Behavioral Types for
Actor-Oriented Design

Edward A. Lee
with special thanks to:
Luca de Alfaro, Tom Henzinger, and Yuhong Xiong

Department of Electrical Engineering and Computer Sciences
University of California at Berkeley

Invited talk, FMCAD, Fourth International Conference on
Formal Methods in Computer-Aided Design, November 6-8, 2002, Portland, Oregon

Actor-Oriented Design

u Object orientation: What flows through
class name an object is
data sequential control
p methods 1
call return
= Actor orientation: What flows through
actor name an object is data
streams

data (state)

- parameters -
Input data Output data

ports

Examples of Actor-Oriented
Component Frameworks

Simulink (The MathWorks)

Labview (National Instruments)

OCP, open control platform (Boeing)

SPW, signal processing worksystem (Cadence)
System studio (Synopsys)

ROOM, real-time object-oriented modeling (Rational)
Port-based objects (U of Maryland)

I/O automata (MIT)

VHDL, Verilog, SystemC (Various)

Polis & Metropolis (UC Berkeley)

Ptolemy & Ptolemy Il (UC Berkeley)

E. A. Lee, UC Berkeley 3

Actor View of Producer/Consumer
Components

Basic Transport: Models of Computation:

VN BT « continuous-time

 dataflow
* rendezvous
* discrete events
Receiver o gynchronous
(inside port) : .

* time-driven
* publish/subscribe

IORelation

Key idea: The model of computation defines the component
interaction patterns and is part of the framework, not part of the
components themselves.

- a Caem = s

Contrast with Object Orientation

Call/return imperative semantics
Concurrency is realized by ad-hoc calling conventions

Concurrent patterns are supported by futures, proxies,
monitors, and semaphores

«Interface» «Interface»
Brecuatle |7 e . NS Object orientation
i wgeiDvectn) - Diectr e | emphasizes inheritance
+initialize() +getExecutlstlrectar() : Directol 5)
f st ool [gltespr oo and procedural interfaces.
3 ‘ +;[oprrg(‘) +outputPonLis‘i)()‘ .RLeis(,:te er
g3 iomiste) . .
i < Actor orientation
=7 .
3o emphasizes concurrency
Se : . Jem=*] and communication
= HE e Homicactr abstractions.
Sy

E. A. Lee, UC Berkeley 5

Actor Orientation with a Visual Syntax

™

P | Model by Jie Liu |
]

Task1: {(p = mid, t = 2/10)

Clock: period = 1
ot P L

TimedPlotter: (p = high, t = 0}
Clack: period = 4 }—P—D »
ot [

Task2: (p = low, t = 2)

i+t '-.! _I This model shows two (independent) tasks on a
r. | - single CPU machine. Depending the TM scheduling
e 3 policy, deferent behaviors will be seen. To run
= :‘--__-- 3. the demo, start the run window and set the
= 5" o '_‘! preemptive parameter to true or false.

BT
L &2+ | Actor-oriented model of two real-time control systems sharing a

— 3 . . 0 .
: '_hL 4 | single CPU under a priority-driven RTOS scheduler.
E: = 3

Our Evolving Software Laboratory
* continuous environment —

controller ! P"'Olemy II .

A framework supporting

% experimentation with actor-
oriented design, concurrent
> semantics, and visual
e syntaxes.
= “"1 discrete controller ‘
Model by;,ff’f.a..” Eker :]__ http://ptolemy.eecs.berkeley.edu
example Ptolemy model: hybrid control system ‘

E. A. Lee, UC Berkeley 7

Realization of a Model of Computation
is a “Domain” in Ptolemy I

The “laws of physics” of component interaction
B communication semantics
m flow of control constraints

In astrophysics: a “domain” is a region of the
universe where a certain set of “laws of physics”

r._i:",‘ || applies.

Emegt

*-'f. Multiple domains may be combined hierarchically
5 'g:'?-‘*?_‘:.% m depends on the concept of “domain polymorphism”

: E‘:‘ 2 ;}

LB EE

Ptolemy Il Domains

m Define the flow(s) of control
m “execution model”
m Realized by a Director class
» Define communication between components
m “interaction model”
m Realized by a Receiver class

producer
actor

I0OPort

consumer
actor

Receiver

E. A. Lee, UC Berkeley 9

IOPort

producer consumer

Example Domains

Receiver

= Communicating Sequential Processes (CSP):
rendezvous-style communication
m Process Networks (PN):
asynchronous communication, determinism
m Synchronous Data Flow (SDF):
stream-based communication, statically scheduled
m Discrete Event (DE):
event-based communication
m Synchronous/Reactive (SR):
synchronous, fixed point semantics
m Time Driven (Giotto):
synchronous, time-driven multitasking
= Timed Multitasking (TM):
priority-driven multitasking, deterministic communication
m Continuous Time (CT):
numerical differential equation solver

