
Department of Electrical Engineering and Computer Sciences

University of California at Berkeley

Behavioral Types for
Actor-Oriented Design

Edward A. Lee
with special thanks to:

Luca de Alfaro, Tom Henzinger, and Yuhong Xiong

Invited talk, FMCAD, Fourth International Conference on

Formal Methods in Computer-Aided Design, November 6-8, 2002, Portland, Oregon

E. A. Lee, UC Berkeley 2

Actor-Oriented Design

Object orientation:
class name

data

methods

call return

What flows through
an object is

sequential control

Actor orientation:
actor name

data (state)

ports
Input data

parameters
Output data

What flows through
an object is data

streams

E. A. Lee, UC Berkeley 3

Examples of Actor-Oriented
Component Frameworks

Simulink (The MathWorks)
Labview (National Instruments)
OCP, open control platform (Boeing)
SPW, signal processing worksystem (Cadence)
System studio (Synopsys)
ROOM, real-time object-oriented modeling (Rational)
Port-based objects (U of Maryland)
I/O automata (MIT)
VHDL, Verilog, SystemC (Various)
Polis & Metropolis (UC Berkeley)
Ptolemy & Ptolemy II (UC Berkeley)
…

E. A. Lee, UC Berkeley 4

Actor View of Producer/Consumer
Components

Models of Computation:

• continuous-time
• dataflow
• rendezvous
• discrete events
• synchronous
• time-driven
• publish/subscribe
•…

 Actor

 IOPort

 IORelation

P2
P1

E1

E2

send(0,t) receiver.put(t) get(0)

token t
R1

Basic Transport:

 Receiver
(inside port)

Key idea: The model of computation defines the component
interaction patterns and is part of the framework, not part of the
components themselves.

E. A. Lee, UC Berkeley 5

Contrast with Object Orientation

Call/return imperative semantics

Concurrency is realized by ad-hoc calling conventions

Concurrent patterns are supported by futures, proxies,
monitors, and semaphores

ComponentEntity
CompositeEntity

AtomicActor

CompositeActor

0..1
0..n

«Interface»
Actor

+getDirector() : Director
+getExecutiveDirector() : Director
+getManager() : Manager
+inputPortList() : List
+newReceiver() : Receiver
+outputPortList() : List

«Interface»
Executable

+fire()
+initialize()
+postfire() : boolean
+prefire() : boolean
+preinitialize()
+stopFire()
+terminate()
+wrapup()

Director

Object orientation
emphasizes inheritance
and procedural interfaces.

Actor orientation
emphasizes concurrency
and communication
abstractions.

E. A. Lee, UC Berkeley 6

Actor Orientation with a Visual Syntax

Actor-oriented model of two real-time control systems sharing a
single CPU under a priority-driven RTOS scheduler.

Model by Jie Liu

E. A. Lee, UC Berkeley 7

Our Evolving Software Laboratory

Ptolemy II:
A framework supporting
experimentation with actor-
oriented design, concurrent
semantics, and visual
syntaxes.

http://ptolemy.eecs.berkeley.edu

continuous environment

modal model

discrete controller

example Ptolemy model: hybrid control system

Model by Johan Eker

E. A. Lee, UC Berkeley 8

Realization of a Model of Computation
is a “Domain” in Ptolemy II

The “laws of physics” of component interaction
communication semantics
flow of control constraints

In astrophysics: a “domain” is a region of the
universe where a certain set of “laws of physics”
applies.

