
Building Unreliable Systems
out of Reliable Components:
The Real Time Story

Edward A. Lee
Professor, Chair of EE, and Associate Chair of EECS
CHESS: Center for Hybrid and Embedded Software Systems
UC Berkeley

Shannon Lecture
IEEE-Computer Society, Silicon Valley Chapter
Stanford University, November 17, 2005.

Lee, Berkeley 2

Electronics Technology
Delivers Timeliness

… and the overlaying abstractions discard it.

Lee, Berkeley 3

Computation in the 20th Century

f : {0,1}∗ → {0,1}∗

Lee, Berkeley 4

Computation in the 20th Century

initial state

final state

sequence f : State → State

• Time is irrelevant
• All actions are ordered
• Nontermination is a defect
• Concurrency is an illusion

Alan Turing

Lee, Berkeley 5

Exploiting the 20th Century Abstraction

Programming languages
Debuggers
Virtual memory
Caches
Dynamic dispatch
Speculative execution
Power management (voltage scaling)
Memory management (garbage collection)
Just-in-time (JIT) compilation
Multitasking (threads and processes)
Networking (TCP)
Theory (complexity)

Lee, Berkeley 6

What about timeliness?

Moore’s
law has
saved us!

Lee, Berkeley 7

In Core Software Abstractions:
Real-Time is Not

Time is not in the semantics of programs.
Have to step outside the semantics to specify timing.

Timing is a consequence of implementation not a
property of design.

Measured on the bench
For a particular realization

Resulting systems are brittle.
Small changes have big consequences
Ports to new platforms require redesign

Lee, Berkeley 8

The Myth of WCET
Worst-Case Execution Time

True WCET can be thousands of times bigger
than actual execution time.

In many implementations, true WCET is not a
useful number.

Dubious WCET is what is actually used.

Correctness of even safety-critical systems
depends on WCET being correct.

Lee, Berkeley 9

What is Done in Practice

Real-time systems are boxes, not software
services.

Critical real-time systems use idiosyncratic,
non-mainstream processors (like DSPs).

Designs are bench tested, then encased.

Lee, Berkeley 10

APOT

The question: What would have to
change to achieve absolutely, positively
on time (APOT)?

The answer: nearly everything.

Lee, Berkeley 11

What to do?

Put time into programming languages
Promising start: Simulink, Giotto, Discrete-event models

Rethink the OS/programming language split
Promising start: TinyOS/nesC

Rethink the hardware/software split
Promising start: FPGAs with programmable cores

Memory hierarchy with predictability
Promising start: Scratchpad memories vs. caches

Memory management with predictability
Promising start: Bounded pause time garbage collection

Predictable, controllable deep pipelines
Promising start: Pipeline interleaving + stream-oriented languages

Predictable, controllable, understandable concurrency
Promising start: Synchronous languages, SCADE

Networks with timing
Promising start: Time triggered architectures, time synchronization

Computational dynamical systems theory
Promising start: Hybrid systems, schedulability analysis

Lee, Berkeley 12

Recall: Computation in the 20th Century

f : {0,1}∗ → {0,1}∗

Lee, Berkeley 13

Computation in the 21st Century

f : [T → {0,1}∗]P → [T → {0,1}∗]P

…where T is a set representing time,
precedence ordering, causality,
synchronization, etc.

Lee, Berkeley 14

A Consequence: Component Abstractions
Need to Change

Actor oriented:

actor name

data (state)

ports

Input data

parameters

Output data

What flows through
an object is

streams of data

class name

data

methods

call return

What flows through
an object is

sequential control

Object-oriented:

Stuff happens to objects

Actors make things happen

Lee, Berkeley 15

The First (?) Actor-Oriented Platform
The On-Line Graphical Specification of Computer Procedures
W. R. Sutherland, Ph.D. Thesis, MIT, 1966

MIT Lincoln Labs TX-2 Computer Bert Sutherland with a light pen

Partially constructed actor-oriented model with
a class definition (top) and instance (below).

Bert Sutherland used the first acknowledged object-
oriented framework (Sketchpad, created by his brother,
Ivan Sutherland) to create the first actor-oriented
programming framework.

