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Abstract

Embedded software has traditionally been thought of as "software on small 
computers." In this traditional view, the principal problem is resource limitations 
(small memory, small data word sizes, and relatively slow clocks). Solutions 
emphasize efficiency; software is written at a very low level (in assembly code or C), 
operating systems with a rich suite of services are avoided, and specialized computer 
architectures such as programmable DSPs and network processors are developed to 
provide hardware support for common operations. These solutions have defined the 
practice of embedded software design and development for the last 25 years or so. 
However, thanks to the semiconductor industry's ability to follow Moore's law, the 
resource limitations of 25 years ago should have almost entirely evaporated today. 
Why then has embedded software design and development changed so little? It may 
be that extreme competitive pressure in products based on embedded software, such 
as consumer electronics, rewards only the most efficient solutions. This argument is 
questionable, however, since there are many examples where functionality has 
proven more important than efficiency. In this talk, we argue that resource limitations 
are not the only defining factor for embedded software, and may not even be the 
principal factor. Instead, the dominant factors are much higher reliability requirements 
than for desktop software, greater concurrency, and tighter timing requirements. 
These differences drive the technology towards different techniques than those that 
have been applied in conventional computer software. In this talk, we explore those 
techniques and map out a research agenda for embedded software.
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Are Resource Limitations the Key Defining 
Factor for Embedded Software?

small memory
small data word sizes
relatively slow clocks

To deal with these problems, emphasize efficiency:
write software at a low level (in assembly code or C)
avoid operating systems with a rich suite of services
develop specialized computer architectures

programmable DSPs
network processors

This is how embedded SW has been designed for 25 years
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Why hasn’t Moore’s law changed 
all this in 25 years?
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Hints that Embedded SW Differs 
Fundamentally from General Purpose SW

time matters
“as fast as possible” is not good enough

concurrency is intrinsic
it’s not an illusion

object-oriented techniques are rarely used
classes and inheritance
dynamic binding

processors avoid memory hierarchy
virtual memory
dynamically managed caches

memory management is avoided
allocation/de-allocation
garbage collection

To be fair, there are some applications that use some of these techniques: e.g. Java in cell 
phones, but mainly providing the services akin to general purpose software.
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Current fashion – Pay Attention to 
“Non-functional properties”

Time
Security
Fault tolerance
Power consumption
Memory management

But the formulation of the question is very telling:

How is it that when a braking system applies the brakes is 
any less a function of the braking system than how much
braking it applies?
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What about “real time”?

Make it faster!

What if you need “absolutely positively on time” (APOT)?

Need to rethink everything: hardware architecture, software abstractions, etc.
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Prioritize and Pray!

Real-Time Multitasking?
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Standard Software Abstraction
(20-th Century Computation)

initial state

final state

sequence f : State → State

• Time is irrelevant
• All actions are ordered

Alan Turing
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Standard Software Abstraction: 
Processes or Threads

suspend

Infinite sequences of state 
transformations are called 
“processes” or “threads”

The operating system 
(typically) provides:

• suspend/resume
• mutual exclusion
• semaphores

resume
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stalled for rendezvous

stalled by precedence

race condition

Standard Software Abstraction:
Concurrency via Interacting Threads

Potential for 
race conditions, 
deadlock, and 
livelock
severely 
compromises 
software 
reliability.

These methods 
date back to the 
1960’s 
(Dijkstra).
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A Stake in the Ground

Nontrivial concurrent programs based on 
threads, semaphores, and mutexes are 
incomprehensible to humans.

No amount of process improvement is going to 
change this.

• the human brain doesn’t work this way.

Formal methods may help
• scalability?
• understandability?

Better concurrency abstractions will help more
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What it Feels Like to Use the synchronized
Keyword in Java
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Diagnosis: Interacting Threads are Not 
Compositional

An aggregation 
of threads is not 
a thread.

What is it?

Many software 
failures are due 
to this ill-
defined 
composition.
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Better Concurrency Models

Better concurrency models exist.

We are building the foundations of a family of such 
models that we call actor-oriented models.

Semantics of distributed discrete-event systems
Process networks & algebras
Hybrid systems
Models and meta models for model-integrated computing
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What is an Actor-Oriented MoC?

Actor oriented:

actor name

data (state)

ports

Input data

parameters

Output data

What flows through 
an object is 

streams of data

class name

data

methods

call return

What flows through 
an object is 

sequential control

Traditional component interactions:
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Ptolemy II: A Laboratory for Experimenting with 
Actor-Oriented Models of Computation

Director from a library 
defines component 
interaction semantics

Large, domain-polymorphic 
component library.

