sets of processes, de�ned by

U? def
= fP 2 Proc(A) j P ? Ug:

De�ning (�)? in this way from a symmetric orthogonality relation yields a self-adjoint

Galois connection [17] and the following lemma holds for general reasons.

Lemma 5.5 For all U; V � Proc(A),

1: U � V) V ? � U?

2: U � U??

3: U? = U??? :

Proof

1. If P 2 V ? then 8Q 2 V:P ? Q. Hence 8Q 2 U:P ? Q. Hence P 2 U?.

2. If P 2 U and Q 2 U? then P ? Q. Hence 8Q 2 U?:P ? Q. Hence P 2 U??.

3. From 2 we have U? � U??? . Also, applying 1 to 2 gives U??? � U?. �

We will also need some additional results.

De�nition 5.6 For any object A of SProcpr , the process maxA : A is de�ned by

a 2 SA

maxA
a- maxA=a:

Lemma 5.7 For any P 2 Proc(A), P ? maxA.

Proof P umaxA = P , so P ? maxA because P #. �

Lemma 5.8 If U � Proc(A) then U? 6= ?.

Proof Lemma 5.7 implies that maxA 2 U
?. �

19

5.2 The Speci�cation Structure

Following the sequence of de�nitions listed in Section 4, we can now de�ne the speci�cation

structure D.

De�nition 5.9

1. PDA
def
= fU � Proc(A) j (U 6= ?) ^ (U?? = U)g.

2. P j= U
def
, P 2 U .

3. (�)? : PDA! PDA has already been de�ned.

4.

U
 V
def
= fP
Q j P 2 U;Q 2 V g??

U O V
def
= (U?
 V ?)

?

U (V
def
= (U
 V ?)

?

ID
def
= fmaxIg:

5. UffgV
def
, f j= U (V .

6. The de�nitions required to lift the additive and temporal structure of SProc to SProcD
are

U � V
def
= (fP [inl] j P 2 Ug [fQ[inr] j Q 2 V g)??

U N V
def
= (U? � V ?)

?

�U
def
= f�P j P 2 Ug:

The following points are worth noting.

� Lemma 5.8 ensures that clause 3 of the de�nition makes sense, by guaranteeing that

U? 2 PDA for each U 2 PDA.

� For any U � Proc(A), U?? is the smallest ??-invariant set of processes containing

U .

� There are now separate de�nitions relating to product (N) and coproduct (�). We

will prove later that these connectives are distinct in the speci�cation structure D.

We need to check that every set of processes de�ned in De�nition 5.9 is ??-invariant.

In every case except that of �, this follows from the fact (Lemma 5.5) that for every

U � Proc(A), U? is ??-invariant.

Lemma 5.10 If U 2 PDA then �U 2 PD(�A).

Proof First, �U 6= ? because U 6= ?.

Next, note that for P;Q 2 Proc(�A), there are P 0; Q0 2 Proc(A) such that P = �P 0 and

Q = �Q0. Furthermore, P ? Q () P 0 ? Q0.

This means that

(�U)? = f�P j P 2 Ug?

= f�Q j Q 2 U?g

= �(U?)

and hence (�U)?? = �(U??) = �U . �

20

We can now prove that D satis�es the speci�cation structure axioms.

Lemma 5.11 If U � V � Proc(A) then idA 2 U (V .

Proof We need idA 2 (U
 V
?)

?
. Now,

(U
 V ?)
?

= fP
Q j P 2 U;Q 2 V ?g
???

= fP
Q j P 2 U;Q 2 V ?g
?

so it is enough to show idA ? fP
 Q j P 2 U;Q 2 V ?g. Let P 2 U and Q 2 V ?.

U � V implies V ? � U?, so Q 2 U? and hence P ? Q. For any common trace s of idA
and P
 Q, fst�(s) is a trace of P and snd�(s) is a trace of Q, and fst�(s) = snd�(s). So

there is an action a such that fst�(s)a is a trace of P and snd�(s)a is a trace of Q. Hence

(a; a) is an action such that s(a; a) is a trace of both idA and P
 Q. This means that

(idA u (P
Q))#, and so idA ? P
 Q. �

For the next two lemmas, a slight abuse of notation is useful. If f : A! B and P : A, there

is a process P ;f of type B obtained by regarding P as a morphism I ! A, composing with

f , and then regarding the resulting morphism I ! B as a process of type B. Similarly, if

Q : B? there is a process f ;Q of type A.

Lemma 5.12 If f : A ! B, U 2 PDA, V 2 PDB, f 2 U (V and P 2 U , then

P ; f 2 V .

Proof To show that P ; f 2 V , we will consider an arbitrary Q 2 V ? and show that

P ; f ? Q, thus establishing P ; f 2 V ?? = V .

Let Q 2 V ? and let s be a common trace of P ; f and Q. The de�nition of composition

means that there is a trace t of f such that fst�(t) is a trace of P and snd�(t) = s. We

have f 2 U (V , and so f ? (P
 Q). Hence there is an action (a; b) such that t(a; b)

is a trace of f , fst�(t)a is a trace of P and snd�(t)b is a trace of Q. Then sb is a common

trace of P ; f and Q, so ((P ; f) uQ)# as required. �

Lemma 5.13 If f : A ! B, U 2 PDA, V 2 PDB, f 2 U (V and Q 2 V ?, then

f ;Q 2 U?.

Proof Similar to the proof of Lemma 5.12. �

Notation When s and t are traces of equal length, we will write s zip t for the unique

trace u such that fst�(u) = s and snd�(u) = t.

Proposition 5.14 D is a speci�cation structure over SProcpr .

Proof The �rst requirement is that if A is any object of SProcpr and U 2 PDA,

UfidAgU . This follows from Lemma 5.11.

Next, suppose thatA, B, C are objects of SProcpr and U 2 PDA, V 2 PDB andW 2 PDC.

If f : A ! B and g : B ! C with UffgV and V fggW , we need Uff ; ggW . Thus the

goal is to prove that f ; g ? fP
R j P 2 U;R 2 W?g.

Take P 2 U and Q 2 W?. We need to prove that (f ; g) ? (P
 Q). Any common trace

of f ; g and P
 Q arises from traces s and t such that f
s-�f 0, g

t-�g0, P
fst�(s)-�P 0,

Q
snd�(t)-�Q0 and snd�(s) = fst�(t). Then we have

f ; g
fst�(s) zip snd�(t)- f 0 ; g0 P
Q

fst�(s) zip snd�(t)- P 0
 Q0:

21

This gives P ; f
snd�(s)-�P 0 ; f 0 and g ;Q

fst�(t)-�g0 ;Q0. By Lemmas 5.12 and 5.13, P ; f 2 V

and g ; R 2 V ?. Hence (P ; f) ? (g ; R), so there is b such that P 0 ; f 0
b- P 00 ; f 00

and g0 ;Q0 b- g00 ;Q00. By the de�nition of composition, there are a and c such that

P 0
a- P 00, f 0

(a;b)- f 00, g0
(b;c)- g00 and Q0 c- Q00. Hence f 0 ; g0

(a;c)- f 00 ; g00 and

P 0
Q0 (a;c)- P 00
Q00, as required. �

It is now legitimate to talk about the category SProcD of deadlock-free processes. In order

to prove that the �-autonomous structure of SProc lifts to SProcD, we need to check the

various conditions listed in Section 4. As an example of the style of proof required, we

will verify one case.

Proposition 5.15 If U 2 PDA and V 2 PDB, then (U
 V)fsymm
A;B
g(V
 U).

Proof We need symm2 (U
 V)((V
 U), i.e. symm2 ((U
 V)
 (V
 U)?)
?
, or

equivalently symm? fP
 Q j P 2 U
 V;Q 2 (V
 U)?g.

First, suppose that Q 2 (V
 U)? = fR
 S j R 2 V; S 2 Ug??? , i.e.

Q ? fR
 S j R 2 V; S 2 Ug:

De�ning Q0 def
= Q[(b; a) 7! (a; b)], it is clear that Q0 ? fS
 R j S 2 U;R 2 V g and so

Q0 2 (U
 V)?.

