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Abstract

Imposing structure on the Smith form of an (integer)

periodicity matrix N = U�V leads to e�cient m-D

DFT implementations. For resampling matrices, i.e.

non-singular rational matrices, we introduce Smith form

decomposition algorithms to generate � matrices whose

diagonal elements exhibit minimum variance and U ma-

trices with minimum norm. Such structure simpli�es

non-uniform m-D �lter bank design.

1. Introduction

In m-D signal processing, a sampling matrix describes
the uniform sampling of m-D data because its column
vectors form the basis vectors of the sampling grid [1].
Once discretized, the sampled m-D data may be resam-
pled onto a di�erent sampling grid. Resampling the
sampled signal in the analog domain requires a conver-
sion of the data to analog form and a resampling with
a di�erent scheme (which may possibly require addi-
tional hardware). Just as in the 1-D case, performing
the resampling in the digital domain avoids the intro-

duction of noise from digital-to-analog and analog-to-
digital conversion and does not need additional hard-
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ware because a digital computer can e�ciently perform
the resampling.

In the digital domain, resampling from one grid to
another is carried out by mapping the grid coordinates
by a rational non-singular matrix known as a resam-

pling matrix. Since a rational matrix can be written as
a rational number times an integer matrix, resampling
matrices include integer non-singular matrices such as
periodicity matrices [1, 2] and up/downsampling ma-
trices [2, 3]. When the resampling matrix is diagonal,
the resampling grid is rectangular and the resampling
operation is separable. In general, however, resampling
matrices are not diagonal, and a transformation is re-
quired to decouple the m-D dependencies. One com-
mon transformation is known as the Smith form de-
composition [2, 3, 4, 5].

The Smith form decomposes a resampling matrix
S into a product of three \simpler" resampling matri-
ces U �V , and each component matrix has the same
dimensions as S (e.g., 2 � 2 for 2-D resampling). U

and V are regular unimodular integer matrices because
their determinant is �1, and � is a diagonal integer
matrix for which j det�j = j detSj. The resampling
grid associated with S is formed by a linear mapping

of samples on an integer grid �rst by V , then by �, and
�nally by U . The linearly mapping of samples by a reg-
ular unimodular matrix (or its inverse) corresponds to
a shu�ing or lossless rearrangement of samples. Thus,
downsampling by S can be decomposed into a shu�ing
of input samples by U , followed by a separable down-
sampling by �, and followed by reshu�ing of samples
by V [4].

One method for designing m-D non-uniform �lter
banks [6] �rst decomposes the resampling matrix R as-
sociated with each channel into Smith Form UR�RVR.
Then, by cascading the analysis/synthesis sections, the
down/upsampling associated with VR cancels. To sim-
plify the design of the analysis/synthesis �lters, the
skewing from the indexing of the data by each UR ma-
trix and the non-uniform separable resampling by each



�R matrix should be minimized. This is equivalent to
making the columns of UR be as close to orthogonal
as possible and making the diagonal elements of each
diagonal matrix �R be as close to being equal as pos-
sible. More formally, we want to design UR such that
its lower and upper frame bounds, Fmin and Fmax re-
spectively, are as close to 1 as possible, where Fmin

and Fmax are de�ned as the minimum and maximum,
respectively, of the set [7]

f kUR fk : kfk = 1 g

This paper introduces a new algorithm to decom-
pose a resampling matrix into a Smith form that meets
the above requirements, which we will call the mini-
mized Smith equalized form. Section 2 reviews comput-
ing Smith form decompositions and imposing structure
on them. Section 3 establishes the minimization prob-
lem being solved and gives a simple example of �nding
Smith equivalent form. Section 4 gives an e�cient al-
gorithm to compute the minimized Smith equivalent
form and states the relevant theorems underlying the
procedure. Section 5 summarizes the results in the pa-
per, which are not con�ned to any particular number
of dimensions.

2. Smith Form Decompositions

The Smith form decomposition of a non-singular inte-
ger matrix S = U�V was �rst reported by H. J. S.
Smith in 1861. An algorithm to �nd it iteratively mul-
tiplies the given integer matrix on the left and right
by elementary (regular unimodular) matrices until the
matrix is reduced to a diagonal form [8]. The initial
step in the decomposition of an n�n integer matrix S
sets U = In�n, � = S, and V = In�n. In the �rst itera-
tion, an element of � is pivoted to the (1; 1) position by

multiplying on the left to interchange two rows and on
the right to interchange two columns. Each component
in the �rst row and column, except the (1,1) element
which is now the pivot, is then reduced modulo the
pivot by subtracting a multiple of the pivot. Then, a
new pivot is chosen and the process is repeated until
all of the components in the �rst row and column, ex-
cept for the (1,1) position, are zero. The pivoting is
then performed at the (2,2) position and so on until
� is diagonalized. The only degree of freedom in this
algorithm is the criteria to choose the pivot at each it-
eration. In [8], the pivot is chosen to be the element
that is smallest absolute value.