Basic Ptolemy II infrastructure:

Visual editor supporting an abstract syntax

Type system 
for transported 
data
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Models of Computation
Implemented in Ptolemy II

CI – Push/pull component interaction
Click – Push/pull with method invocation
CSP – concurrent threads with rendezvous
CT – continuous-time modeling
DE – discrete-event systems
DDE – distributed discrete events
DDF – Dynamic dataflow
DPN – distributed process networks
DT – discrete time (cycle driven) 
FSM – finite state machines
Giotto – synchronous periodic
GR – 2-D and 3-D graphics
PN – process networks
SDF – synchronous dataflow
SR – synchronous/reactive
TM – timed multitasking

Most of 
these are 
actor 
oriented.
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Models of Computation
Implemented in Ptolemy II

CI – Push/pull component interaction
Click – Push/pull with method invocation
CSP – concurrent threads with rendezvous
CT – continuous-time modeling
DE – discrete-event systems
DDE – distributed discrete events
DDF – Dynamic dataflow
DPN – distributed process networks
DT – discrete time (cycle driven) 
FSM – finite state machines
Giotto – synchronous periodic
GR – 2-D and 3-D graphics
PN – process networks
SDF – synchronous dataflow
SR – synchronous/reactive
TM – timed multitasking
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Example Model of Computation:
Discrete Events (DE)

DE Director implements 
timed semantics using an 
event queue

Event source

Time line

Reactive actors

Signal
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Semantics Clears Up Subtleties: 
E.g. Simultaneous Events

By default, an actor produces events with the same time as the input 
event. But in this example, we expect (and need) for the BooleanSwitch to 
“see” the output of the Bernoulli in the same “firing” where it sees the event 
from the PoissonClock. Events with identical time stamps are also ordered, 
and reactions to such events follow data precedence order.
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Semantics Clears Up Subtleties: 
E.g. Feedback

Data precedence analysis has to take into account the non-strictness of 
this actor (that an output can be produced despite the lack of an input).
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Semantics Clears Up Subtleties: 
E.g. Zeno Systems

DE systems may have 
an infinite number of 
events in a finite amount 
of time. Carefully 
constructed semantics 
gives these systems 
meaning.
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A Rough Sense of Discrete-Event 
Semantics: Metric Space Formulation

τ2/1),( =yxd
Cantor metric:

where τ is the earliest time where x and y differ.

τ

x

y

The set of signals 
with this metric form 
a complete metric 
space.

Generalizations of this metric handle 
multiple events at the same time.



13

Lee, Berkeley 25

Causality in DE

x

x′

y

y′

),(),( xxdyyd ′≤′
Causal:

),(),( xxdyyd ′<′
Strictly causal:

,1<∃δ
Delta causal:

),(),( xxdyyd ′≤′ δ

A delta-causal component is a “contraction map.”
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Fixed Point Theorem
(Banach Fixed Point Theorem)

Let (S n = [T → V ]n, d ) be a complete metric space and  f : 
S n → S n be a delta causal function. Then f  has a unique 
fixed point, and for any point s ∈ S n , the following 
sequence converges to that fixed point:

s1 = s, s2 = f (s1), s3 = f (s2), …

This means no Zeno!

Current work: Other formulations (using generalized 
ultrametric spaces, ordinals, and posets) give meaning to 
a broader class of systems.
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Application of DE Modeling
Wireless Sensor Nets in VisualSense

VisualSense extends 
the Ptolemy II discrete-
event domain with 
communication between 
actors representing 
sensor nodes being 
mediated by a channel, 
which is another actor.

The example at the left 
shows a grid of nodes 
that relay messages 
from an initiator (center) 
via a channel that 
models a low (but non-
zero) probability of long 
range links being viable.
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Example of Current Research Challenges

Use distributed discrete-event systems as a timed model of 
computation for embedded software in unreliable, sporadically 
connected networks, such as wireless sensor networks.

The most interesting possibilities are based on distributed 
consensus algorithms (as in Croquet, Reed, Lamport).

Research challenges include:
Defining the semantics
Combining the semantics heterogeneously with others. E.g.:

Signal processing for channel modeling
TinyOS for node functionality

Creating efficient runtime environments
Building the design environment
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Conclusion

Threads are a poor concurrent MoC
There are many better concurrent MoCs
The ones we know are the tip of the iceberg
Ptolemy II is a lab for experimenting with them
This is a rich research area.

http://ptolemy.eecs.berkeley.edu