Now suppose that P 2 U
 V and Q 2 (V
 U)?, and s is a common trace of symm and

P
 Q. The de�nition of symmmeans that fst�(s) = snd�(s)[(b; a) 7! (a; b)]. Also, fst�(s)

is a trace of P and snd�(s)[(b; a) 7! (a; b)] is a trace of Q0. Because P ? Q0, there is

an action (a; b) available to both P and Q0 after this trace. So Q can do (b; a) after the

corresponding trace, and P
Q can do ((a; b); (b; a)) after s. This action is also available

to symm after s. Hence symm? P
 Q, as required. �

We also need to check that the products and coproducts lift to SProcD. The necessary

proofs will be postponed until Section 6, as they turn out to be more easily formulated in

the language of ready speci�cations.

We will, however, prove that the UFPP lifts to SProcD.

Proposition 5.16 Let A, B be objects of SProcpr , U 2 PDA and V 2 PDB. Let f :

(A;U) ! (�A; �U) and g : (�B; �V) ! (B; V), and let h : A ! B be the unique

morphism in SProc satisfying h = f ; �h ; g. Then h : (A;U)! (B; V) in SProcD.

Proof We need to prove that h j= U (V , i.e. that h ? fP
Q j P 2 U;Q 2 V ?g. We

will prove, by induction on the length of s, that

8s:8P 2 U:8Q 2 V ?:

0
@ (P
 Q)u h

s-�(P 0
 Q0) u h0

) 9(a; b):(P 0
Q0) u h0
(a;b)- (P 00
 Q00) u h00

1
A

(Base case) s = �. Take P 2 U , Q 2 V ?, R 2 �(U?), S 2 �V . Because f ? P
 R

there is a such that f
(a;�)- f 0 and P

a- P 0. Because g ? S
 Q there is b such that

g
(�;b)- g0 and Q

b- Q0. The transitions of f and g give h
(a;b)- h0, and we also have

P
Q
(a;b)- P 0
Q0.

(Inductive step) Assuming the result for traces of length n, consider traces of length n+1.

Take P 2 U andQ 2 V ?. Because f j= U (�U and g j= �V (V , Lemmas 5.12 and 5.13

give P ; f 2 �U and g ; Q 2 �V . Suppose h u (P
Q)
s zip t-�h0 u (P 0 uQ0). This means

22

that there are traces u and v with f
s zip (�u)-�f 0, �h

(�u) zip (�v)-�k and g
(�v) zip t-�g0. Also

P
s-�P 0 and Q

t-�Q0. Writing P ;f = �R and g ;Q = �S, we have R
u-�R0 = P 0 ; f 0

and S
v-�S0 = g0 ;Q0.

Now we have h u (R
 S)
u zip v-�k u (R0
 S0) with R 2 U , S 2 V ? and length(()u zip v) =

n. By the induction hypothesis, there is (c; d) such that k u (R
 S)
(a;b)-�k0 u (R0
 S0).

So there is (a; b) such that P 0
a- P 00, f 0

(a;c)- f 00, Q0 b- Q00 and g0
(d;b)- g00. Hence

h0
(a;b)- f 00 ; k0 ; g00 and P 0
 Q0 (a;b)- P 00
 Q00. �

For later work it is useful to have a supply of properties over each type.

Proposition 5.17 For every object A of SProcpr , fmaxAg
? = Proc(A) and Proc(A)? =

fmaxAg.

Proof For any P 2 Proc(A), P ? maxA. Hence Proc(A) ? fmaxAg. This means that
fmaxAg

? � Proc(A); also, fmaxAg
? � Proc(A). This gives fmaxAg

? = Proc(A).

For the second part, we already have fmaxAg � Proc(A)?. Now suppose that P 6= maxA.

There is a process P 0, a trace s and an action a 2 �A such that sa 2 SA and P
s-�P 0

but P 0 cannot do a. De�ne Q to be the same process as P , except that the node P 0 is

replaced by Q0 where Q0 = a : maxA=sa. Then P uQ does not converge, so P 6? Proc(A).�

Corollary 5.18 fmaxAg
?? = fmaxAg and Proc(A)?? = Proc(A).

De�nition 5.19 For each object A of SProcpr , de�ne two properties over A: inA
def
=

fmaxAg and outA
def
= Proc(A). Thus we have in?A = outA and out?

A
= inA.

A port of type (A; inA) represents an input because the possible behaviour is described by

maxA which is always prepared to engage in any action. A port of type (A; outA) repre-

sents a possibly non-deterministic output; no information is available about its possible

behaviour.

Proposition 5.20 For all objects A,

(s 2 SA) 9!a 2 �A:sa 2 SA) () (inA = outA):

Corollary 5.21 ID = inI = outI = I?
D
.

There are a few useful results on combinations of in and out properties.

Proposition 5.22 For any objects A and B of SProcpr ,

1: inA
 inB = inA
B
2: outA O outB = outAOB

3: outA
 outB = outA
B
4: inA O inB = inAOB

Proof

1. Follows from the fact that maxA
maxB = maxA
B .

2. Follows from 1 by duality.

23

3. Since MA
MB = fP
 Q j P 2MA; Q 2MBg
??, it is enough to prove

fP
Q j P 2MA; Q 2MBg
? = fmaxA
Bg:

Clearly

maxA
B ? fP
Q j P 2MA; Q 2MBg:

Suppose that R 2 Proc(A
 B) and R 6= maxA
B . At some point in the tree of R,

there is an action (a; b) which is unavailable. For simplicity, say that R cannot do

(a; b). Then if P = a : maxA=a and Q = b : maxB=b, (P
Q) 6? R.

4. Follows from 3 by duality. �

Proposition 5.23 If P : A1 O � � �O An in SProc, the Ai are progressive and P #, then
P : (A1; outA1)O � � �O (An; outAn) in SProcD.

Proof It is immediate that if P : A in SProc, A is progressive and P is deadlock-free,

then P : (A; outA) in SProcD. By Proposition 5.22, the result can be obtained by applying

this observation to the type A1 O � � �O An. �

5.3 Loss of Degeneracy

The degeneracies present in SProc (coincidence of
 and O, coincidence of N and �) do
not appear in SProcD.

Proposition 5.24 De�ne SProc objects A and B by �A = fa; bg, SA = ��
A
, �B = fc; dg,

SB = ��
B
. Then outA
 inB 6= outA O inB.

Proof We have

outA
 inB = fP
maxB j P 2 Proc(A)g??

outA O inB = (inA
 outB)
?

= fmaxA
 Q j Q 2 Proc(B)g?:

De�ning processes X and Y of type A
B by

X = (b; c) : X + (a; d) : X

Y = (a; c) : Y + (b; d) : Y

it is easy to see

X 2 fP
maxB j P 2 Proc(A)g?

Y 2 fmaxA
 Q j Q 2 Proc(B)g?:

But X 6? Y , which means that X 62 fP
maxB j P 2 Proc(A)g??. �

Loss of compact closure is to be expected, as in general the arbitrary formation of cycles

can lead to deadlock. Later in the paper we will present ways of constructing cyclic

processes in particular cases.

Proposition 5.25 De�ne SProc objects A and B by �A = fag, SA = ��
A
, �B = fbg,

SB = ��
B
. Then outA � outB 6= outA N outB.

24

Proof We have

outA � outB = (fmaxAg [fmaxBg)
??

= fmaxA;maxBg
??

outA N outB = (outA � outB)
?

= fmaxA;maxBg
?;

omitting inl and inr for clarity. Now, fmaxA;maxBg
? = fmaxA +maxBg, but

fmaxA +maxBg
? � fmaxA +maxB ;maxA;maxBg

and so outA � outB is strictly larger than outA N outB. �

Although
 and O are distinct in SProcD, the Mix rule is still valid.

Proposition 5.26 For any objects (A;U), (B; V) of SProcD, we have idA
B : (A;U)

(B; V)! (A;U)O (B; V).

