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Components and Composition
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Common Approaches
S

e Threads or processes

- Sun says in the on-line Java tutorial:

“The Tirst rule of using threads is this: avoid them if
you can. Threads can be difficult to use, and they tend
to make programs harder to debug.”

e Semaphores, monitors, mutex
- Deadlock, livelock, liveness - hard to understand

e Priorities, deadlines
- Plug and pray
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Understanding Component
Interactions - Frameworks

e \What is a component (ontology)?

- States? Processes? Threads? Differential equations?
Constraints? Objects (data + methods)?

e \What knowledge do components share (epistemology)?
- Time? Name spaces? Signals? State?

e How do components communicate (protocols)?

- Rendezvous? Message passing? Continuous-time signals?
Streams? Method calls?

e \What do components communicate (lexicon)?
- Objects? Transfer of control? Data structures? ASCI I text?
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A Laboratory for Exploring
Component Frameworks

“ Ptolemy Il -

- Java based, network integrated
- Several frameworks implemented

oo

= L] = = e
3 g =

i T‘\: =

) 3 5

g A realization of a framework is
called a “domain.” Multiple domains

b, can be mixed hierarchically in the
™= same model.

http://ptolemy.eecs.berkeley.edu

Edward A. Lee, UC Berkeley



One Class of Component Interaction
Semantics: Producer / Consumer

Are actors active? passive? reactive?
Flow of control is mediated by a director.

/receiver

Are communications timed? synchronized? buffered?
Communications are mediated by receivers.
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Domain - A Realization of a
Component Framework

CSP - concurrent threads with rendezvous )
CT - continuous-time modeling

DE - discrete-event systems

DT - discrete time (cycle driven)

PN - process networks

PN’ - Petri nets

SDF - synchronous dataflow

SR - synchronous/reactive Y,
PS - publish-and-subscribe

Each is realized
as a director and
a receiver class
In Ptolemy 11

Each of these defines a component ontology and an interaction
semantics between components. There are many more

pOSSibi lities! Edward A. Lee, UC Berkeley



1. Continuous Time (Coupled ODESs)
.

Semantics:

- actors define relations
between functions of
time (ODEs or algebraic
equations)

- a behavior Is a set of
signals satisfying these
relations

Examples:
e Spice,

e HP ADS,
e Simulink,
e Saber,

e Matrix X,
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1. Continuous Time in Ptolemy 11

The continuous time
(CT) domain in
Ptolemy 11 models
components
interacting by
continuous-time
signals. A variable-
step size, Runge-
Kutta ODE solver is
used, augmented with
discrete-event
management (via
modeling of Dirac
delta functions).
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1. CT: Strengths and Weaknesses
S

Strengths:
- Accurate model for many physical systems
- Determinate under simple conditions
- Established and mature (approximate) simulation techniques

Weaknesses:

- Covers a narrow application domain
- Tightly bound to an implementation
- Relatively expensive to simulate

- Difficult to implement in software
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2. Discrete Time

Semantics:

- blocks are relations
between functions of
discrete time
(difference equations)

Examples:
o e System C
- a behavior iIs a set of « HP Ptolemy,
signals satisfying these « SystemView,

relations . ...
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2. DT: Strengths and Weaknesses
S

Strengths:
- Useful model for embedded DSP
- Determinate under simple conditions
- Easy simulation (cycle-based)
- Easy implementation (circuits or software)

Weaknesses:
- Covers a narrow application domain
- Global synchrony may overspecify some systems
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3. Discrete Events
7]

_ Examples:
Semantics: « SES Workbench,
- Events occur at discrete e Bones,
points on a time line that « VHDL
IS often a continuum. The  Verilog
components react to ...

events in chronological

order.
bl e

time
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3. Discrete-Events in Ptolemy 11

3 Ptolemy Il Documentation - Netscape

The discrete-event i
(DE) domain in %
Ptolemy 11 models

heterogenous
modeling and design
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3. DE: Strengths and Weaknesses

o]
Strengths:

- Natural for asynchronous digital hardware
- Global synchronization

- Determinate under simple conditions

- Simulatable under simple conditions

Weaknesses:
- Expensive to implement in software
- May over-specify and/or over-model systems
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Mixing Domains
Example: MEMS Accelerometer
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| M. A. Lemkin, “Micro Accelerometer
Design with Digital Feedback Control”,

