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Component-Based Design

» Good for designing complex, concurrent,
heterogeneous systems
= Two levels of interface:
m data types and
m dynamic interaction
m Key aspects of dynamic interaction:
communication & execution

SDF1
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Type Systems

m Type systems are successful

Safety through type checking

Polymorphism supports reuse (flexible components)
Interface documentation, clarification

Run-time reflection of component interfaces

m Data types only specify static aspects of interface

» Proposal:
m Capture the dynamic interaction of components in types
m Obtain benefits analogous to data typing.
m Call the result system-level types.
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Interaction Semantics

= Flow of control issues (“execution model” - Sifakis)
m in Ptolemy I, these are defined by a Director class

= Communication between components (“interaction model”)
m in Ptolemy I, this is defined by a Receiver class

producer
actor

IOPort

consumer
actor

Receiver

Actor interface for execution: fire

Receiver interface for communication: put, get, hasToken
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Models of Computation

= Define the interaction semantics
= Implemented in Ptolemy Il by a domain
m Receiver + Director
= Examples:
m Communicating Sequential Processes (CSP): rendezvous-style
communication
m Process Networks (PN):
asynchronous communication
m Synchronous Data Flow (SDF):
stream-based communication, statically scheduled
m Discrete Event (DE):
event-based communication

m Synchronous/Reactive (SR):
synchronous, fixed point semantics
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Receiver Object Model
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Formal Interaction Semantics:
Use Interface Automata

Automata-based formalism

m Proposed by de Alfaro and Henzinger

m Optimistic

m Concise composition
Compatibility checking

= Done by automata composition

m Captures the notion “components can work together”
Alternating simulation (from Q to P)

m All input steps of P can be simulated by Q, and

m All output steps of Q can be simulated by P.

m Provides the ordering we need for subtyping & polymorphism

= A key theorem about compatibility and alternating
simulation
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Example: SDF Consumer Actor
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Type Definition - SDFDomain
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Type Definition - DEDomain
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Component Behavior
SDF Consumer Actor
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Type Checking
SDF Consumer Actor in SDFDomain
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Type Checking
SDF Consumer Actor in SDFDomain
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Type Checking
SDFActor in DEDomain
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Alternating Simulation
SDF to DE
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System-Level Type Order
Defined by Alternating Simulation

Analogous to subtyping

If an actor is compatible
with a certain type, it is
also compatible with the
subtypes
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Component Behavior
DomainPolymorphicActor
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DomainPolymorphicActor is
Compatible with DEDomain
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So it is also Compatible with
SDFDomain
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Trade-offs in Type System Design

i Amount of property checked vs. cost of checking

Static vs. run-time checking

: Example of more static checking: deadlock

_/ detection in Dining Philosopher model

r, [ 4‘

"“: Bottom line: static checking of communication

“ ;; protocols a good starting point
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Conclusion and Future Work

We capture dynamic property of component
interaction in a type system framework:
system-level types

We describe interaction types and component
behavior using interface automata.

We do type checking through automata
composition.

s8] 4 Subtyping order is given by the alternating

i b simulation relation, supporting polymorphism.
BRI - .

i 5 We can reflect component state in a run-time

: g.:l[—j environment, providing system-level reflection.
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