Proof By Lemma 5.11 it is enough to show that U
 V � U O V , i.e.

fP
 Q j P 2 U;Q 2 V g?? � fR
 S j R 2 U?; S 2 V ?g
?
:

This follows from

fR
 S j R 2 U?; S 2 V ?g � fP
Q j P 2 U;Q 2 V g?

which in turn follows from

fR
 S j R 2 U?; S 2 V ?g ? fP
 Q j P 2 U;Q 2 V g:

Take P 2 U , Q 2 V , R 2 U?, S 2 V ?. If (P
 Q) u (R
 S)
s-�(P 0
 Q0) u (R0
 S0)

then P uR
fst�(s)-�P 0 uR0 and Q u S

snd�(s)-�Q0 u S0. Because P ? R and Q ? S there

are a, b such that P 0
a- P 00, R0

a- R00, Q0 b- Q00, S0
b- S00. This implies

(P 0
 Q0) u (R0
 S0)
(a;b)- (P 00
Q00) u (R00
 S00), and so (P
 Q) ? (R
 S). �

6 Ready Speci�cations

The speci�cation structure presented in the previous section results in a category which

supports compositional veri�cation of deadlock-freedom, but there is perhaps a lack of

intuition about the use of sets of processes. There is an alternative speci�cation structure

for deadlock-freedom, which was in fact the �rst to be discovered, and which is more easily

motivated. It turns out to be equivalent to the sets of processes approach.

6.1 Fundamentals

The reason why deadlock-freedom is not generally preserved by composition in SProc is

that two deadlock-free processes may, when forced to communicate, reach states from

which no further communication is possible even though both processes have more actions

available. This observation leads to the idea that if a type is to guarantee compositional

deadlock-freedom, it must specify something about which actions a process must be pre-

pared to perform in certain states. The way in which this information is captured is via

25

the notions of ready pair and ready speci�cation. We will see that ready speci�cations

arise naturally as \datatypes extended in time".

Consider a function f : A1 � � � � � An ! B, with each of the types A1; : : : ; An and B

determining a set of values. Suppose that in one computation step f receives n inputs

and simultaneously produces an output. In each of the n inputs, f is prepared to receive

any value|indeed, it is precisely this property which characterises them as inputs|while

in the output, f is free to choose which value appears. More generally, if f is a relation

rather than a function, we can think of the Ai and B as the types of ports rather than

inputs or outputs. In this case, the picture of which values may appear in each port is

more complex|some input values may not be accepted, and some outputs may be non-

deterministic. More generally still, f may be a process with dynamic behaviour extending

through time. Its behaviour can still be characterised by the sets of values which may

appear in each port, but now these sets depend on the state of the process. If we indicate

the state of a process by the sequence of actions which led to that state, then the following

de�nitions are very natural.

De�nition 6.1 A ready pair over an SProc object A = (�A; SA) is a pair (s;X) in which

s 2 SA and X � �A, such that 8x 2 X:sx 2 SA. The set X is the ready set of the ready

pair. A proper ready pair is a ready pair (s;X) with X 6= ?. The set of proper ready pairs
over an object A is denoted by RP(A). If P is a process of type A, then

initials(P)
def
= fx 2 �A j 9Q:P

x- Qg

readies(P)
def
= f(s;X) j (P

s-�Q) ^ (X = initials(Q))g:

For any process P , readies(P) is the set of ready pairs (s;X) representing the actions

(those in X) in which P is ready to engage after performing a sequence s of actions. Note

that readies(P) does not necessarily consist entirely of proper ready pairs.

De�nition 6.2 A process P of type A is deadlock-free if and only if there is no trace

s 2 SA such that P
s-�nil. Equivalently, if and only if there is no trace s 2 SA such that

(s;?) 2 readies(P).

This is equivalent to the de�nition of convergence used in Section 5. For example,

readies(a:b:nil+ a:c:nil) = f("; fag); (a; fbg); (a; fcg); (ab;?); (ac;?)g

and if P = a:P ,

readies(P) = f(an; fag j n < !)g:

The idea of a ready pair, and the related notions of failures and refusals, appear in the

process algebra literature [12, 16, 27]. There, however, they are used to de�ne semantic

alternatives to bisimulation; the use made of ready pairs in this paper is very di�erent.

We use a orthogonality relation on ready pairs, rather than on processes as in Section 5.

De�nition 6.3 The orthogonality relation ? on RP(A) is de�ned by

(s;X) ? (t; Y)
def
, ((s = t)) X \ Y 6= ?):

The idea is that if (s;X) and (t; Y) are ready pairs of two processes which are supposed

to be communicating, (s;X) ? (t; Y) means that if they have been communicating so far

(s = t) there is some action which they are both prepared to do next (X\Y 6= ?) and thus

26

continue the communication. Again, this is a natural generalisation of the requirement in

functional programming that an output always be connected to an input. If there are two

ports, in which the respective sets of actions X and Y can occur, then connecting them

together only leads to correct communication if X \ Y 6= ?. Taking the varying states of
the processes into account leads to the de�nition of orthogonality of ready pairs.

We lift the orthogonality relation to an operation of negation on sets of ready pairs.

De�nition 6.4 Let � � RP(A) for some object A.

(s;X) ? �
def
, 8(t; Y) 2 �:(s;X)? (t; Y)

�?
def
= f(s;X) 2 RP(A) j (s;X) ? �g:

Proposition 6.5 For �; ' � RP(A),

1: � � ') '? � �?

2: � � �??

3: �??? = �?:

De�nition 6.6 A ready speci�cation over an object A is a non-empty set � of proper

ready pairs over A, satisfying

� ((s;X) 2 �) ^ (x 2 X)) 9Y:(sx; Y) 2 �

� (sx; Y) 2 �) 9X:[(s;X) 2 � ^ x 2 X].

The set of ready speci�cations over A is denoted by RS(A).

Proposition 6.7 If A is progressive then RP(A) 2 RS(A).

Proof We need to check that RP(A) satis�es the closure conditions of De�nition 6.6.

For the �rst, suppose that (s;X) 2 RP(A) and x 2 X . Then sx 2 SA by the de�nition of

ready pair. Since A is progressive, there is a 2 �A such that sxa 2 SA. This means that
(sx; fag) 2 RP(A).

For the second, observe that if (sx; Y) 2 RP(A) then (s; fxg) 2 RP(A) with x 2 fxg. �

Corollary 6.8 If A is progressive then RS(A) 6= ?.

Proposition 6.9 For any object A of SProcpr , the following hold.

1. RP(A)?? = RP(A)

2. RP(A)? = f(s;�A(s))g) j s 2 SAg.

Proof

1. RP(A)?? is a set of ready pairs, so RP(A)?? � RP(A). Also RP(A) � RP(A)?? by

Proposition 6.5.

2. It is clear that f(s;�A(s)) j s 2 SAg ? RP(A). Conversely, suppose that (s;X) ?
RP(A). Because (s; fxg) 2 RP(A) for every x 2 �A such that sx 2 SA, the de�nition
of orthogonality means that x 2 X for each such x. Hence X = �A(s) as claimed. �

27

Corollary 6.10 For any object A of SProcpr , and � � RP(A),

�? � f(s;�A(s))g) j s 2 SAg:

Proof If � � RP(A) then f(s;�A(s))g) j s 2 SAg = RP(A)? � �?. �

6.2 The Speci�cation Structure D0

Again following the sequence of de�nitions in Section 4.1, we can de�ne the speci�cation

structure D0 over SProcpr .

De�nition 6.11

1. PDA
def
= f� 2 RS(A) j �?? = �g.

2. P j= �
def
, readies(P) � �.

3. (�)? : PD0A! PD0A has already been de�ned.

4.

� O '
def
= f(s; U � V) j (fst�(s); U) 2 �?; (snd�(s); V) 2 '?g

?

�
 '
def
= (�? O '

?)
?

�('
def
= �? O '

ID0

def
= f(s; f�g) j s 2 SIg:

5. �ffg'
def
= f j= �('.

6. The de�nitions required to lift the additive and temporal structure of SProc to SProcD0

are

� N '
def
= (f(inl�(s); inl(X)) j (s;X) 2 �?g [f(inr�(t); inr(Y)) j (t; Y) 2 '?g)

?