Lee, Berkeley 16

Your Speaker in 1966

Lee, Berkeley 17

Modern Examples of Actor-Oriented
Platforms

Simulink (The MathWorks)
LabVIEW (National Instruments)
Modelica (Linkoping)
OPNET (Opnet Technologies)
Giotto and xGiotto (UC Berkeley)
Polis & Metropolis (UC Berkeley)
Gabriel, Ptolemy, and Ptolemy II (UC Berkeley)
OCP, open control platform (Boeing)
GME, actor-oriented meta-modeling (Vanderbilt)
SPW, signal processing worksystem (Cadence)
System studio (Synopsys)
ROOM, real-time object-oriented modeling (Rational)
Easy5 (Boeing)
Port-based objects (U of Maryland)
I/O automata (MIT)
VHDL, Verilog, SystemC (Various)
…

Lee, Berkeley 18

Ptolemy II: Our Laboratory for Actor-Oriented
Models of Computation

Director from an
extensible library
defines component
interaction semantics or
“model of computation.”

Extensile, behaviorally-
polymorphic component
library.

Visual editor supporting an abstract syntax

Type system
for transported
data

Concurrency management supporting
dynamic model structure.

Lee, Berkeley 19

Models of Computation
Implemented in Ptolemy II

CI – Push/pull component interaction
Click – Push/pull with method invocation
CSP – concurrent threads with rendezvous
CT – continuous-time modeling
DE – discrete-event systems
DDE – distributed discrete events
DDF – Dynamic dataflow
DPN – distributed process networks
DT – discrete time (cycle driven)
FSM – finite state machines
Giotto – synchronous periodic
GR – 2-D and 3-D graphics
PN – process networks
SDF – synchronous dataflow
SR – synchronous/reactive
TM – timed multitasking

Most of
these are
actor
oriented.

Lee, Berkeley 20

A New Foundation for Computation

f : [T → {0,1}∗]P → [T → {0,1}∗]P

…where T is a set representing time,
precedence ordering, causality,
synchronization, etc.

Lee, Berkeley 21

A Start on a 21st Century Theory of
Computation: The Tagged Signal Model

[Lee & Sangiovanni-Vincentelli, 1998]

A set of values V and a set of tags T
An event is e ∈ T × V
A signal s is a set of events. I.e. s ⊂ T × V
A functional signal is a (partial) function
s: T → V
The set of all signals S = 2T × V

Related models:
Interaction Categories [Abramsky, 1995]
Interaction Semantics [Talcott, 1996]
Abstract Behavioral Types [Arbab, 2005]

Lee, Berkeley 22

Actors, Ports, and Behaviors

An actor has a set of ports P

A behavior is a function σ: PA → S

An actor is a set of behaviors A ⊂ [PA → S] = S PA

1p

2p

3p

4p
A PA = { p1, p2, p3, p4 }

Lee, Berkeley 23

Actor Composition

Composition is simple intersection
(of sets of functions)

21 AAA ∧=

1p 2p

3p 4p
1A P1 = { p1, p2}

2A P2 = { p3, p4}

][} and |{ 2121 21
SPAAAAA PP →⊂∈↓∈↓=∧= σσσ

P = P1 ∪P2

Lee, Berkeley 24

Connectors

Connectors are trivial actors.

cAAA ∧∧= 21

1p 2p 3p 4p
1A

P1 = { p1, p2}

2A

P2 = { p3, p4}

)()(,,,],[2121 ppPppcSPc cc σσσ =∈∀∈∀→⊂

Pc = { p2, p3}
c

A

Lee, Berkeley 25

Tagged Signal Model Gives a Fixed-Point
Semantics to Arbitrary Composition

Lee, Berkeley 26

Tagged Signal Model can be used on a
Wide Variety of Concurrent and Timed
Models of Computation

CSP – concurrent threads with rendezvous
CT – continuous-time modeling
DE – discrete-event systems
DDF – Dynamic dataflow
DT – discrete time
Giotto – synchronous periodic
PN – process networks
SDF – synchronous dataflow
SR – synchronous/reactive

Lee, Berkeley 27

Application of this Theory of Computation:
Discrete-Event Systems

CI – Push/pull component interaction
Click – Push/pull with method invocation
CSP – concurrent threads with rendezvous
CT – continuous-time modeling
DE – discrete-event systems
DDE – distributed discrete events
DDF – Dynamic dataflow
DPN – distributed process networks
DT – discrete time (cycle driven)
FSM – finite state machines
Giotto – synchronous periodic
GR – 2-D and 3-D graphics
PN – process networks
SDF – synchronous dataflow
SR – synchronous/reactive
TM – timed multitasking

