
1

Embedded Software:
Building the Foundations

Edward A. Lee
Professor, Chair of EE, and Associate Chair of EECS
CHESS: Center for Hybrid and Embedded Software Systems
UC Berkeley

BEARS Conference
Berkeley EECS Annual Research Symposium
February 10, 2005
Berkeley, CA

Lee, Berkeley 2

Abstract

Embedded software has traditionally been thought of as "software on small
computers." In this traditional view, the principal problem is resource limitations
(small memory, small data word sizes, and relatively slow clocks). Solutions
emphasize efficiency; software is written at a very low level (in assembly code or C),
operating systems with a rich suite of services are avoided, and specialized computer
architectures such as programmable DSPs and network processors are developed to
provide hardware support for common operations. These solutions have defined the
practice of embedded software design and development for the last 25 years or so.
However, thanks to the semiconductor industry's ability to follow Moore's law, the
resource limitations of 25 years ago should have almost entirely evaporated today.
Why then has embedded software design and development changed so little? It may
be that extreme competitive pressure in products based on embedded software, such
as consumer electronics, rewards only the most efficient solutions. This argument is
questionable, however, since there are many examples where functionality has
proven more important than efficiency. In this talk, we argue that resource limitations
are not the only defining factor for embedded software, and may not even be the
principal factor. Instead, the dominant factors are much higher reliability requirements
than for desktop software, greater concurrency, and tighter timing requirements.
These differences drive the technology towards different techniques than those that
have been applied in conventional computer software. In this talk, we explore those
techniques and map out a research agenda for embedded software.

2

Lee, Berkeley 3

Are Resource Limitations the Key Defining
Factor for Embedded Software?

small memory
small data word sizes
relatively slow clocks

To deal with these problems, emphasize efficiency:
write software at a low level (in assembly code or C)
avoid operating systems with a rich suite of services
develop specialized computer architectures

programmable DSPs
network processors

This is how embedded SW has been designed for 25 years

Lee, Berkeley 4

Why hasn’t Moore’s law changed
all this in 25 years?

3

Lee, Berkeley 5

Hints that Embedded SW Differs
Fundamentally from General Purpose SW

time matters
“as fast as possible” is not good enough

concurrency is intrinsic
it’s not an illusion

object-oriented techniques are rarely used
classes and inheritance
dynamic binding

processors avoid memory hierarchy
virtual memory
dynamically managed caches

memory management is avoided
allocation/de-allocation
garbage collection

To be fair, there are some applications that use some of these techniques: e.g. Java in cell
phones, but mainly providing the services akin to general purpose software.

Lee, Berkeley 6

Current fashion – Pay Attention to
“Non-functional properties”

Time
Security
Fault tolerance
Power consumption
Memory management

But the formulation of the question is very telling:

How is it that when a braking system applies the brakes is
any less a function of the braking system than how much
braking it applies?

4

Lee, Berkeley 7

What about “real time”?

Make it faster!

What if you need “absolutely positively on time” (APOT)?

Need to rethink everything: hardware architecture, software abstractions, etc.

Lee, Berkeley 8

Prioritize and Pray!

Real-Time Multitasking?

5

Lee, Berkeley 9

Standard Software Abstraction
(20-th Century Computation)

initial state

final state

sequence f : State → State

• Time is irrelevant
• All actions are ordered

Alan Turing

Lee, Berkeley 10

Standard Software Abstraction:
Processes or Threads

suspend

Infinite sequences of state
transformations are called
“processes” or “threads”

The operating system
(typically) provides:

• suspend/resume
• mutual exclusion
• semaphores

resume

6

Lee, Berkeley 11

stalled for rendezvous

stalled by precedence

race condition

Standard Software Abstraction:
Concurrency via Interacting Threads

Potential for
race conditions,
deadlock, and
livelock
severely
compromises
software
reliability.

These methods
date back to the
1960’s
(Dijkstra).

Lee, Berkeley 12

A Stake in the Ground

Nontrivial concurrent programs based on
threads, semaphores, and mutexes are
incomprehensible to humans.

No amount of process improvement is going to
change this.

• the human brain doesn’t work this way.

Formal methods may help
• scalability?
• understandability?

Better concurrency abstractions will help more

7

Lee, Berkeley 13

What it Feels Like to Use the synchronized
Keyword in Java

Im
ag

e
“b

or
ro

we
d”

fr
om

 a
n

Io
m

eg
a

ad
ve

rt
is

em
en

t
fo

r
Y2

K
so

ft
wa

re
 a

nd
 d

is
k

dr
iv

es
, S

ci
en

ti
fi

c
Am

er
ic

an
, S

ep
te

m
be

r
19

99
.

Lee, Berkeley 14

Diagnosis: Interacting Threads are Not
Compositional

An aggregation
of threads is not
a thread.

What is it?

Many software
failures are due
to this ill-
defined
composition.

8

Lee, Berkeley 15

Better Concurrency Models

Better concurrency models exist.

We are building the foundations of a family of such
models that we call actor-oriented models.

Semantics of distributed discrete-event systems
Process networks & algebras
Hybrid systems
Models and meta models for model-integrated computing

Lee, Berkeley 16

What is an Actor-Oriented MoC?