� � '
def
= (�? N '?)

?

� �
def
= (f("; f�g)g[f(�s;X) j (s;X) 2 �?g)

?

Proposition 6.12 If � 2 PD0A and P j= � then P is deadlock-free.

Proof Follows from the fact that � contains only proper ready pairs. �

Proposition 6.13 If � 2 PD0A then � � f(s;�A(s))g) j s 2 SAg.

Proof Follows from Corollary 6.10, because � = (�?)
?
. �

We will now prove that there is an isomorphism between properties in D0 and properties

in D. This will enable us to deduce that D0 is a speci�cation structure, and that SProcD0

and SProcD are isomorphic.

28

6.3 Equivalence of D and D0

We will now prove that for each object A of SProcpr there is a bijection between PDA

and PD0A, and this bijection preserves all the operations on properties exactly. Also,

satisfaction of properties is preserved. It turns out that this leads to an isomorphism

between SProcD and SProcD0 .

We now have two versions of orthogonality and of every operation on properties. To avoid

confusion we will stick to the convention of using �; '; : : : for ready speci�cations and

U; V; : : : for sets of processes, and begin by proving that the two notions of orthogonality

are compatible.

Lemma 6.14 If P;Q 2 Proc(A), then P ? Q () readies(P) ? readies(Q).

Proof Suppose P ? Q, (s;X) 2 readies(P) and (s; Y) 2 readies(Q). So P
s-�P 0

and Q
s-�Q0, and orthogonality of P and Q implies that there is an action a such that

P 0
a- P 00 and Q0 a- Q00. This means that a 2 initials(P 0) = X and a 2 initials(Q0) = Y ,

so (s;X) ? (s; Y).

Conversely suppose readies(P) ? readies(Q), P
s-�P 0 and Q

s-�Q0. Then we have

(s; initials(P 0)) 2 readies(P) and (s; initials(Q0)) 2 readies(Q), and this implies

initials(P 0)\ initials(Q0) 6= ?:

Thus there is an action a such that P 0
a- P 00 and Q0 a- Q00, so P ? Q. �

De�nition 6.15 Let U 2 PDA and � 2 PD0A.

F (�)
def
= fP 2 Proc(A) j readies(P) � �g

G(U)
def
=

[
freadies(P) j P 2 Ug:

Proposition 6.16 If � 2 PD0A then GF (�) = �.

Proof If (s;X) 2 GF (�) there is P 2 F (�) with (s;X) 2 readies(P). This means that

(s;X) 2 �, because P 2 F (�)) readies(P) � �. Hence GF (�) � �.

If (s;X) 2 � then establishing (s;X) 2 GF (�) requires P 2 F (�) such that (s;X) 2

readies(P). This means �nding P with readies(P) � � and (s;X) 2 readies(P). We know

that (t;�A(t)) 2 � for any trace t 2 SA. In maxA there is a unique state reachable by

the trace s. By removing branches from this state, we can construct a process P with the

required property. �

Proposition 6.17 If U 2 PDA then FG(U) = U .

Proof If P 2 U then readies(P) � G(U), so P 2 FG(U). Hence U � FG(U).

If P 2 FG(U) then readies(P) � G(U). So for any (s;X) 2 readies(P) there is Q 2 U
such that (s;X) 2 readies(Q). If R 2 U? and (t; Y) 2 readies(R), this means that

(s;X) ? (t; Y), because R ? Q and by Lemma 6.14. Hence P ? R, i.e. P 2 U?? = U .

Thus FG(U) � U . �

29

Lemma 6.18 Satisfaction is preserved by the correspondence between D and D0, i.e.

readies(P) � � () P 2 F (�)

P 2 U () readies(P) � G(U):

Proof The only non-trivial part is readies(P) � G(U)) P 2 U ; the others follow

easily from the de�nitions of F and G. If readies(P) � G(U) then P 2 FG(U) = U . �

Lemma 6.19 F (�?) � F (�)? and G(U?) � G(U)?.

Proof If P 2 F (�?) and Q 2 F (�) then readies(P) � �? and readies(Q) � �, so P ? Q.

If (s;X) 2 G(U?) and (t; Y) 2 G(U) then 9P 2 U?:(s;X) 2 readies(P) and 9Q 2

U:(t; Y) 2 readies(Q). Since P ? Q, readies(P) ? readies(Q) and hence (s;X)? (t; Y). �

Lemma 6.20 If � 2 PD0A, there are processes P1; : : : ; Pn such that

readies(P1)[: : :[readies(Pn) = �:

Proof De�ne a labelled transition system whose states are the ready pairs in �, with

transitions de�ned by
a 2 X

(s;X)
a- (sa; Y):

We have (s;�A(s)) 2 � for each s 2 SA. So for any pair (sa; Y) 2 � there is the transition

(s;�A(s))
a- (sa; Y), which means that every state is reachable from (";�A(")), except

for any (";X) with X 6= �A(�). This means that the states (";X) can be taken as the

processes P1; : : : ; Pn. �

Proposition 6.21 F (�?) = F (�)?.

Proof It is enough to prove F (�)? � F (�?). If P 2 F (�)? then P ? F (�). Let

Q1; : : : ; Qn be such that readies(Q1) [: : : [readies(Qn) = �. Each Qi 2 F (�), hence

P ? Qi for each i. So readies(P) ? � and hence readies(P) � �? . Thus P 2 F (�?). �

Proposition 6.22 G(U?) = G(U)?.

Proof

G(U)? = G(F (G(U)?))

= G(F (G(U))?)

= G(U?):

�

Corollary 6.23 F (�) = F (�)?? and G(U) = G(U)??.

Proposition 6.24 If � 2 PD0A and ' 2 PD0B then F (� O ') = F (�) O F (').

Proof It is enough to show that F (�? O '
?) = F (�?)O F ('

?). Now,

�? O '
? = f(s; A�B) j (fst�(s); A) 2 �; (snd�(s); B) 2 'g?

30

and

F (�?)O F ('
?) = F (�)? O F (')

?

= (F (�)
 F ('))?

= fP
Q j P 2 F (�); Q 2 F (')g?

so we need to show that

F [f(s; A�B) j (fst�(s); A) 2 �; (snd�(s); B) 2 'g?] =

fP
Q j P 2 F (�); Q 2 F (')g?:

We will consider the two inclusions separately. If

R 2 F [f(s; A�B) j (fst�(s); A) 2 �; (snd�(s); B) 2 'g?]

then

readies(R) ? f(s; A�B) j (fst�(s); A) 2 �; (snd�(s); B) 2 'g:

For any s, A, B with (fst�(s); A) 2 � and (snd�(s); B) 2 ', (s;X) 2 readies(R) implies

that there is (a; b) 2 X with a 2 A and b 2 B. So if readies(P) � � and readies(Q) � ',

R ? (P
 Q).

For the other inclusion, suppose that R ? fP
Q j P 2 F (�); Q 2 F (')g. We need to show

that readies(R) ? f(s; A�B) j (fst�(s); A) 2 �; (snd�(s); B) 2 'g. Let (s;X) 2 readies(R),

(fst�(s); A) 2 � and (snd�(s); B) 2 '. By Lemma 6.20 there are P and Q such that

(fst�(s); A) 2 readies(P), (snd�(s); B) 2 readies(Q), P 2 F (�) and Q 2 F ('). Because

R ? P
Q, after the trace s there is an action (a; b) available to both R and P
Q. Hence

(a; b) 2 X \ (A�B). �

Corollary 6.25 F (�
 ') = F (�)
 F (').

Proof This follows from the fact that F preserves O and (�)?, and duality of
 and

O. �

Corollary 6.26 G(U O V) = G(U)OG(V) and G(U
 V) = G(U)
G(V).

Proof

G(U O V) = G(FG(U)O FG(V))

= GF (G(U)OG(V))

= G(U)OG(V):

Again, G(U
 V) = G(U)
G(V) follows easily. �

Proposition 6.27 F (� N ') = F (�) N F (') and G(U N V) = G(U)NG(V).