The algorithm above assumed that the matrix to be
decomposed contains only integer components. Smith
forms of rational matrices can be computed by �rst
factoring out 1=d where d is the least commonmultiple

of all of the denominators of the matrix. The resulting
integer matrix is then decomposed into its Smith form.
Each diagonal element of the � matrix is divided by d

to produce the Smith-McMillan form (the m-D analog
of rational sampling rate changers) [2]. Even though
� becomes a non-singular rational matrix, U and V

remain square regular unimodular integer matrices.

Smith forms S = U�V are, however, not unique.
The n�n matrix S is being mapped into two full n�n

matrices (such that their determinants are �1) and one
diagonal n�n matrix (such that the product of the di-
agonals equals the determinant of S in absolute value).
The Smith form has many more degrees of freedom
than the original matrix.

For example, alternate Smith forms can be gener-
ated by any pair of regular unimodular matrices X and
Y for which the product X�Y is a diagonal matrix.
Because the inverse of a regular unimodular matrix is
regular unimodular and the product of two regular uni-
modular matrices is regular unimodular,

U�V = U
�
X�1X

�
�
�
Y Y �1

�
V

=
�
UX�1

�
(X�Y )

�
Y �1V

�
= �U �� �V

(1)

One application of this equation is to map a Smith
form into its canonical form [8]. Another important
application of this equation is to derive the conditions
to pivot factors along the diagonal elements and the
matrices to perform the pivoting [5].

The matrix product X�Y can move an integer fac-
tor i from the lth diagonal entry to the kth diagonal
entry [5]. X and Y (with detX = �1 and det Y = �1)
are each an identity matrix except for 2�2 submatrix,
thereby reducing X�Y = �� to

�
xkk xkl
xlk xll

� �
�k 0
0 i �l

� �
ykk ykl
ylk yll

�
=

�
i �k 0
0 �l

� (2)

After multiplying both sides by X�1 and dividing both
sides by 
 = gcd(�k; �l),

�
�̂k 0

0 i �̂l

� �
ykk ykl
ylk yll

�
=

1

detX

�
xll �xkl
�xlk xkk

� �
i �̂k 0

0 �̂l

� (3)

where �̂k = �k=
 and �̂k = �l=
. Without loss of



generality, det(X) is set to 1, and after some algebra,

xkk = i yll xkl = ��̂k

xlk = ���̂l xll is \free"

ykk = i xll ykl = ���̂l

ylk = ��̂k yll is \free"

(4)

where �, �, xll , and yll are integers constrained by the
fact X and Y are regular unimodular integer matrices.
Without loss of generality, det Y = detX = 1:

detX = detY = xll yll i + � � �̂k �̂l

= (xllyll) i + (��) (�̂k�̂l)
= �i + � q = 1

(5)

The condition �i + �q = 1 is the Bezout identity [8]

which has a solution if and only if i and q = �̂k�̂l are
relatively prime.

Theorem 1 Given a Smith form decomposition of in-

teger matrix S = U�V , the regular unimodular matri-

ces X and Y applied to the Smith form decomposition

according to the equation (1) and de�ned by equation

(4) can move a factor from one diagonal entry of � to

another if and only if i and �̂k are relatively prime and
i and �̂l are relatively prime.

Euclid's algorithm can compute the solution to the
Bezout identity e�ciently [9]. The Bezout numbers
� and � are not unique. All solutions to the Bezout
identity, �̂ and �̂, can be written in terms of an integral
parameter t as �̂ = �+ t q and �̂ = �� t i. We can use
this degree of freedom to compute � and � that will
yield the U with the smallest norm [5].

3. The Minimization Problem

For n�n resamplingmatrix S in Smith form S = U�V ,
we can redistribute the factors of the diagonal elements
of � more evenly using the elementary matrices dis-
cussed in the previous section. As mentioned in the
previous section,

j detSj = j det�j =

nY
i=1

�ii =

nY
i=1

�i

where the �i terms are the diagonal values of the diag-
onal matrix �. To minimize the variance, we minimize
the arithmetic mean under a given constant geomet-
ric mean g = j detSj

1
n . If the �i terms were allowed

to take real values, then we could set the arithmetic
mean equal to geometric mean, so each diagonal ele-
ment would be made equal to the geometric mean.

