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Abstract: The purpose of this paper is to apply methods from geometric mechanics
to the analysis and control of bipedal robotic walkers. We begin by introducing a
generalization of Routhian reduction, functional Routhian Reduction, which allows
for the conserved quantities to be functions of the cyclic variables rather than
constants. Since bipedal robotic walkers are naturally modeled as hybrid systems,
which are inherently nonsmooth, in order to apply this framework to these systems
it is necessary to first extend functional Routhian reduction to a hybrid setting. We
apply this extension, along with potential shaping and controlled symmetries, to
derive a feedback control law that provably results in walking gaits on flat ground
for a three-dimensional bipedal walker given walking gaits in two-dimensions.
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1. INTRODUCTION

Geometric reduction plays an essential role in
understanding physical systems modeled by La-
grangians or Hamiltonians; the simplest being
Routhian reduction first discovered in the 1890’s
(cf. Marsden and Ratiu (1999)). In the case of
Routhian reduction, symmetries in the system
are characterized by cyclic variables, which are
coordinates of the configuration space that do not
appear in the Lagrangian. Using these symme-
tries, one can reduce the dimensionality of the
phase space (by “dividing” out by the symmetries)
and define a corresponding Lagrangian on this
reduced phase space. The main result of geometric
reduction is that we can understand the behavior
of the full-order system in terms of the behavior
of the reduced system and vice versa.

1 This research is supported by the National Science
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In classical geometric reduction the conserved
quantities used to reduce and reconstruct sys-
tems are constants; this indicates that the “cyclic”
variables eliminated when passing to the reduced
phase space are typically uncontrolled. Yet it is
often the case that these variables are the ones of
interest—it may be desirable to control the cyclic
variables while not affecting the reduced order
system. This motivates an extension of Routhian
reduction to the case when the conserved quanti-
ties are functions of the cyclic variables instead of
constants.

These concepts motivate our main goal:

Goal. Develop a feedback control law that
results in walking gaits on flat ground for a
three-dimensional bipedal robotic walker given
walking gaits for a two-dimensional bipedal
robotic walker.

In order to achieve this goal, we begin by con-
sidering Lagrangians that are cyclic except for an



additional non-cyclic term in the potential energy,
i.e., almost-cyclic Lagrangians. When Routhian
reduction is performed with a function (of a cyclic
variable) the result is a Lagrangian on the reduced
phase-space: the functional Routhian. We are able
to show that the dynamics of an almost-cyclic
Lagrangian satisfying certain initial conditions
project to dynamics of the corresponding func-
tional Routhian, and dynamics of the functional
Routhian can be used to reconstruct dynamics of
the full-order system. In order to use this result
to develop control strategies for bipedal walkers,
it first must be generalized to a hybrid setting.
That is, after discussing how to explicitly obtain a
hybrid system model of a bipedal walker (Section
2), we generalize functional Routhian reduction to
a hybrid setting (Section 3), demonstrating that
hybrid flows of the reduced and full order system
are related in a way analogous to the continuous
result.

We then proceed to consider two-dimensional
(2D) bipedal walkers. It is well-known that 2D
bipedal walkers can walk down shallow slopes
without actuation (cf. McGeer (1990), Goswami
et al. (1996)). Spong and Bullo (2005) used
this observation to develop a positional feedback
control strategy that allows for walking on flat
ground. In Section 4, we use these results to obtain
a hybrid system, H s

2D, modeling a 2D bipedal
robot that walks on flat ground.

In Section 5 we consider three-dimensional (3D)
bipedal walkers. Our main result is a positional
feedback control law that produces walking gaits
in three-dimensions. To obtain this controller we
shape the potential energy of the Lagrangian de-
scribing the dynamics of the 3D bipedal walker
so that it becomes an almost-cyclic Lagrangian,
where the cyclic variable is the roll (the unstable
component) of the walker. We are able to con-
trol the roll through our choice of a non-cyclic
term in the potential energy. Since the functional
Routhian hybrid system obtained by reducing this
system is H s

2D, by picking the “correct” function
of the roll, we can force the roll to go to zero
for certain initial conditions. That is, we obtain a
non-trivial set of initial conditions that provably
result in three-dimensional walking. These conclu-
sions are supported by simulations, the code for
which can be found at Ames et al. (2006); proofs
of the theorems stated in this paper can be found
at this location.

2. LAGRANGIAN HYBRID SYSTEMS

We begin this section by defining (simple) hy-
brid systems and hybrid flows (as introduced in
Ames and Sastry (2006)); for more on general
hybrid systems, see Lygeros et al. (2003) and the
references therein. We then turn our attention

to introducing a special class of hybrid systems
that will be important when discussing bipedal
robots: unilaterally constrained Lagrangian hybrid
systems. It will be seen that bipedal robotic walk-
ers are naturally modeled by systems of this form.