Proof

F (� N ') = F ((� N ')??)

= (F (� N '))??

= fP j P j= � N 'g??

= fQ[inl] +R[inr] j Q j= �; R j= 'g??

= fQ[inl] +R[inr] j Q 2 F (�); R 2 F (')g??

31

= F (�) N F ('):

G(U N V) = G(F (G(U))N F (G(V)))

= G(F (G(U)N G(V)))

= G(U)NG(V):

�

Proposition 6.28 F (� �) = �F (�) and G(�U) = �G(U).

Proof

F (� �) = fP j P j= � �g

= f�Q j Q j= �g

= �F (�):

G(�U) = G(�F (G(U)))

= G(F (�G(U)))

= �G(U):

�

Proposition 6.29 F (RP(A)) = outA and F (RP(A)?) = inA.

Proof It is su�cient to prove the �rst statement.

F (RP(A)) = fP 2 Proc(A) j readies(P) � RP(A)g

= Proc(A)

= outA:

�

From the de�nitions of RP(A) and RP(A)?, we have that in the ready speci�cations

formulation, inA = f(s;�A(s)) j s 2 SAg and outA = f(s;X) j s 2 SA;? 6= X � �A(s)g.

This provides an alternative view of why the properties in and out correspond to input and

output. A port of type in is always ready to receive any action in the available alphabet,

whereas a port of type out can enter states in which arbitrary subsets of the alphabet are

not available.

6.4 Products and Coproducts

Now that the speci�cation structures D and D0 have been shown to be equivalent, any

calculations relating to deadlock-freedom can be carried out in whichever setting is more

convenient. The proof that products and coproducts lift to SProcD was omitted from

Section 5; we will now present it in terms of ready speci�cations, which turns out to be

easier. By duality, it is su�cient to consider products.

Lemma 6.30 Let A, B be objects of SProcpr with � 2 PD0A, ' 2 PD0B.

1. If s 6= " then (inl�(s); X) 2 � N ' () (s; fx j inl(x) 2 Xg) 2 �.

32

2. If s 6= " then (inr�(s); X) 2 � N ' () (s; fx j inr(x) 2 Xg) 2 '.

3. (";X) 2 � N ' () 9U; V:(�; U) 2 �; (�; V) 2 ' and X = inl(U) [inr(V).

Proof

1. ()) We will show that (s; fx j inl(x) 2 Xg) ? (t; Y) for every (t; Y) 2 �?. It is

su�cient to consider (s; Y) 2 �?; we then need fx j inl(x) 2 Xg \ Y 6= ?. Since

(inl�(s); X) 2 � N ', the de�nition of � N' implies that X \ inl(Y) 6= ?, and we are

done.

(() We need (inl�(s); X)? (inl�(s); inl(U)) for every (s; U) 2 �?. Since

(s; fx j inl(x) 2 Xg) 2 �

we have U \ fx j inl(x) 2 Xg 6= ?, and so X \ inl(U) 6= ?.

2. An identical argument.

3. ()) Take U
def
= fx j inl(x) 2 Xg, V

def
= fx j inr(x) 2 Xg, so that X = inl(U)[inr(V).

To show that ("; U) 2 �, consider ("; Y) 2 �?. The de�nition of � N ' implies

(";X) ? ("; inl(Y)) and so X \ inl(Y) 6= ?. Hence U \ Y 6= ?, i.e. ("; U) ? ("; Y).

So ("; U) 2 �?? = �.

An identical argument shows that ("; V) 2 '.

(() Suppose X = inl(U)[inr(V) with (�; U) 2 � and (�; V) 2 '. For any (�;W) 2 �?,

W \ U 6= ? and hence W \ X 6= ?. For any (�; Z) 2 '?, Z \ V 6= ? and hence

X \ V 6= ?. Thus (�;X) 2 � N '. �

Proposition 6.31 Let A, B, C be objects of SProcpr and let �; '; 2 PD0A; PD0B; PD0C.

Let f : A! B and g : A! C with �ffg' and �fgg .

1. (� N ')f�1g�

2. (� N ')f�2g'

3. �fhf; gig('N)

Proof

1. We need

readies(�1) � (� N ')(�

= (� N ')? O �

= f(s; U � V) j (fst�(s); U) 2 � N '; (snd�(s); V) 2 �?g
?
:

Consider any s, U , V , X with

(fst�(s); U) 2 � N '

(snd�(s); V) 2 �?

(s;X) 2 readies(�1):

For some (t zip t; Y) 2 readies(idA) we have s = inl�(t) zip t and

X = f(inl(a); b) j (a; b) 2 Y g:

33

So fst�(s) = inl�(t) and snd�(s) = t.

By Lemma 6.30, either (1) fst�(s) = " and U = inl(W) [inr(W 0) for some W ,W 0

with (";W) 2 � and (";W 0) 2 ', in which case we will say (t;W) 2 � with t = "; or

(2) fst�(s) 6= " and U = inl(W) for some W with (t;W) 2 �.

Because idA j= �? O �, i.e.

readies(idA) ? f(u; Z � T) j (fst
�(u); Z) 2 �; (snd�(u); T) 2 �?g;

in either case we have (t zip t; Y) ? (t zip snd�(s);W � V), so Y \ (W � V) 6= ?.

Hence X \ (U � V) 6= ?, since X and U are de�ned by relabelling Y and W .

2. A symmetrical argument.

3. We need

readies(hf; gi) ? f(s; U � V) j (fst�(s); U) 2 �; (snd�(s); V) 2 ('N)?g:

Consider any s, U , V , X with

(s;X) 2 readies(hf; gi)

(fst�(s); U) 2 �

(snd�(s); V) 2 ('N)?:

There are three cases.

(a) s = ", so that X = initials(f)[(a; b) 7! (a; inl(b))][initials(g)[(a; c) 7! (a; inr(c))]

and, by Lemma 6.30, V = inl(V1) [inr(V2) with ("; V1) 2 '
? and ("; V2) 2

?.

Then f j= �?O' implies that initials(f)\(U�V1) 6= ?, and hence X\(U�V) 6=
?.

(b) s 6= " and snd�(s) = inl�(t), so that X = Y [(a; b) 7! (a; inl(b))] with

(fst�(s) zip t; Y) 2 readies(f)

and V = inl(V1) with (t; V1) 2 '
?. Then f j= �? O ' implies that (fst�(s) zip

t; Y) ? (fst�(s) zip t; U�V1); so Y \ (U �V1) 6= ?, and hence X\ (U�V) 6= ?.

(c) A symmetrical case. �

6.5 Ready Equivalence and ??-invariance

It is possible that readies(P) = readies(Q) with P 6= Q, and in this case the processes

P and Q satisfy exactly the same ready speci�cations. It is not possible for distinct

processes to be contained in exactly the same sets of processes: if P 6= Q then P 62

fQg. So it appears possible that sets of processes may make �ner distinctions than ready

speci�cations. However, if distinct processes have the same readies, they must be in the

same ??-invariant sets of processes, as shown by the following proposition.

Proposition 6.32 If P 2 U and readies(P) = readies(Q) then Q 2 U??.

Proof If R 2 U? then readies(R) ? readies(P). So readies(R) ? readies(Q), which

means that Q 2 U??. �

34

De�ning two processes to be ready-equivalent if they have the same readies, this result says

that a ??-invariant set of processes must be the union of a collection of ready-equivalence

classes. So membership of ??-invariant sets cannot distinguish processes more �nely than

ready-equivalence.

6.6 SProcD and SProcD0 are Isomorphic

Because of the extremely strong connection which we have established between the spec-

i�cation structures D and D0, it turns out that the corresponding categories are isomor-

phic, i.e. that there are functors F : SProcD $ SProcD0 : G with FG = ISProc
D0

and

GF = ISProcD .

Given an object (A;U) of SProcD, F(A;U)
def
= (X;F (U)). Given a morphism f : (A;U)!