Actor oriented:

actor name

data (state)

ports

Input data

parameters

Output data

What flows through
an object is

streams of data

class name

data

methods

call return

What flows through
an object is

sequential control

Traditional component interactions:

9

Lee, Berkeley 17

Ptolemy II: A Laboratory for Experimenting with
Actor-Oriented Models of Computation

Director from a library
defines component
interaction semantics

Large, domain-polymorphic
component library.

Basic Ptolemy II infrastructure:

Visual editor supporting an abstract syntax

Type system
for transported
data

Lee, Berkeley 18

Models of Computation
Implemented in Ptolemy II

CI – Push/pull component interaction
Click – Push/pull with method invocation
CSP – concurrent threads with rendezvous
CT – continuous-time modeling
DE – discrete-event systems
DDE – distributed discrete events
DDF – Dynamic dataflow
DPN – distributed process networks
DT – discrete time (cycle driven)
FSM – finite state machines
Giotto – synchronous periodic
GR – 2-D and 3-D graphics
PN – process networks
SDF – synchronous dataflow
SR – synchronous/reactive
TM – timed multitasking

Most of
these are
actor
oriented.

10

Lee, Berkeley 19

Models of Computation
Implemented in Ptolemy II

CI – Push/pull component interaction
Click – Push/pull with method invocation
CSP – concurrent threads with rendezvous
CT – continuous-time modeling
DE – discrete-event systems
DDE – distributed discrete events
DDF – Dynamic dataflow
DPN – distributed process networks
DT – discrete time (cycle driven)
FSM – finite state machines
Giotto – synchronous periodic
GR – 2-D and 3-D graphics
PN – process networks
SDF – synchronous dataflow
SR – synchronous/reactive
TM – timed multitasking

Lee, Berkeley 20

Example Model of Computation:
Discrete Events (DE)

DE Director implements
timed semantics using an
event queue

Event source

Time line

Reactive actors

Signal

11

Lee, Berkeley 21

Semantics Clears Up Subtleties:
E.g. Simultaneous Events

By default, an actor produces events with the same time as the input
event. But in this example, we expect (and need) for the BooleanSwitch to
“see” the output of the Bernoulli in the same “firing” where it sees the event
from the PoissonClock. Events with identical time stamps are also ordered,
and reactions to such events follow data precedence order.

Lee, Berkeley 22

Semantics Clears Up Subtleties:
E.g. Feedback

Data precedence analysis has to take into account the non-strictness of
this actor (that an output can be produced despite the lack of an input).

12

Lee, Berkeley 23

Semantics Clears Up Subtleties:
E.g. Zeno Systems

DE systems may have
an infinite number of
events in a finite amount
of time. Carefully
constructed semantics
gives these systems
meaning.

Lee, Berkeley 24

A Rough Sense of Discrete-Event
Semantics: Metric Space Formulation

τ2/1),(=yxd
Cantor metric:

where τ is the earliest time where x and y differ.

τ

x

y

The set of signals
with this metric form
a complete metric
space.

Generalizations of this metric handle
multiple events at the same time.

13

Lee, Berkeley 25

Causality in DE

x

x′

y

y′

),(),(xxdyyd ′≤′
Causal:

),(),(xxdyyd ′<′
Strictly causal:

,1<∃δ
Delta causal:

),(),(xxdyyd ′≤′ δ

A delta-causal component is a “contraction map.”

Lee, Berkeley 26

Fixed Point Theorem
(Banach Fixed Point Theorem)

Let (S n = [T → V]n, d) be a complete metric space and f :
S n → S n be a delta causal function. Then f has a unique
fixed point, and for any point s ∈ S n , the following
sequence converges to that fixed point:

s1 = s, s2 = f (s1), s3 = f (s2), …

This means no Zeno!

Current work: Other formulations (using generalized
ultrametric spaces, ordinals, and posets) give meaning to
a broader class of systems.

14

Lee, Berkeley 27

Application of DE Modeling
Wireless Sensor Nets in VisualSense

VisualSense extends
the Ptolemy II discrete-
event domain with
communication between
actors representing
sensor nodes being
mediated by a channel,
which is another actor.

The example at the left
shows a grid of nodes
that relay messages
from an initiator (center)
via a channel that
models a low (but non-
zero) probability of long
range links being viable.

Lee, Berkeley 28

Example of Current Research Challenges

Use distributed discrete-event systems as a timed model of
computation for embedded software in unreliable, sporadically
connected networks, such as wireless sensor networks.

The most interesting possibilities are based on distributed
consensus algorithms (as in Croquet, Reed, Lamport).

Research challenges include:
Defining the semantics
Combining the semantics heterogeneously with others. E.g.:

Signal processing for channel modeling
TinyOS for node functionality

Creating efficient runtime environments
Building the design environment

15

Lee, Berkeley 29

Conclusion

Threads are a poor concurrent MoC
There are many better concurrent MoCs
The ones we know are the tip of the iceberg
Ptolemy II is a lab for experimenting with them
This is a rich research area.

http://ptolemy.eecs.berkeley.edu