Multiple domains may be combined hierarchically
depends on the concept of “domain polymorphism”

E. A. Lee, UC Berkeley 9

Ptolemy II Domains

Define the flow(s) of control
“execution model”

Realized by a Director class

Define communication between components
“interaction model”

Realized by a Receiver class

producer
actor

consumer
actor

IOPort

Receiver

Director

E. A. Lee, UC Berkeley 10

Example Domains

Communicating Sequential Processes (CSP):
rendezvous-style communication
Process Networks (PN):
asynchronous communication, determinism
Synchronous Data Flow (SDF):
stream-based communication, statically scheduled
Discrete Event (DE):
event-based communication
Synchronous/Reactive (SR):
synchronous, fixed point semantics
Time Driven (Giotto):
synchronous, time-driven multitasking
Timed Multitasking (TM):
priority-driven multitasking, deterministic communication
Continuous Time (CT):
numerical differential equation solver

producer
actor

consumer
actor

IOPort

Receiver

Director

E. A. Lee, UC Berkeley 11

Receiver Object ModelIOPort

FIFOQueue

1..1

1..1

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

0..1 0..n

QueueReceiver

NoRoomException

throws

NoTokenException
throws

PNReceiver

«Interface»
ProcessReceiver

CSPReceiver

SDFReceiver

ArrayFIFOQueue

1..1
1..1

DEReceiverMailbox

CTReceiver

E. A. Lee, UC Berkeley 12

Receiver Interface

«Interface»
Receiver

+get() : Token
+getContainer() : IOPort
+hasRoom() : boolean
+hasToken() : boolean
+put(t : Token)
+setContainer(port : IOPort)

These polymorphic methods
implement the communication
semantics of a domain in Ptolemy
II. The receiver instance used in
communication is supplied by the
director, not by the component.

producer
actor

consumer
actor

IOPort

Receiver

Director

E. A. Lee, UC Berkeley 13

Behavioral Types –
Codification of Domain Semantics

Capture the dynamic interaction of components in types

Obtain benefits analogous to data typing.

Call the result behavioral types.

producer
actor

consumer
actor

IOPort

Receiver

Director

Communication has
data types

behavioral types

Components have
data type signatures

behavioral type signatures

Components are
data polymorphic

domain polymorphic

E. A. Lee, UC Berkeley 14

A Behavioral Type System
With Contravariant Inputs and Outputs

Based on Interface automata
Proposed by de Alfaro and Henzinger

Concise composition (vs. standard automata)

Alternating simulation provides contravariance

Compatibility checking
Done by automata composition

Captures the notion “components can work together”

Subtyping & polymorphism
Alternating simulation (from Q to P)

All input steps of P can be simulated by Q, and

All output steps of Q can be simulated by P.

Used to build a partial order among types

E. A. Lee, UC Berkeley 15

Simple Example: One Place Buffer
Showing Consumer Interface Only

hasTokenhT

getg

Return False from hasTokenhTF

Return True from hasTokenhTT

Tokent

Outputs:Inputs:

Model of the
interaction of a
one-place buffer,
showing the
interface to a
consumer actor.

consumer
interfaceBuffer:

E. A. Lee, UC Berkeley 16

Two Candidate Consumer Actors

Consumer with check: Consumer without check:

buffer
interface

hasTokenhT

getg

Return False from hasTokenhTF

Return True from hasTokenhTT

Tokent

Inputs: Outputs:

E. A. Lee, UC Berkeley 17

Composition: Behavioral Type Check

Consumer with check: Buffer:

Illegal states are
pruned out of the
composition. A
composite state is
illegal if an output
produced by one has
no corresponding
input in the other.

E. A. Lee, UC Berkeley 18

Composition: Behavioral Type Check
Buffer:Consumer without check:

An empty
composition means
that all composite
states are illegal.
E.g., here, 0_0 is
illegal, which
results in pruning
all states.

E. A. Lee, UC Berkeley 19

Subclassing and Polymorphism

Buffer:

Buffer with Default:

Alternating
simulation
relation

We can construct a type lattice
by defining a partial order
based on alternating simulation.
It properly reflects the desire
for contravariant inputs and
outputs.

E. A. Lee, UC Berkeley 20

Contravariance of Inputs and Outputs
in a Classical Type System

public Complex foo(Double arg)

BaseClass

public Double foo(Complex arg)

DerivedClass

Can accept more
general inputs

… and deliver more
specific outputs

DerivedClass
remains a valid drop-

in substitution for
BaseClass.