Lee, Berkeley 28

Discrete Events (DE): A Timed Concurrent
Model of Computation

DE Director implements
timed semantics using an
event queue

Event source

Time line

Reactive actors

Signal

Lee, Berkeley 29

Semantics Clears Up Subtleties:
Simultaneous Events

By default, an actor produces events with the same time as the input
event. But in this example, we expect (and need) for the BooleanSwitch to
“see” the output of the Bernoulli in the same “firing” where it sees the event
from the PoissonClock. Events with identical time stamps are also ordered,
and reactions to such events follow data precedence order.

Lee, Berkeley 30

Semantics Clears Up Subtleties:
Feedback

Data precedence analysis has to take into account the non-strictness of
this actor (that an output can be produced despite the lack of an input).

Lee, Berkeley 31

Semantics Clears Up Subtleties:
Zeno Systems

DE systems may have
an infinite number of
events in a finite amount
of time. Carefully
constructed semantics
gives these systems
meaning.

Lee, Berkeley 32

Example of Current Research Challenges

Use distributed discrete-event systems as a timed model of
computation for embedded software in unreliable, sporadically
connected networks, such as wireless sensor networks.

The most interesting possibilities are based on distributed
consensus algorithms (as in Croquet, Reed, Lamport).

Research challenges include:
Defining the semantics
Combining the semantics heterogeneously with others. E.g.:

Signal processing for channel modeling
TinyOS for node functionality

Creating efficient runtime environments
Building the design environment

Lee, Berkeley 33

Current Projects in the Ptolemy Group

Abstract semantics (Cataldo, Liu, Matsikoudis, Zheng)
Behavioral polymorphism
Actor semantics (prefire, fire, postfire)
Compositional directors
Time semantics
Causality interfaces

Distributed computing (Feng, Zhao)
Robust distributed consensus
Data coherence (distributed caches)
Time synchronization

Real-time software (Bandyopadhyay, Cheong, Zhou)
Time-based models vs. dataflow models
Deterministic, understandable multitasking
Memory hierarchy with scratchpad memory
Code generation

Hybrid systems (Cataldo, Zheng)
Operational semantics
Stochastic hybrid systems
Aspect-oriented multi-view modeling
Code generation

Lee, Berkeley 34

Conclusion

The time is right to create the 21-st
century theory of (embedded) computing.

	Building Unreliable Systems out of Reliable Components:�The Real Time Story
	Electronics Technology �Delivers Timeliness
	Computation in the 20th Century
	Computation in the 20th Century
	Exploiting the 20th Century Abstraction
	What about timeliness?
	In Core Software Abstractions:�Real-Time is Not
	The Myth of WCET�Worst-Case Execution Time
	What is Done in Practice
	APOT
	What to do?
	Recall: Computation in the 20th Century
	Computation in the 21st Century
	A Consequence: Component Abstractions Need to Change
	The First (?) Actor-Oriented Platform�The On-Line Graphical Specification of Computer Procedures�W. R. Sutherland, Ph.D. Thesi
	Your Speaker in 1966
	Modern Examples of Actor-Oriented Platforms
	Ptolemy II: Our Laboratory for Actor-Oriented Models of Computation
	Models of Computation�Implemented in Ptolemy II
	A New Foundation for Computation
	A Start on a 21st Century Theory of Computation: The Tagged Signal Model
	Actors, Ports, and Behaviors
	Actor Composition
	Connectors
	Tagged Signal Model Gives a Fixed-Point Semantics to Arbitrary Composition
	Tagged Signal Model can be used on a Wide Variety of Concurrent and Timed Models of Computation
	Application of this Theory of Computation:�Discrete-Event Systems
	Discrete Events (DE): A Timed Concurrent Model of Computation
	Semantics Clears Up Subtleties: �Simultaneous Events
	Semantics Clears Up Subtleties: �Feedback
	Semantics Clears Up Subtleties: �Zeno Systems
	Example of Current Research Challenges
	Current Projects in the Ptolemy Group
	Conclusion