IOPort

Receiver Object Model

0.1 0..n

. «Interface»
NoRoomException Receiver

NoTokenException
] throws
throws

+get() : Token
+getContainer() : IOPort

t +hasRoom() : boolean

+hasToken() : boolean

+put(t : Token)

+setContainer(port : IOPort)

4!!1‘5

Em_""‘"’! «Interface»
| & Mailbox ProcessReceiver

QueueReceiver DEReceiver SDFReceiver

2t l-- 3

IR ﬁ

-

1.1
=5

CTReceiver CSPReceiver

1.1 FIFOQueue ArrayFIFOQueue
PNReceiver

E. A. Lee, UC Berkeley 11

Receiver Interface

«Interface»

These polymorphic methods
Receiver

implement the communication
semantics of a domain in Ptolemy
+gel() : Token Il. The repeiyer i.nstance. used in
+getContainer() : IOPort | communication is supplied by the

| [thasRoom() : boolean director, not by the component.
=~v [+thasToken() : boolean
; i . [tput(t: Token) Director

i ﬂt +setContainer(port : IOPort)
A 3 IOPort
Fi- I - i producer consumer
%‘: e B actor actor
: ;:h!‘_ ;j; Receiver
E: T4

Behavioral Types —
Codification of Domain Semantics

Capture the dynamic interaction of components in types
Obtain benefits analogous to data typing.
Call the result behavioral types.

Communication has

m data types

m behavioral types
|OPort Components have
m data type signatures
°°'a‘(s::‘o’:‘er m behavioral type signatures

Components are

m data polymorphic
m domain polymorphic

Director

producer
actor

Receiver

E. A. Lee, UC Berkeley 13

A Behavioral Type System
With Contravariant Inputs and Outputs

Based on Interface automata

m Proposed by de Alfaro and Henzinger

m Concise composition (vs. standard automata)

m Alternating simulation provides contravariance
Compatibility checking

m Done by automata composition

m Captures the notion “components can work together”
Subtyping & polymorphism

m Alternating simulation (from Q to P)

m All input steps of P can be simulated by Q, and

m All output steps of Q can be simulated by P.

m Used to build a partial order among types

— A s C e~ v s s

Simple Example: One Place Buffer
Showing Consumer Interface Only

Buffer:

get

hasToken

consumer
minterface
‘h Model of the

interaction of a
one-place buffer,

» showing the

interface to a
consumer actor.

Outputs:
t Token
hTT | Return True from hasToken

hTF

Return False from hasToken

E. A. Lee, UC Berkeley 15

Two Candidate Consumer Actors

Consumer with check:

Consumer without check:

hT

hTT i b
» 5
rg hTF? }"g r%.
f am
LI O 0O OO0
5 .,m.': h '
i nrd t
o b buffer »
f 14‘ interface
Lt = 11 Inputs:]
SRR Outputs:
el |t Token o get
swer O
_ ;r!__:: hTT | Return True from hasToken hT hasToken
=8 %5;‘;43 hTF | Return False from hasToken

Composition: Behavioral Type Check

”; Consumer with check: Buffer: g’
hTT (7 |
* /ﬁ\ h
rg hTF f‘;
9 g!)hTF)hTT\

b pu
t hTF
» |

" {2 composition. A])
et & composite state is bR _ _
~ illegal if an output O O O Q
i produced by one has C_‘1)m;

= 2 no corresponding
'}/ input in the other.

' Tllegal states are 33
“** 11 pruned out of the O\

E. A. Lee, UC Berkeley 17

Composition: Behavioral Type Check

Consumer without check: Buffer:
. »
:?1: 2 /’UR\A th
* h @ @ hT
— »
S IO

: i that all composite
4 states areillegal.
: Eg. here,0_0is
2 illegal, which

‘&= results in pruning
il all states.

@ @ hTE
";-}.‘.-;-j-v An empty
e 4 composition means
;.E: i B

Subclassing and Polymorphism

We can construct a type lattice Buffer: »
by defining a partial order »
0 0 9 - /”—_\ .
based on alternating simulation. C) C) T
It properly reflects the desire ¢)‘\C)«—P/K Yore T
for contravariant inputs and C> &) w
outputs. — .
A
Buffer with Default: »
t
p_PR; F

/\ - Alternating
o (@)\@«/@7 Sl

hTF!

(D o

E. A. Lee, UC Berkeley 19

Contravariance of Inputs and Outputs
in a Classical Type System

.. and deliver more
specific outputs

public Complex foo(Double ;/

‘ Can accept more

BaseClass

general inputs

Deriye/él/ass
DerivedClass

remains a valid drop-

f / : i~
public Double foo(Complex arg) in substitution for
BaseClass.

