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Electronics Technology 
Delivers Timeliness

… and the overlaying abstractions discard it.
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Computation in the 20th Century

f : {0,1}∗ → {0,1}∗
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Computation in the 20th Century

initial state

final state

sequence f : State → State

• Time is irrelevant
• All actions are ordered
• Nontermination is a defect
• Concurrency is an illusion

Alan Turing
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Exploiting the 20th Century Abstraction

Programming languages
Debuggers
Virtual memory
Caches
Dynamic dispatch
Speculative execution
Power management (voltage scaling)
Memory management (garbage collection)
Just-in-time (JIT) compilation
Multitasking (threads and processes)
Networking (TCP)
Theory (complexity)
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What about timeliness?

Moore’s 
law has 
saved us!
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In Core Software Abstractions:
Real-Time is Not

Time is not in the semantics of programs.
Have to step outside the semantics to specify timing.

Timing is a consequence of implementation not a 
property of design.

Measured on the bench
For a particular realization

Resulting systems are brittle.
Small changes have big consequences
Ports to new platforms require redesign
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The Myth of WCET
Worst-Case Execution Time

True WCET can be thousands of times bigger 
than actual execution time.

In many implementations, true WCET is not a 
useful number.

Dubious WCET is what is actually used.

Correctness of even safety-critical systems 
depends on WCET being correct.
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What is Done in Practice

Real-time systems are boxes, not software 
services.

Critical real-time systems use idiosyncratic, 
non-mainstream processors (like DSPs).

Designs are bench tested, then encased.
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APOT

The question: What would have to 
change to achieve absolutely, positively 
on time (APOT)?

The answer: nearly everything.
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What to do?

Put time into programming languages
Promising start: Simulink, Giotto, Discrete-event models

Rethink the OS/programming language split
Promising start: TinyOS/nesC

Rethink the hardware/software split
Promising start: FPGAs with programmable cores

Memory hierarchy with predictability
Promising start: Scratchpad memories vs. caches

Memory management with predictability
Promising start: Bounded pause time garbage collection

Predictable, controllable deep pipelines
Promising start: Pipeline interleaving + stream-oriented languages

Predictable, controllable, understandable concurrency
Promising start: Synchronous languages, SCADE

Networks with timing
Promising start: Time triggered architectures, time synchronization

Computational dynamical systems theory
Promising start: Hybrid systems, schedulability analysis
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Recall: Computation in the 20th Century

f : {0,1}∗ → {0,1}∗
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Computation in the 21st Century

f : [T → {0,1}∗]P → [T → {0,1}∗]P

…where T is a set representing time, 
precedence ordering, causality, 
synchronization, etc.
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A Consequence: Component Abstractions 
Need to Change

Actor oriented:

actor name

data (state)

ports

Input data

parameters

Output data

What flows through 
an object is 

streams of data

class name

data

methods

call return

What flows through 
an object is 

sequential control

Object-oriented:

Stuff happens to objects

Actors make things happen
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The First (?) Actor-Oriented Platform
The On-Line Graphical Specification of Computer Procedures
W. R. Sutherland, Ph.D. Thesis, MIT, 1966

MIT Lincoln Labs TX-2 Computer Bert Sutherland with a light pen

Partially constructed actor-oriented model with 
a class definition (top) and instance (below).

Bert Sutherland used the first acknowledged object-
oriented framework (Sketchpad, created by his brother, 
Ivan Sutherland) to create the first actor-oriented 
programming framework.
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Your Speaker in 1966
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Modern Examples of Actor-Oriented 
Platforms

Simulink (The MathWorks)
LabVIEW (National Instruments)
Modelica (Linkoping)
OPNET (Opnet Technologies)
Giotto and xGiotto (UC Berkeley)
Polis & Metropolis (UC Berkeley)
Gabriel, Ptolemy, and Ptolemy II (UC Berkeley)
OCP, open control platform (Boeing)
GME, actor-oriented meta-modeling (Vanderbilt)
SPW, signal processing worksystem (Cadence)
System studio (Synopsys)
ROOM, real-time object-oriented modeling (Rational)
Easy5 (Boeing)
Port-based objects (U of Maryland)
I/O automata (MIT)
VHDL, Verilog, SystemC (Various)
…
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Ptolemy II: Our Laboratory for Actor-Oriented 
Models of Computation

Director from an 
extensible library 
defines component 
interaction semantics or 
“model of computation.”

Extensile, behaviorally-
polymorphic component 
library.

