
UNIVERSITY OF CALIFORNIA AT BERKELEY

Creating Custom Stars Derived from TclScript

defstar {
name {MyFancyWidgetStar}
derivedFrom {TclScript}

Add your own parameters:
state {

name{howManyWidgets}
type{int}
default{10}

}

Hide the tcl_file parameter:
setup {

tcl_file = “~me/my_directory/myfile.tcl”;
tcl_file.clearAttributes(A_SETTABLE);

}

Your parameters are accessible in your Tcl script:
set n [set ${starID}(howManyWidgets)]

UNIVERSITY OF CALIFORNIA AT BERKELEY

Another Example

This procedure is invoked every time the star fires,
thus providing a synchronized run
proc goTcl_$starID {starID} {

Suppose we know that the star has two inputs.
We can read them and add them together as follows.
set inputVals [grabInputs_$starID]

Split the input list into individual elements
set xin [lindex $inputVals 0]
set yin [lindex $inputVals 1]

Add the numbers and send to the output
setOutputs_$starID [expr $xin+$yin]

}

Note that Tcl is not a good way to do arithmetic, in general.
Too slow. Also, the above star should iterate over however
many inputs are actually connected.

UNIVERSITY OF CALIFORNIA AT BERKELEY

Parameters

A global array with the name given by the value of the starID
is created to store the following information:

• [set ${starID}(numInputs)] : The number of inputs actually connected to the
star.

• [set ${starID}(numOutputs)]: The number of outputs actually connected to
the star.

• [set ${starID}(tcl_file)]: The name of the Tcl file used by the star.

In addition, a set of procedures are provided for convenience
and for uniformity of appearance:

• ptkExpanEnvVar

• ptkImportantMessage

• ptkMakeButton

• ptkMakeEntry

• ptkMakeMeter

• ptkMakeScale

UNIVERSITY OF CALIFORNIA AT BERKELEY

Allowing Repeated Runs

set s $ptkControlPanel.middle.button_$starID

Add the buttons only if they don’t already exist
if {! [winfo exists $s]} {

pack [button $s -text “PUSH ME”]
bind $s <ButtonPress-1> “ setOutputs_$starID 1.0”
bind $s <ButtonRelease-1> “ setOutputs_$starID 0.0”

}
unset s

• buttons are only created if they don’t already exist.

UNIVERSITY OF CALIFORNIA AT BERKELEY

Putting the Button in the Control Panel

Use a variable to store the long window name
set s $ptkControlPanel.middle.button_$starID

Put a button in the window
pack [button $s -text “PUSH ME”]

Bind an action to pushing the button
bind $s <ButtonPress-1> “ setOutputs_$starID 1.0”
bind $s <ButtonRelease-1> “ setOutputs_$starID 0.0”

Notes:
• no more name conflict (try using more than one instance).

UNIVERSITY OF CALIFORNIA AT BERKELEY

An Awkward way to be Quasi-Object-Oriented

Global variables that are set before your script is sourced:

• starID (a unique identifier for your star)

• ptkControlPanel (the name of the control panel window)

Star procedures you can call from your script

• setOutputs_$starID

• grabInputs_$starID

Procedures you can define in your script

• goTcl_$starID

• wrapupTcl_$starID

• destructorTcl_$starID

UNIVERSITY OF CALIFORNIA AT BERKELEY

Example

Create an empty top-level window
toplevel .top

Put a button in the window
pack [button .top.b -text “PUSH ME”]

Bind an action to pushing the button
bind .top.b <ButtonPress-1> “ setOutputs_$starID 1.0”
bind .top.b <ButtonRelease-1> “ setOutputs_$starID 0.0”

Notes:
• you cannot use more than one instance of this script (name conflict).

• this script fails to remove the window it creates.

• the system runs free, unsynchronized to the button.

UNIVERSITY OF CALIFORNIA AT BERKELEY

TclScript stars

The single parameter is the name of a Tcl file that is sourced
at setup time. The behavior of the star is determined by this
file.

UNIVERSITY OF CALIFORNIA AT BERKELEY

Extending the GUI

Definitions:

• Tcl is an interpreted “tool command language” designed by
John Ousterhout at Berkeley.

• Tk is an associated X window toolkit.

Essential reference:

J. Ousterhout,Tcl and the Tk Toolkit, Addison Wesley, Read-
ing, Mass., 1994.

Tcl and Tk scripts may be invoked by stars and targets.