(B; V) of SProcD, F(f)
def
= f : (A; F (U))! (B; F (V)). Note that if f : (A;U)! (B; V)

then we have f j= U (V and, because of the equivalence of satisfaction in D and D0

and the fact that F preserves the linear connectives, this gives f j= F (U)(F (V) also.

Hence f really is a morphism (A; F (U)) ! (B; F (V)) in SProcD0 . Because F does not

change morphisms, composition and identities are trivially preserved. The functor G is

de�ned similarly, and the fact that F and G are mutually inverse follows from the fact

that F and G are mutually inverse. Furthermore, F and G preserve all of the structure of

the categories; again, this is simply because F and G preserve all the structure.

7 Synchronous Networks

In this section we will consider some applications of our techniques to systems of practical

interest. There is a class of concurrent systems to which our theory is very well suited;

we call these systems synchronous networks. A synchronous network consists of a number

of processes or nodes, each with various ports, which are connected together in some

con�guration. The key points are that once the network has been constructed, its topology

does not change; and that the entire system is subject to the synchrony hypothesis with

which we have been working throughout. The two main examples of synchronous networks

are synchronous dataow programs, written in languages such as Signal [25] and Lustre

[26], and systolic algorithms [20].

Given that the topology of a network never changes, the operation of categorical compo-

sition (parallel composition + hiding) is suitable for forming a �xed, private connection

between two nodes. As we have already seen in Section 3 the structure of a compact closed

category such as SProc allows arbitrary networks to be constructed by means of categor-

ical operations. We are also interested in constructing networks in SProcD, to ensure

deadlock-freedom; however, loss of compact closure means that cyclic networks cannot be

cconstructed without some additional analysis. By suitable use of the deadlock-free types

in and out, and their properties, we are able to identify which cycles can always be safely

constructed, and formulate an additional proof rule for those which may be unsafe.

7.1 Networks in a Compact Closed Category

Suppose we are working in a compact closed category, potentially one in which (�)? is

non-trivial. Suppose also that for each datatype used by a particular network, there is

an object in the category suitable for modelling a port of that type. The (�)? operation

is used to switch between input and output, in the sense that a port of type A must be

35

P
A

B
C

(a)

P
Q

A

B
D

E

F

(b)

Figure 4: Two simple networks

connected to a port of type A?, but at this stage we have not chosen which of A and A?

is input and which is output.

In general, when working with a �-autonomous category, a node with n ports of types

A1; : : : ; An is represented by a process of type A1 O � � �O An, i.e. a morphism P : I !

A1O� � �OAn. The closed structure allows types to be moved across the arrow; in a compact

closed category we do not have to worry about the e�ect that this has on the connectives,

and we can replace every connective by
. The only condition is that when a type is

moved across the arrow, (�)? must be applied. For example, a process P with three ports

of types A?, B? and C could be represented as P : C? ! A?
 B?, P : A
 C? ! B?,

P : A
B ! C, and so on. If we wish to interpret A? and B? as input types and C as an

output type, then the last of these makes the most sense, and we might draw the process

as in Figure 4(a). In this way, any desired network can be constructed as a morphism in

the category, with the calculation described in Section 3 being used to form cycles. For

example, the morphism corresponding to the network in Figure 4(b) is

(P
 idD) ;Q : A
B
D ! E
 F

where the morphisms corresponding to the individual nodes are P : A
 B ! C and

Q : C
D ! E
 F .

7.2 Deadlock-Free Types

We will now consider ways of typing the nodes of a network in SProcD. In many cases

it is possible to identify each port of a process as either an input or an output, and this

allows us to use the types in and out. Since SProc is based on synchronization rather than

value-passing, we need to de�ne what it means for ports of an SProc process to be inputs.

De�nition 7.1 Let P : A1 O � � �O An in SProc and let J � f1; : : : ; ng. P is receptive

in the ports J if whenever P
s-�Q and 8j 2 J : aj 2 �Aj

(��
j
(s)) then for each i 2

f1; : : : ; ng � J there is ai 2 �Ai
(��

i
(s)) such that Q

(a1;:::;an)- R for some R.

Receptivity in a set of ports means those ports correspond to inputs and are independently

able to receive arbitrary values. When a dataow node is modelled by an SProc process,
that process is receptive in each port which we consider to be an input of the node.

Proposition 7.2 Let P : A1O � � �OAn be any SProc process and let J be the set of ports

in which it is receptive. De�ning �i 2 PDAi by

�i
def
=

(
in if i 2 J

out otherwise

gives P : (A1; �1)O � � �O (An; �n) in SProcD.

36

Figure 5: The two kinds of cycle

Proof We will use the ready speci�cation formulation of deadlock-free types. Without

loss of generality, assume that J = f1; : : : ; mg. We need to show that

readies(P) � f(s;X1 � � � � �Xn) j 8i:(�
�
i
(s); Xi) 2 �

?
i
g
?

i.e. that

readies(P) ? f(s;X1� � � � �Xn) j 8i:(�
�
i (s); Xi) 2 �

?
i g:

Pick (s1; X1) : : :(sn; Xn) and X such that for each i 2 f1; : : : ; ng, (si; Xi) 2 �?
i
, and

(s;X) 2 readies(P), where s = s1 zip : : : zip sn. We need to show that (X1�� � ��Xn)\X 6=

?.

For each i 2 f1; : : : ; mg pick ai 2 Xi. Because (s;X) 2 readies(P) there is a process Q

such that P
s-�Q and X = initials(Q). Because P is receptive in ports f1; : : : ; mg, for

each j 2 fm+ 1; : : : ; ng there is aj 2 �Aj
(sj) such that Q

(a1;:::;an)- R for some R. Hence

(a1; : : : ; an) 2 X .

For each j 2 fm + 1; : : : ; ng we have �?
j
= in, so Xj = �Aj

(sj), and aj 2 Xj . Hence

(a1; : : : ; an) 2 X1 � � � � �Xn. �

This result allows any node to be assigned a type on the basis of a classi�cation of its

ports as inputs or outputs. If a network is constructed in SProcD according to the type

discipline, this corresponds to obeying the constraint that every connection is between

an output and an input. As we know, the result is a network which will not deadlock.

The type system of SProcD does not allow cyclic connections to be established; however,

cycles are very likely to be present in any interesting network, and we need to be able to

construct them.

Now that we have identi�ed certain ports as inputs, it is possible to see that not all cycles

have the same structure. In Figure 5 the arrows point from outputs to inputs. Each of the

two networks contains a cycle, but the patterns of ow of data are di�erent. In the cycle

on the right, one node has two outputs coming from it; if the part of the network enclosed

in dashed lines is considered as a single node, this means that the cycle can be constructed

by simultaneously connecting two outputs from one node to two inputs of another. The

cycle on the left does not have this property, and represents a genuine feedback loop. In

general, consider a polygon with n sides and orient each side by adding an arrow in one

direction or the other. Starting from any vertex, follow the arrows; either we return to

the initial vertex, or we arrive at a vertex with two arrows pointing at it. The �rst case

corresponds to a feedback loop; in the second case, a dual argument shows that there is

also a vertex with two arrows pointing away from it.

This means that any cycle which is not a feedback loop can be reduced to a simultaneous

connection of two outputs from one process to two inputs of another, as in Figure 6. In

37

Figure 6: A double connection between nodes

fork
1

f

+

Figure 7: A network with feedback

SProcD we have processes P : (A; inA)O (B; outB)O (C; outC) and Q : (B; inB)O (C; inC)O
(D; outD). Writing P and Q as morphisms gives

P : (A; outA)! (B; outB)O (C; outC)

Q : (B; outB)
 (C; outC)! (D; outD)

or equivalently
P : (A; outA)! (B O C; outB O outC)

Q : (B
 C; outB
 outC)! (D; outD):

By Proposition 5.22 we have outBOoutC = outBOC and outB
outC = outB
C . Combined

with the fact that B
 C = B O C, this means that P and Q are composable, and we

obtain P ;Q : (A; outA) ! (D; outD), or equivalently P ;Q : (A; inA)O (D; outD). Hence

P ;Q is a deadlock-free process.

