System-Level Types for
Component-Based Design

Edward A. Lee
Yuhong Xiong

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

Presented at EMSOFT, Lake Tahoe, October 2001.

Outline

Component-based design

System-level types

Interface Automata

Interaction Types and Component Behavior
Type Checking

Type Order and Polymorphism

Design Tradeoffs

Conclusion

Lee & Xiong, 2

Component-Based Design

» Good for designing complex, concurrent,
heterogeneous systems
= Two levels of interface:
m data types and
m dynamic interaction
m Key aspects of dynamic interaction:
communication & execution

SDF1

Lee & Xiong, 3

Type Systems

m Type systems are successful

Safety through type checking

Polymorphism supports reuse (flexible components)
Interface documentation, clarification

Run-time reflection of component interfaces

m Data types only specify static aspects of interface

» Proposal:
m Capture the dynamic interaction of components in types
m Obtain benefits analogous to data typing.
m Call the result system-level types.

Lee & Xiong, 4

Interaction Semantics

= Flow of control issues (“execution model” - Sifakis)
m in Ptolemy I, these are defined by a Director class

= Communication between components (“interaction model”)
m in Ptolemy I, this is defined by a Receiver class

producer
actor

IOPort

consumer
actor

Receiver

Actor interface for execution: fire

Receiver interface for communication: put, get, hasToken
Lee & Xiong, 5

Models of Computation

= Define the interaction semantics
= Implemented in Ptolemy Il by a domain
m Receiver + Director
= Examples:
m Communicating Sequential Processes (CSP): rendezvous-style
communication
m Process Networks (PN):
asynchronous communication
m Synchronous Data Flow (SDF):
stream-based communication, statically scheduled
m Discrete Event (DE):
event-based communication

m Synchronous/Reactive (SR):
synchronous, fixed point semantics

Lee & Xiong, 6

Receiver Object Model

0.1 0.n ‘

«Interface»

i Receiver
4 " NoTokenExcepti
throws ws

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)

<
+setContainer(port : IOPort)|
«Interface»
Mailbox Recei Q Recei DEReceiver SDFReceiver
R A A 1.1 1.1
1'"“ “"‘1 1.1
1.1 FIFOQueue ArrayFIFOQueue
CTReceiver CSP i PNR

Lee & Xiong, 7

Formal Interaction Semantics:
Use Interface Automata

Automata-based formalism

m Proposed by de Alfaro and Henzinger

m Optimistic

m Concise composition
Compatibility checking

= Done by automata composition

m Captures the notion “components can work together”
Alternating simulation (from Q to P)

m All input steps of P can be simulated by Q, and

m All output steps of Q can be simulated by P.

m Provides the ordering we need for subtyping & polymorphism

= A key theorem about compatibility and alternating
simulation

Lee & Xiong, 8

Example: SDF Consumer Actor

{ 1 R hTT
3 | ' 0 1 2 .
ks OO
74 ’
58 li Inputs: Outputs:
dmeg T
e a | f fire fR | Return from fire
S
M:wl.;: 3 t Token g get
£ |+ |hTT | Return True from hasToken ||hT |hasToken
| i B3
.11 | hTF | Return False from hasToken Lee & Xiong, 9

Type Definition - SDFDomain

consumer
actor

I0Port

producer
actor

Receiver

7y "- f
i > »
(| '- 0 1 2 3 =
i OO OO0 #
e >
goil o /"
B s i
sk
g_(l{-ji hTF
gt .
S tE Lee & Xiong, 10

Type Definition - DEDomain

p 5
i > p—

A o

W > =000
=) *QJ L@)m

Fid
g £ ’

=283

Il

e |

4

of

3

§
= ba hT?
L s (hTF!
4 IR
g== -

=imE

o UE R

L S 13 .

Room B4
5 P) Lee & Xiong, 11

Component Behavior
SDF Consumer Actor

f fR!

Lee & Xiong, 12

Type Checking
SDF Consumer Actor in SDFDomain

» : 3
9 . O 3 t
, . P
\ : : / \ " , _/
i > S _.()- * » / \ [
Puiag | § ® L S .
a8 [\ / \/ _S T\ r;
SDFDomain

SDF Consumer Actor
Shen Compose

5.3
sEE P =
p5 Y » R ()
Eim] i
§=! pR
Y e .
St o
ooy

PN RS IR et S

0_o 1.0 20 31 4 2
¥ R .
OO (OO ()
Lee & Xiong, 13

Type Checking
SDF Consumer Actor in SDFDomain

»

:7. s T pR

F t
tord i 0.0 1.0 2.0 31 4.2
E 3 p? pR! f;

e & —_— — = —_— T)-
3 = 5 !

=R £

FoREC B
= ;E' = «‘: &
ek =

G RE

H e Lee & Xiong, 14

Type Checking
SDFActor in DEDomain

S E=S= » p— r;
”%%!‘l DEDomain Compose SDF Consumer Actor
r./-i P
o UE »
r‘= “i i

. j;:“_i Empty automata indicating incompatibility
= 'ﬁ!’f w4'31
3”:*}- i Lee & Xiong, 15

Alternating Simulation
SDF to DE

SDFDomain DEDomain

’

A /' ‘\
. i ’
; | » ()
‘.. . /—-'/ === !—-/) < F(_) ()
','f G ’ . i) —~
Edal 14 4 [(u.f) -
e W o
T A
; :,5

;}

a4

Lee & Xiong, 16

System-Level Type Order
Defined by Alternating Simulation

Analogous to subtyping

If an actor is compatible
with a certain type, it is
also compatible with the
subtypes

Lee & Xiong, 17

Component Behavior
DomainPolymorphicActor

=
[
O ‘
fR! ’
t?
: hT
‘. O hTF? '
rii hTT
i |-
.] "1 ——)- —-va e ——)- ’
,,i” l'd %) hTF
u-l _1,
tEBiTg
-5 =
G RE
‘3,, i_,;_ = Lee & Xiong, 18

DomainPolymorphicActor is
Compatible with DEDomain

i o o :,\f’\\i

n -
»—4 —A—I -—h- —.

Poly Actor

O
o
3
S
o
®

&l |§ : O
’ : > / ‘}
Ed . :‘ oo 18 10 [
g g g Mot oy
ol 92,99,
o g B L AL
..‘-b:: M- . /
o e C &
EER I [
3”{5}- E Lee & Xiong, 19

So it is also Compatible with
SDFDomain

» »
9 »
‘ -
L g W g it g Ty »
o ' ' A
4 \ ~ >

77 I

: ' SDFDomain Poly Actor

RN Compose

e AN A

o —(O—0O

g .

i F‘; :::75 . / 39

EaEE

il Or0=0-0=0-0
: 3 i_,;_ = Lee & Xiong, 20

Trade-offs in Type System Design

i Amount of property checked vs. cost of checking

Static vs. run-time checking

: Example of more static checking: deadlock

_/ detection in Dining Philosopher model

r, [4‘

"“: Bottom line: static checking of communication

“ ;; protocols a good starting point

Skt
e R B

o {i'- i Lee & Xiong, 21

Conclusion and Future Work

We capture dynamic property of component
interaction in a type system framework:
system-level types

We describe interaction types and component
behavior using interface automata.

We do type checking through automata
composition.

s8] 4 Subtyping order is given by the alternating

i b simulation relation, supporting polymorphism.
BRI - .

i 5 We can reflect component state in a run-time

: g.:l[—j environment, providing system-level reflection.
25 EE

H e Lee & Xiong, 22