E. A. Lee, UC Berkeley 21

Representing Models of Computation
Synchronous Dataflow (SDF) Domain

producer
actor

consumer
actor

IOPort

Receiver

Director
receiver
interface

director
interface

E. A. Lee, UC Berkeley 22

Consumer Actor With Firing-
Type Definition

hasTokenhT

getg

Return from firefR

Return False from hasTokenhTF

Return True from hasTokenhTT

Tokent

firef

Inputs:
Outputs:

Such actors are
passive, and assume
that input is available
when they fire.

execution
interface

communication
interface

E. A. Lee, UC Berkeley 23

Type Checking – Compose
SDF Consumer Actor with SDF Domain

Compose
SDF Domain SDF Consumer Actor

E. A. Lee, UC Berkeley 24

Type Definition –
SDF Consumer Actor in SDF Domain

1. receives
token from
producer

interface to
producer actor

2. accept
token

3. internal
action: fire
consumer

4. internal
action: call
get()

5. internal
action: get
token

6. internal
action: return
from fire

E. A. Lee, UC Berkeley 25

Representing Models of Computation –
Discrete Event (DE) Domain

This domain may fire actors
without first providing inputs

E. A. Lee, UC Berkeley 26

Recall Component Behavior
SDF Consumer Actor

1. is fired
2. calls get()
3. gets a token
4. returns

E. A. Lee, UC Berkeley 27

Type Checking – Compose
SDF Consumer Actor with DE Domain

Empty automaton indicates incompatibility
Composition type has no behaviors

Compose
DE Domain SDF Consumer Actor

E. A. Lee, UC Berkeley 28

Subtyping Relation
Alternating Simulation: SDF ≤ DE

SDF Domain

DE Domain

E. A. Lee, UC Berkeley 29

Domain Polymorphic Type Definition –
Consumer Actor with Firing

1. is fired 2. calls
hasToken()

3. true

3. false

4. return

4. call get()

5. get
token

6. return

This actor checks for token availability before
attempting to get the token.

E. A. Lee, UC Berkeley 30

Domain Polymorphic Actor
Composes with the DE Domain

Compose
DE Domain Poly Actor

E. A. Lee, UC Berkeley 31

Domain Polymorphic Actor Also
Composes with the SDF Domain

Compose
Poly ActorSDF Domain

E. A. Lee, UC Berkeley 32

Summary of Behavioral Types Results

We capture patterns of component interaction in a type
system framework: behavioral types

We describe interaction types and component behavior
using interface automata.

We do type checking through automata composition (detect
component incompatibilities)

Subtyping order is given by the alternating simulation
relation, supporting polymorphism.

A behavioral type system is a set of automata that form a
lattice under alternating simulation.

E. A. Lee, UC Berkeley 33

Scalability

Automata represent behavioral types
Not arbitrary program behavior

Descriptions are small

Compositions are small

Scalability is probably not an issue

Type system design becomes an issue
What to express and what to not express

Restraint!
Will lead to efficient type check and type inference
algorithms

E. A. Lee, UC Berkeley 34

Issues and Ideas

Composition by name-matching
awkward, limiting.
use ports in hierarchical models?

Rich subtyping:
extra ports interfere with alternating simulation.
projection automata?
use ports in hierarchical models?

Synchronous composition:
composed automata react synchronously.
modeling mutual exclusion is awkward
use transient states?
hierarchy with transition refinements?

E. A. Lee, UC Berkeley 35

More Speculative

We can reflect component dynamics in a run-time
environment, providing behavioral reflection.

admission control
run-time type checking
fault detection, isolation, and recovery (FDIR)

Timed interface automata may be able to model real-time
requirements and constraints.

checking consistency becomes a type check
generalized schedulability analysis

Need a language with a behavioral type system
Visual syntax given here is meta modeling
Use this to build domain-specific languages