— A s C e~ v s s P

Representing Models of Computation
Synchronous Dataflow (SDF) Domain

Director

receiver
interface

(>\ gl
» l

»

>

consumer
actor

= Receiver

hT) director
' interface

E. A. Lee, UC Berkeley 21

Consumer Actor With Firing-
Type Definition

—

L g
commumcatlon(-

execution interface Such actors are
mterface #® || passive, and assume

that input is available
hT when they fire.
u
TR hTT
»

Q—“Q—’Q 5

Inputs:
- Outputs:
f fire -
¢ Token fR | Return from fire
hTT | Return True from hasToken 9 get
1 hT | hasToken
3 | hTF | Return False from hasToken

— A s C e~ v s s P

Type Checking — Compose
SDF Consumer Actor with SDF Domain

» :
h t
” ’
.' |—|-| w I_-I_ ——- —b _/I ’ ;
»>
» D X
' \ / O-————h—O—bO hTF
SDF Domain SDF Consumer Actor

Compose
l
P
»
PR
]

0.0 1.0 20 3.1 4 2
p? pR! f;

E. A. Lee, UC Berkeley 23

Type Definition —
SDF Consumer Actor in SDF Domain

interface to
producer actor

o =
‘ 6. internal O

action: return

PR . 5. internal
F from fire action: get \"
token
0.0 10 20 31 4 2
p? pR! f;
e oo e
1. receives 2. accept 3.internal 4. internal
token from token action: fire action: call
producer consumer

get()

C e~ v s s s

Representing Models of Computation —
Discrete Event (DE) Domain

O—*O-*O—*-O—*O 3

ay
5 Q) \ ®

D . .
"™ This domain may fire actors

p

o\,
hTF without first providing inputs
w () P 9 1P

E. A. Lee, UC Berkeley 25

Recall Component Behavior
SDF Consumer Actor

1. is fired B

2. calls get() F
3. gets atoken 3 t
4

. returns O ’

fR!

Type Checking — Compose
SDF Consumer Actor with DE Domain

(i

L OO0 O
il + /7)k

DE Domain SDF Consumer Actor
Compose

Empty automaton indicates incompatibility
Composition type has no behaviors

E. A. Lee, UC Berkeley 27

Subtyping Relation
Alternating Simulation: SDF < DE

DE Domain |

w: ¥
= [
-

) 48 &
O
k3
_/
!
N
_/
l
O
i
AN

SDF Domain

\ EB £ &
a e
/u‘/

Domain Polymorphic Type Definition —
Consumer Actor with Firing

; m
6. return Q t
_ »

f o hT
’ . false
= (O~ g
4. return
fR]) hTT

O O () ?

o hTF
1. is fired 2. calls 3. true 4. call get() ’
hasToken()

This actor checks for token availability before
attempting to get the token.

E. A. Lee, UC Berkeley 29

Domain Polymorphic Actor
Composes with the DE Domain

q
o o
py

(q\ﬁ_ / -
4 B2 N eaTaY

Jo i giitgt tgrital..

» .

e b AL N . _/ HhIF
'_'(;-) _»
)

DEDomain Poly Actor
Compose
]
N0 00000
N \
_/ O\

Domain Polymorphic Actor Also
Composes with the SDF Domain

\ / S >
Poly Actor

Compose

UC Berkeley 31

Summary of Behavioral Types Results

We capture patterns of component interaction in a type
system framework: behavioral types

We describe interaction types and component behavior
using interface automata.

We do type checking through automata composition (detect
component incompatibilities)

Subtyping order is given by the alternating simulation
relation, supporting polymorphism.

A behavioral type system is a set of automata that form a
lattice under alternating simulation.

Scalability

= Automata represent behavioral types
m Not arbitrary program behavior
m Descriptions are small
m Compositions are small
m Scalability is probably not an issue

m Type system design becomes an issue
m What to express and what to not express

m Restraint!

= Will lead to efficient type check and type inference
algorithms

E. A. Lee, UC Berkeley 33

Issues and Ideas

m Composition by name-matching
m awkward, limiting.
m use ports in hierarchical models?
® Rich subtyping:
m extra ports interfere with alternating simulation.
m projection automata?
m use ports in hierarchical models?

m Synchronous composition:
m composed automata react synchronously.
m modeling mutual exclusion is awkward
m use transient states?
m hierarchy with transition refinements?

More Speculative

u We can reflect component dynamics in a run-time
environment, providing behavioral reflection.
m admission control
m run-time type checking
m fault detection, isolation, and recovery (FDIR)

m Timed interface automata may be able to model real-time
requirements and constraints.

m checking consistency becomes a type check
m generalized schedulability analysis

= Need a language with a behavioral type system
m Visual syntax given here is meta modeling
m Use this to build domain-specific languages

E. A. Lee, UC Berkeley 35