Visual editor supporting an abstract syntax

Type system 
for transported 
data

Concurrency management supporting 
dynamic model structure.
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Models of Computation
Implemented in Ptolemy II

CI – Push/pull component interaction
Click – Push/pull with method invocation
CSP – concurrent threads with rendezvous
CT – continuous-time modeling
DE – discrete-event systems
DDE – distributed discrete events
DDF – Dynamic dataflow
DPN – distributed process networks
DT – discrete time (cycle driven) 
FSM – finite state machines
Giotto – synchronous periodic
GR – 2-D and 3-D graphics
PN – process networks
SDF – synchronous dataflow
SR – synchronous/reactive
TM – timed multitasking

Most of 
these are 
actor 
oriented.
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A New Foundation for Computation

f : [T → {0,1}∗]P → [T → {0,1}∗]P

…where T is a set representing time, 
precedence ordering, causality, 
synchronization, etc.
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A Start on a 21st Century Theory of 
Computation: The Tagged Signal Model

[Lee & Sangiovanni-Vincentelli, 1998]

A set of values V  and a set of tags T
An event is e ∈ T × V
A signal s is a set of events. I.e. s ⊂ T × V
A functional signal is a (partial) function
s: T → V
The set of all signals S = 2T × V

Related models:
Interaction Categories [Abramsky, 1995]
Interaction Semantics [Talcott, 1996]
Abstract Behavioral Types [Arbab, 2005]
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Actors, Ports, and Behaviors

An actor has a set of ports P

A behavior is a function σ: PA → S

An actor is a set of behaviors A ⊂ [PA → S ] = S PA

1p

2p

3p

4p
A PA = { p1, p2, p3, p4 }
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Actor Composition

Composition is simple intersection
(of sets of functions)

21 AAA ∧=

1p 2p

3p 4p
1A P1 = { p1, p2}

2A P2 = { p3, p4}

][} and |{ 2121 21
SPAAAAA PP →⊂∈↓∈↓=∧= σσσ

P = P1 ∪P2
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Connectors

Connectors are trivial actors.

cAAA ∧∧= 21

1p 2p 3p 4p
1A

P1 = { p1, p2}

2A

P2 = { p3, p4}

)()(,,,],[ 2121 ppPppcSPc cc σσσ =∈∀∈∀→⊂

Pc = { p2, p3}
c

A
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Tagged Signal Model Gives a Fixed-Point 
Semantics to Arbitrary Composition
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Tagged Signal Model can be used on a 
Wide Variety of Concurrent and Timed 
Models of Computation

CSP – concurrent threads with rendezvous
CT – continuous-time modeling
DE – discrete-event systems
DDF – Dynamic dataflow
DT – discrete time
Giotto – synchronous periodic
PN – process networks
SDF – synchronous dataflow
SR – synchronous/reactive
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Application of this Theory of Computation:
Discrete-Event Systems

CI – Push/pull component interaction
Click – Push/pull with method invocation
CSP – concurrent threads with rendezvous
CT – continuous-time modeling
DE – discrete-event systems
DDE – distributed discrete events
DDF – Dynamic dataflow
DPN – distributed process networks
DT – discrete time (cycle driven) 
FSM – finite state machines
Giotto – synchronous periodic
GR – 2-D and 3-D graphics
PN – process networks
SDF – synchronous dataflow
SR – synchronous/reactive
TM – timed multitasking
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Discrete Events (DE): A Timed Concurrent 
Model of Computation

DE Director implements 
timed semantics using an 
event queue

Event source

Time line

Reactive actors

Signal
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Semantics Clears Up Subtleties: 
Simultaneous Events

By default, an actor produces events with the same time as the input 
event. But in this example, we expect (and need) for the BooleanSwitch to 
“see” the output of the Bernoulli in the same “firing” where it sees the event 
from the PoissonClock. Events with identical time stamps are also ordered, 
and reactions to such events follow data precedence order.
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Semantics Clears Up Subtleties: 
Feedback

Data precedence analysis has to take into account the non-strictness of 
this actor (that an output can be produced despite the lack of an input).
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Semantics Clears Up Subtleties: 
Zeno Systems

DE systems may have 
an infinite number of 
events in a finite amount 
of time. Carefully 
constructed semantics 
gives these systems 
meaning.
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Example of Current Research Challenges

Use distributed discrete-event systems as a timed model of 
computation for embedded software in unreliable, sporadically 
connected networks, such as wireless sensor networks.

The most interesting possibilities are based on distributed 
consensus algorithms (as in Croquet, Reed, Lamport).

Research challenges include:
Defining the semantics
Combining the semantics heterogeneously with others. E.g.:

Signal processing for channel modeling
TinyOS for node functionality

Creating efficient runtime environments
Building the design environment
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Current Projects in the Ptolemy Group

Abstract semantics (Cataldo, Liu, Matsikoudis, Zheng)
Behavioral polymorphism
Actor semantics (prefire, fire, postfire)
Compositional directors
Time semantics
Causality interfaces

Distributed computing (Feng, Zhao)
Robust distributed consensus
Data coherence (distributed caches)
Time synchronization

Real-time software (Bandyopadhyay, Cheong, Zhou)
Time-based models vs. dataflow models
Deterministic, understandable multitasking
Memory hierarchy with scratchpad memory
Code generation

Hybrid systems (Cataldo, Zheng)
Operational semantics
Stochastic hybrid systems
Aspect-oriented multi-view modeling
Code generation
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Conclusion

The time is right to create the 21-st 
century theory of (embedded) computing.
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