We now have to deal with the case of a feedback loop. As an example of the use of feedback

in dataow programming, consider the network in Figure 7. The node 1 produces the

sequence 111 : : : and the function f is de�ned on streams by f(�) = 0�. The fork node

simply copies its input, and the + node outputs at each instant the sum of the inputs

received at the same instant. The output x is de�ned by x = 111 : : :+ f(x), and the

least solution of this equation (i.e. the least �xed point of �x:111 : : :+ 0x) is x = 1234 : : :.

The signi�cant feature of f is that its �rst output token is independent of any input, and

subsequently there is always a delay of one time unit between an input being received and

the corresponding output being produced. For a dataow network to be free of deadlock,

every feedback loop should contain a node such as f . In Lustre, the corresponding node

is called pre, and the language speci�es that every loop must contain at least one pre. We

will now give a semantic formulation of this property of nodes, and show that it yields a

su�cient condition for the formation of deadlock-free cycles.

De�nition 7.3 Let P : (A1; in)O � � �O (Am; in)O (B1; out)O � � �O (Bn; out) in SProcD.

Output i of P is independent of input j if whenever P
s-�Q, 8a1; : : : ; aj�1; aj+1; : : : ; am

9b such that for all R, Q
(a1;:::;am;b1;:::;bn)- R) bi = b.

Proposition 7.4 Suppose P : (A1; in)O � � �O (Am; in)O (Am+1; out)O � � �O (An; out)O
(An+1; in)O (An+1; out) in SProcD and let P be the SProc process obtained by connecting

ports (An+1; out) and (An+1; in) of P . If the output at port (An+1; out) of P is independent

of the input at port (An+1; in), then P : (A1; in)O� � �O(Am; in)O(Am+1; out)O� � �O(An; out)

in SProcD.

38

Proof We need to show that

readies(P) ? f(s;X1� � � � �Xn) j 8i:(�
�
i
(s); Xi) 2 �

?
i
g

where �1 : : : �m are in and �m+1 : : :�n are out.

Pick (s1; X1) : : :(sn; Xn) and X such that for each i 2 f1; : : : ; ng, (si; Xi) 2 �?
i
, and

(s;X) 2 readies(P), where s = s1 zip : : : zip sn. We need to show that (X1�� � ��Xn)\X 6=
?.

The de�nition of P means that there is a trace t over An+1 and a set Y such that (s zip

t zip t; Y) 2 readies(P), and X = f(x1; : : : ; xn) j 9y:(x1; : : : ; xn; y; y) 2 Y . Because the

output at port (An+1; out) of P is independent of the input at port (An+1; in), for any

x1; : : : ; xn there is b such that (x1; : : : ; xn; y; z) 2 Y) z = b.

Let Xn+1 = fbg so that (t; Xn+1) 2 out, and let Xn+2 = �An+1
(t) so that (t; Xn+2) 2 in.

Because readies(P) � inO � � �O inO out O � � �O out O inO out, there is (a1; : : : ; an; y; z) 2

(X1 � � � � �Xn+2) \ Y .

We have z = b, dependent only on a1; : : : ; an. Because Xn+1 = fbg, y = b. So we have

(a1; : : : ; an; b; b) 2 Y , and hence (a1; : : : ; an) 2 X . Therefore (X1 � � � � �Xn)\X 6= ?, as

required. �

We will use the term source to describe an output which is independent of any input which

forms part of a cycle under consideration. In previous work [21] the term source has been

used to describe an output which is independent of all inputs, but here we will use this

weaker de�nition. The process P in Proposition 7.4 represents the network at the last

stage of construction, just before formation of the cycle. In practice, and in line with the

Lustre condition that every loop contains a pre node, we would like to deduce that the

appropriate output of P is a source from the fact that one of the nodes used to construct

P has a source. It can be shown, assuming that the outputs of nodes depend functionally

on the inputs and that nodes are deterministic (these conditions are always satis�ed for

a language such as Lustre), that sources are preserved by composition [21]. Hence it is

su�cient to check that there is a source somewhere in every cycle.

7.3 Generalisations

In our analysis of networks, we have simply identi�ed each port as either an input or an

output. However, we can imagine more general situations in which a particular port may

behave in di�erent ways at di�erent times; for example, being receptive at the �rst step

(and thus behaving as an input) but subsequently behaving as an output. In general,

consider any �nite sequence of in and out symbols, and interpret such a sequence as

specifying the repeating unit of a communication pattern. For example, the sequence

in:out represents an in�nite alternation of input and output. The type system of SProcD is

rich enough to include semantic versions of such communication patterns over any SProc
type. Continuing the example, the interpretation of the sequence in:out over the SProc

type A would be the ready speci�cation

f(s;�A(s)) j length(s) is eveng [f(s;X) j X � �A(s); length(s) is oddg:

A detailed development of this idea, which is a subject for future work, should lead to

interesting connections with the type system proposed by Takeuchi et al. [46].

39

8 Conclusions

We have proposed a type-theoretic view of the speci�cation and veri�cation of concur-

rent systems. The relevant technical machinery is the notion of speci�cation structures,

which provides a systematic approach to the construction of a hierarchy of type systems

expressing increasingly strong speci�cations. We have illustrated this idea by de�ning

a speci�cation structure over SProc, a category of synchronous processes. The resulting

category, SProcD, has a type system which permits compositional veri�cation of deadlock-

freedom. We have presented two equivalent de�nitions of SProcD, one based on the idea

of a type as a set of processes, the other based on the notion of ready speci�cation. As

a simple application, we have shown that SProcD supports the types necessary to specify

and verify deadlock-freedom of synchronous networks; examples of synchronous networks

include synchronous dataow programs and systolic algorithms.

A number of type systems for concurrency have been proposed recently. Many of them

are based on the idea of identifying ports or channels as input or outputs, and checking

that outputs are always connected to inputs. There are several variations which include

information about how many times channels are used [31], the order of usage of channels

[30], subtyping [43], types for choice and branching behaviour [46]. The distinguishing

features of our approach are as follows. First, it is based on interaction categories, a

theory which emphasises the collective structure of processes and describes this structure

using the language of category theory. Second, we have proposed a methodology (via

the notion of a speci�cation structure) for treating a range of program properties within a

single framework, and combining type-checking with other veri�cation techniques. Finally,

we have taken a more semantic view of our type system. In our examples, the types

assigned to individual ports correspond to either inputs or outputs, but semantically an

arbitrary combination of such types can be treated on the same footing as any other type.

This means that our arguments for correctness of networks, although intuitively based on

considerations of input vs. output and information ow, are formalised within a uniform

semantic setting.

There are many ways in which the theory described in this paper could be extended and

developed. Progress has already been made on an asynchronous version of the theory, by

applying the sets of processes approach to the asynchronous interaction category ASProc
[6]. The result is a category of deadlock-free processes in which the global synchrony

condition is not present. Preliminary versions of this work have appeared in [2, 21] and

an improved version in [40]; a full report of this area will be the subject of a future paper.

Another avenue of investigation is the development of a formal syntax, incorporating value-

passing rather than simply synchronisation, with which to describe processes in SProcD.
We have also mentioned, in Section 7, the possibility of giving a semantics to general

communication patterns similar to those in the type system of Takeuchi et al. [46].

There are two major respects in which our deadlock-free type system is perhaps a little

too restrictive. First, we have not yet addressed the issue of mobility [37, 38], which

has featured prominently in recent research on concurrency theory. Second, the property

guaranteed by type system is extremely strong|all processes must run forever. This is

the reason why, in our applications, extra analysis is needed in order to construct cyclic

networks. Most other proposed type systems for concurrency use types to guarantee

slightly weaker properties|for example, that any communication which occurs must be

correct, but not that communication must always continue. This problem is alleviated

slightly by the asynchronous version of our theory, which incorporates a notion of successful

termination, but we would like to �nd a modi�cation of the theory which would make the

type system weaker but correspondingly more exible. Static analysis techniques, as well

as type-checking techniques, may then be appropriate for establishing program properties.