All of the entries of the above matrices, however,
must assume integral values. Rational matrices, as pre-
viously mentioned, can be rewritten as a rational num-
ber times an integer matrix, and this approach would
be applied to the integer matrix. In order to minimize
the variance of the diagonal entries of � in the Smith
form S = U�V , we can formulate the following mini-
mization problem:

min
�0

i

nX
i=1

�0i

subject to

nY
i=1

�0i =

nY
i=1

�i

�0i 2 Z for i = 1 : : :n
S = U 0 �0 V 0

(6)

In other words, we are trying to �nd a new set of diago-
nal elements �0i such that their sum is minimized while
their product (i.e., the determinant) remains constant.
Even though the cost function is linear in the free vari-
ables �0i, the overall minimization is highly non-linear
because of the constraints. The constraints require that
any mapping from the original set of �i values to an-
other set of allowable �0i values must follow Theorem
1 in order to preserve the Smith form decomposition.
However, there are many questions concerning a re-
duced form. The basic problems to be solved are dis-
cussed in the next section.

Example 1 As an example of the resulting minimal
variance form, we will begin with the diagonal entries
of some � matrix as f1; 3; 90g. The representation of
each entry into a product of prime numbers raised to
an integer power is:

�1 = 1 = 10

�2 = 3 = 10 20 31

�3 = 90 = 10 21 32 51

The geometric mean is g = 3 � 10
1
3 � 6:4633, and the

initial arithmetic mean is 94
3

= 31 1
3
. At each step

in the rearrangement, a factor from one of the diago-
nal elements whose value is above the geometric mean
should be distributed to a diagonal element whose val-
ues is below the geometric mean if the resulting arith-
metic mean is smaller. Table 1 shows all of the legal
pivots (as de�ned by Theorem 1) of factors of �3 to the
other two diagonal elements �1 and �2 and the impact
of pivoting on the arithmetic mean. Assuming that we
choose the pivot that gives us the smallest arithmetic
mean, we pivot the factor 32 from the third element to
the �rst element, thereby producing the new diagonal
entries f9; 3; 10g. In the next iteration, the smallest
arithmetic mean occurs when the factor of 2 from the



Factor Pivot New Diagonal Arithmetic Mean
2 �3 to �1 2, 3, 45 16 2

3

2 �3 to �2 1, 6, 45 17 1
3

3 �3 to �1 3, 3, 30 12
3 �3 to �2 1, 9, 30 13 1

3

32 �3 to �1 9, 3, 10 7 1
3

5 �3 to �1 5, 3, 18 8 2
3

5 �3 to �2 1, 15, 18 11 1
3

Table 1: Rearrangement of Factors of the Diagonal

Entries f1; 3; 90g

third diagonal entry is moved to the second. The �nal
diagonal values are f9; 6; 5g, and the associated arith-
metic mean is 6:667 which is very close to the geometric
mean of 6:463.

4. Algorithm

For an n� n integer resampling matrix S, this section
will present an algorithm to compute the minimal vari-
ance Smith form of S = U �V . First, this section will
give the representation of � used by the algorithm. Us-
ing the representation, we prove that the minimal vari-
ance Smith form is unique up to a permutation of the
diagonal elements of �. Then, we state the algorithm.

Our algorithmrelies on a representation of the prime
factorization of the diagonal elements of the n� n di-
agonal matrix �. The representation takes the form
of an n � m matrix, where m is the number of prime
factors p appearing in the diagonal elements of �. The
entries of the matrix, say �, are the exponents of the
prime factors:

�i = �ii =

mY
j=1

p
�ji
j ; for i = 1 : : :n (7)

In Example 1, the diagonal elements of

� =

2
41 0 0
0 3 0
0 0 90

3
5 =

2
4 1

0 0 0
0 102031 0
0 0 10213251

3
5

contain the four prime factors p = f1; 2; 3; 5g, som = 4.
The diagonal elements of � written as a matrix � of
prime factor powers would be

� =

2
4 0 0 0 0

0 0 1 0
0 1 2 1

3
5 (1)

(3)
(90)

(1�ji) (2�ji) (3�ji) (5�ji)

Notice that the prime factor exponents have been sorted
down each column. This is in fact the necessary and

su�cient condition for � to be in canonical form, as
more formally stated next.