% Ph.D. dissertation, EECS, University of
California, Berkeley, Fall 1997
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Accelerometer Applet

€ heterogeneous P83
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Hierarchical Heterogeneous Models

d N DE
CT
CTPlot

Sin M 1/s j—k s +>_)/_—>()—> K(z) > L
Source Gain 1 Integrator Integrator Sampler

: FIRFilter Quantizer

Gain

Gain

< ZOH |« (»—L Z >
A Gain ZeroQrderHold / accumulator DEPIot
Continuous-time model H

DISC rete_event n&g\gﬁﬁl Lee, UC Berkeley



Hierarchical Heterogeneity vs.
Amorphous Heterogeneity

Amorphous
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Color is a communication protocol
only, which interacts in
unpredictable ways with the flow
of control.

Hierarchical

4

N

Color is a domain, which defines
both the flow of control and

interaction protocols.
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4. Synchronous/Reactive Models

e A discrete model of time progresses as a
sequence of “ticks.” At a tick, the signals
are defined by a fixed point equation:

A 0 Examples:
«(2) . Esterel,
t(X1 Y) e Lustre,
A l\x | e Signal,
C :

e Argos,
ey
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4. SR: Strengths and Weaknesses
S

Strengths:
- Good match for control-intensive systems
- Tightly synchronized
- Determinate in most cases
- Maps well to hardware and software

Weaknesses:
- Computation-intensive systems are overspecified
- Modularity is compromised

Causality loops are possible

Causality loops are hard to detect
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5. Process Networks

e Processes are prefix-
monotonic functions mapping
seqguences into sequences.

e One implementation uses

Examples:

e SDL,

e Unix pipes,

blocking reads, non-blocking
writes, and unbounded FIFO
channels.

e Dataflow special cases have

strong formal properties.

C

A

process

C

channel

stream
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5. Strengths and Weaknesses
S

Strengths:
- Loose synchronization (distributable)
- Determinate under simple conditions
- Implementable under simple conditions
- Maps easily to threads, but much easier to use
- Turing complete (expressive)

Weaknesses:
- Control-intensive systems are hard to specify
- Bounded resources are undecidable
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6. Rendezvous Models
/7]

e Events represent rendezvous
of a sender and a receiver.
Communication is unbuffered
and Iinstantaneous.

e Often implicitly assumed
with “process algebra” or
even “concurrent.”

Examples:
e CSP,

e CCS,

e Occam,
e Lotos,

process

bl’bz"" events
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6. Strengths and Weaknesses
S

Strengths:

- Models resource sharing well
- Partial-order synchronization (distributable)
- Supports naturally nondeterminate interactions

Weaknesses:
- QOversynchronizes some systems
- Difficult to make determinate (and useful)
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Making Sense of the Options:

Component Interfaces

represent data types for messages
exchanged on ports.

actor actor

Y

represent interaction semantics as
types on these ports.

(=

(=

classical
type system

system-level
types
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Approach - System-Level Types

General

String

/ \ actor actor

Boolean Scalar\ \/
Long Complex

represent interaction semantics
DO“b'e as types on these ports.

Int
A classical type system is based on fixed-points of

N T monotonic functions on a lattice where order represents
a

subclassing. Our system-level types are use the simulation
relation between automata to provide an order relation.

Edward A. Lee, UC Berkeley



Our Hope -
Domain Polymorphic Interfaces

actor actor

N

domain polymorphic interfaces
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Benefits of System-Level Types
S

Clarify assumptions of components
Understandable component composition
Data polymorphic component libraries
Domain polymorphic component libraries
More efficient synthesis (?)
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*Charts: Exploiting
Domain Polymorphism

XXX domain

c Domain-polymorphic
component interface

- FSM domain

6_\
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YYY domain
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L
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Special Case: Hybrid Systems
-

Example: Two point
masses on springs on

a frictionless table.
J— < They collide and stick
together.
“—r

The stickiness is exponentially decaying with respect to time.
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CT domain

Hybrid System: Block Diagram

FSM domain
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Ptolemy 11 Execution
S
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Because of domain
polymorphism,
moreover, Ptolemy 11
can combine FSMs
hierarchically with any
other domain,
delivering models like
statecharts (with SR)
and SDL (with process
networks) and many
other modal modeling
techniques.
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Summary
-

e There is arich set of component interaction models

e Hierarchical heterogeneity

e System-level types

e Domain polymorphism
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