40

Acknowledgements

This research was partly supported by the EPSRC projects \Foundational Structures in

Computer Science", \Typed Concurrent Object-Oriented Languages: foundations, meth-

ods and tools" and the EU projects \CONFER" (ESPRIT BRA 6454) and \Coordination"

(ESPRIT BRA 9102). The third author was also funded by the Ptolemy project, which

is supported by the Defense Advanced Research Projects Agency (DARPA), the State of

California MICRO program, and the following companies: The Alta Group of Cadence

Design Systems, Dolby Laboratories, Hewlett Packard, Hitachi, Hughes Space and Com-

munications, LG Electronics, Lockheed Martin ATL, NEC, Philips, and Rockwell. Paul

Taylor's commutative diagrams package was used in the production of the paper.

References

[1] S. Abramsky, S. J. Gay, and R. Nagarajan. Interaction categories and foundations of

typed concurrent programming. In M. Broy, editor, Deductive Program Design: Pro-

ceedings of the 1994 Marktoberdorf International Summer School, NATO ASI Series

F: Computer and Systems Sciences. Springer-Verlag, 1995.

[2] S. Abramsky, S. J. Gay, and R. Nagarajan. Speci�cation structures and propositions-

as-types for concurrency. In G. Birtwistle and F. Moller, editors, Logics for Concur-

rency: Structure vs. Automata|Proceedings of the VIIIth Ban� Higher Order Work-

shop, volume 1043 of Lecture Notes in Computer Science. Springer-Verlag, 1996.

[3] S. Abramsky. Domain theory in logical form. Annals of Pure and Applied Logic,

51:1{77, 1991.

[4] S. Abramsky. Computational Interpretations of Linear Logic. Theoretical Computer

Science, 111:3{57, 1993.

[5] S. Abramsky. Interaction Categories (Extended Abstract). In G. L. Burn, S. J.

Gay, and M. D. Ryan, editors, Theory and Formal Methods 1993: Proceedings of the

First Imperial College Department of Computing Workshop on Theory and Formal

Methods, pages 57{70. Springer-Verlag Workshops in Computer Science, 1993.

[6] S. Abramsky. Interaction Categories and communicating sequential processes. In

A. W. Roscoe, editor, A Classical Mind: Essays in Honour of C. A. R. Hoare, pages

1{15. Prentice Hall International, 1994.

[7] S. Abramsky. Proofs as processes. Theoretical Computer Science, 135:5{9, 1994.

[8] S. Abramsky and R. Jagadeesan. Games and full completeness for multiplicative

linear logic. Journal of Symbolic Logic, 59(2):543 { 574, June 1994.

[9] S. Abramsky and R. Jagadeesan. New foundations for the geometry of interaction.

Information and Computation, 111(1):53{119, 1994.

[10] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF (extended

abstract). In M. Hagiya and J. C. Mitchell, editors, Theoretical Aspects of Com-

puter Software. International Symposium TACS'94, number 789 in Lecture Notes in

Computer Science, pages 1{15, Sendai, Japan, April 1994. Springer-Verlag.

[11] A. Asperti and G. Longo. Categories, Types and Structures : An introduction to

category theory for the working computer scientist. Foundations of Computing Series.

MIT Press, 1991.

41

[12] J. C. M. Baeten and W. P. Weijland. Process Algebra, volume 18 of Tracts in Theo-

retical Computer Science. Cambridge Univ. Press, 1990.

[13] M. Barr. �-autonomous categories and linear logic. Mathematical Structures in Com-

puter Science, 1(2):159{178, July 1991.

[14] G. Berry and P.-L. Curien. Theory and practice of sequential algorithms: the kernel

of the applicative language CDS. In J. C. Reynolds and M. Nivat, editors, Algebraic

Semantics, pages 35{84. Cambridge University Press, 1985.

[15] R. Blute. Linear logic, coherence and dinaturality. Theoretical Computer Science,

115(1):3{41, 1993.

[16] S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating

sequential processes. Journal of the ACM, 31:560{599, 1984.

[17] P. M. Cohn. Universal Algebra, volume 6. D. Reidel, 1981.

[18] R. L. Crole. Categories for Types. Cambridge University Press, 1994.

[19] J. W. de Bakker. Mathematical Theory of Program Correctness. Prentice Hall Inter-

national, 1980.

[20] M. A. Frumkin. Systolic Computations, volume 83 of Mathematics and its Applica-

tions (Soviet Series). Kluwer Academic Publishers, 1992.

[21] S. J. Gay. Linear Types for Communicating Processes. PhD thesis, University of

London, 1995.

[22] G. Gentzen. Investigations into logical deduction. In M. E. Szabo, editor, The Col-

lected Papers of Gerhard Gentzen. North-Holland, 1969.

[23] J.-Y. Girard. Linear Logic. Theoretical Computer Science, 50(1):1{102, 1987.

[24] J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge

Tracts in Theoretical Computer Science. Cambridge University Press, 1989.

[25] P. Guernic, T. Gautier, M. Borgne, and C. Maire. Programming real-time applications

with Signal. Proceedings of the IEEE, 79(9):1305{1320, September 1991.

[26] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data ow pro-

gramming language Lustre. Proceedings of the IEEE, 79(9):1305{1320, September

1991.

[27] C. A. R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[28] N. D. Jones and F. Nielson. Abstract interpretation. In S. Abramsky, D. Gabbay,

and T. Maibaum, editors, Handbook of Logic in Computer Science, volume 4. Oxford

University Press, 1995.

[29] G. M. Kelly and M. L. Laplaza. Coherence for compact closed categories. Journal of

Pure and Applied Algebra, 19:193{213, 1980.

[30] N. Kobayashi. A partially deadlock-free typed process calculus. Manuscript, 1996.

[31] N. Kobayashi, B. C. Pierce, and D. N. Turner. Linearity and the pi-calculus. In

Proceedings, 23rd ACM Symposium on Principles of Programming Languages, 1996.

[32] D. C. Kozen and J. Tiuryn. Logics of programs. In van Leeuwen, editor, Handbook

of Theoretical Computer Science, volume B, pages 789{840. North Holland, 1990.

42

[33] S. Mac Lane. Categories for the Working Mathematician. Springer-Verlag, Berlin,

1971.

[34] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.

Springer-Verlag, 1992.

[35] J. McKinna and R. Burstall. Deliverables: A categorical approach to program de-

velopment in type theory. In Proceedings of Mathematical Foundation of Computer

Science, 1993.

[36] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[37] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, I. Information

and Computation, 100(1):1{40, September 1992.

[38] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, II. Information

and Computation, 100(1):41{77, September 1992.

[39] R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML. MIT Press,

1990.

[40] R. Nagarajan. Typed Concurrent Programs: Speci�cation & Veri�cation. PhD thesis,

University of London, 1997. To appear.

[41] B. Nordstr�om, K. Petersson, and J. M. Smith. Programming in Martin-L�of 's Type

Theory: An Introduction, volume 7 of International Series of Monographs on Com-

puter Science. Oxford University Press, 1990.

[42] P. W. O'Hearn and R. D. Tennent. Relational parametricity and local variables. In

Proceedings, 20th ACM Symposium on Principles of Programming Languages. ACM

Press, 1993.

[43] B. Pierce and D. Sangiorgi. Types and subtypes for mobile processes. In Proceedings,

Eighth Annual IEEE Symposium on Logic in Computer Science. IEEE Computer

Society Press, 1993.

[44] A. M. Pitts. Relational properties of recursively de�ned domains. In 8th Annual

Symposium on Logic in Computer Science, pages 86{97. IEEE Computer Society

Press, Washington, 1993.

[45] R. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical

Logic. Springer-Verlag, Berlin, 1987.

[46] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its typing

system. In Proceedings of the 6th European Conference on Parallel Languages and

Architectures, number 817 in Lecture Notes in Computer Science. Springer-Verlag,

1994.

[47] J. B. Wells. Typability and type checking in the second-order �-calculus are equiv-

alent and undecidable. In Proceedings, Ninth Annual IEEE Symposium on Logic in

Computer Science. IEEE Computer Society Press, 1994.

43