Let � and �0 be two diagonal matrices. Let
fp1; � � � ; pmg be the set of all prime factors occurring
in any of the diagonal entries of � or �0. Now de�ne
the n�m matrices � and � by

�i = �ii =

mY
j=1

p
�ji
j ; for i = 1 : : :n

and

�0i = �0ii =

mY
j=1

p
�ji
j ; for i = 1 : : :n

That is, � and � are matrices containing the powers of
the prime factors of the diagonal elements of �. Using
this form, we can easily verify whether or not � and �0

have the same Smith canonical form.

Lemma 1 The matrices � and �0 have the same Smith

canonical form if and only if there exists permutations

�j 2 Sm such that �ij = ��j (i)j.

So, as a particular application of the lemma above, the
Smith canonical form of the matrix � can be found by
sorting the columns of the matrix� in ascending order.

Given a resampling matrix S, we �nd one of its
Smith forms S = U �V . Next, we remove any negative
signs on the diagonal entries of � by multiplying �
on the right by D and by multiplying V on the left
by D�1 = D, where D is the diagonal matrix Dii =
sgn(�ii). By factoring the diagonal elements of the
new �, we �nd the matrix � according to equation
(7). Next, we consider all possible sets of permutations
� = f�jg and �nd a set of permutations �0 that gives
the minimum arithmetic mean:

min
�

X
i

Y
j

p
��j(i)j

j

It is well-known that the set of permutations is gen-
erated by the set of two-element permutations. For
every such elementary permutation of �0, Theorem 1
provides a pair of unimodular matrices X and Y real-
izing that permutation. That is, permuting pkj and plj
is equivalent to pivoting pj raised to the (k � l)th or
(l�k)th power, whichever is positive. Therefore, by de-
composing the permutations of �0 into elementary per-
mutations, we can constructively �nd a pair of regular
unimodular matrices X and Y such that �0 = X�Y is
diagonal, and such that the sum of the diagonal entries
of �0 is minimal among all diagonal matrices with the
same Smith canonical form as �. From Section 2, we
can set the free parameters of each X and Y pair so as
to minimize the norm of U . The �nal result will be a



Smith form decomposition in the form we desire: the
diagonal elements of � will be as close to each other as
possible, and the columns of U will be as orthogonal as
possible. A dual of this algorithm exists to minimize
V . Figure 1 shows an example of computing the Smith
form which simultaneously has minimal variance in �
and minimal norm in either U or V .

5. Conclusion

This paper presents an e�cient algorithm to �nd the
Smith form of an integer resampling matrix S = U�V
so that the diagonal elements of � have minimal vari-
ance. The algorithm �rst computes a Smith form so
that the diagonal elements of � are positive and or-
dered. Then, at each iteration, the algorithm applies
a square integer regular unimodular matrix to the left
and right of � and the inverse to U and V , respectively,
to achieve the minimal variance form. The algorithm
takes advantage of the two degrees of freedom in each
matrix transformation to minimize U with respect to
a given norm measure. The �nal form imposes struc-
ture on the Smith form decomposition to simplify the
design of non-uniform m-D �lter banks [6]. A prelim-
inary version of these algorithms is available for the
Mathematica computer algebra environment [10] as the
standalone package LatticeTheory.m on the FTP site
gauss.eedsp.gatech.edu (IP #130.207.226.24) in the
directory pub/Mathematica. Another version of the
lattice theory package is embedded in the signal pro-
cessing packages which is available on the same FTP
site.
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S =

2
4736 3060 1016
256 864 308
424 1068 428

3
5

(a) Original resampling matrix

2
4 14 5 3
�1 11 11
�7 �3 �2

3
5�

2
420 0 0
0 24 0
0 0 36

3
5�

2
4 �884 �2901 �1045

5271 17311 6234
�3558 �11685 �4208

3
5

(b) Smith Equalized Form with Minimized U

2
4�110 341 227
�113 341 229
�323 969 652

3
5�

2
420 0 0
0 24 0
0 0 36

3
5�

2
4 �4 21 7

9 19 6
�10 �13 �4

3
5

(c) Smith Equalized Form with Minimized V

The Smith Form routine returned the diagonal ele-
ments of f4, 12, 360g. The equalized form is obtained
by pivoting a factor of 5 from the third to �rst and a
factor of 2 from the third to second positions.

Figure 1: Examples of Smith Equalized Forms