Definition 1. A simple hybrid system 3 is a tu-
ple:

H = (D,G, R, f),
where

• D is a smooth manifold, called the domain,
• G is an embedded submanifold of D called

the guard,
• R : G → D is a smooth map called the reset

map (or impact equations),
• f is a vector field or control system (in

which case we call H a controlled hybrid
system) on D, i.e., ẋ = f(x) or ẋ = f(x, u),
respectively.

Hybrid flows. A hybrid flow (or execution) is a
tuple

χH = (Λ, I,C),
where

• Λ = {0, 1, 2, . . .} ⊆ N is a finite or infinite
indexing set.

• I = {Ii}i∈Λ is a hybrid interval where Ii =
[τi, τi+1] if i, i+1 ∈ Λ and IN−1 = [τN−1, τN ]
or [τN−1, τN ) or [τN−1,∞) if |Λ| = N , N
finite. Here, τi, τi+1, τN ∈ R and τi ≤ τi+1.

• C = {ci}i∈Λ is a collection of integral curves
of f , i.e., ċi(t) = f(ci(t)) for all i ∈ Λ.

We require that the following conditions hold for
every i, i + 1 ∈ Λ,

(i) ci(τi+1) ∈ G,
(ii) R(ci(τi+1)) = ci+1(τi+1).

The initial condition for the hybrid flow is c0(τ0).

Lagrangians. Let Q be a configuration space, as-
sumed to be a smooth manifold, and TQ the tan-
gent bundle of Q. In this paper, we will consider
Lagrangians L : TQ → R describing mechanical,
or robotic, systems; that is, Lagrangians given in
coordinates by:

L(q, q̇) =
1
2
q̇T M(q)q̇ − V (q), (1)

where M(q) is the inertial matrix, 1
2 q̇T M(q)q̇

is the kinetic energy and V (q) is the potential
energy. In this case, the Euler-Lagrange equations
yield the equations of motion for the system:

M(q)q̈ + C(q, q̇)q̇ + N(q) = 0,

where C(q, q̇) is the Coriolis matrix (cf. Murray
et al. (1993)) and N(q) = ∂V

∂q (q). The Lagrangian

3 So named because of their simple discrete structure, i.e.,

a simple hybrid system has a single domain, guard and

reset map.



vector field, fL, associated to L takes the familiar
form:

(q̇, q̈) = fL(q, q̇)

=
(
q̇, M(q)−1(−C(q, q̇)q̇ −N(q))

)
Controlled Lagrangians. We will also be inter-
ested in controlled Lagrangians. In this case, the
equations of motion for the system have the form:

M(q)q̈ + C(q, q̇)q̇ + N(q) = Bu,

where we assume that B is an invertible matrix.
The result is a control system of the form:

(q̇, q̈) = fL(q, q̇, u)

=
(
q̇, M(q)−1(−C(q, q̇)q̇ −N(q) + Bu)

)
.

In the future, it will be clear from context whether
for a Lagrangian L we are dealing with a corre-
sponding vector field (q̇, q̈) = fL(q, q̇) or a control
system (q̇, q̈) = fL(q, q̇, u).

Unilateral constraints. It is often the case that
the set of admissible constraints for a mechanical
system is determined by a unilateral constraint
function, which is a smooth function h : Q → R
such that h−1(0) is a manifold, i.e., 0 is a regular
value of h. For bipedal walkers this function is the
height of the non-stance (or swing) foot above the
ground. In this case, we can explicitly construct
the domain and the guard of a hybrid system:

Dh = {(q, q̇) ∈ TQ : h(q) ≥ 0},
Gh = {(q, q̇) ∈ TQ : h(q) = 0 and dhq q̇ < 0},

where in coordinates:

dhq =
(

∂h

∂q1
(q) · · · ∂h

∂qn
(q)

)
.

Definition 2. We say that H = (D,G, R, f)
is a unilaterally constrained Lagrangian hybrid
system w.r.t. a Lagrangian L : TQ → R and
a unilateral constraint function h : Q → R if
D = Dh, G = Gh and f = fL.

Impact Equations. In order to determine the
impact equations (or reset map) for the hybrid
system H , we typically will utilize an additional
constraint function. A kinematic constraint func-
tion is a smooth function Υ : Q → Rυ (υ ≥ 1);
this function usually describes the position of the
end-effector of a kinematic chain, e.g., in the case
of bipedal robots, this is the position of the swing
foot. Using this kinematic constraint function one
obtains a reset map R(q, q̇) = (q, Pq(q̇)), where
Pq : TqQ → TqQ, with

Pq(q̇) = (2)

q̇ −M(q)−1dΥT
q (dΥqM(q)−1dΥT

q )−1dΥq q̇.

This reset map models a perfectly plastic impact
without slipping and was derived using the set-

up in Grizzle et al. (2001) together with block-
diagonal matrix inversion.

3. FUNCTIONAL ROUTHIAN REDUCTION

In this section, we introduce a variation of classical
Routhian reduction termed functional Routhian
reduction. Although the authors are unaware of
similar procedures in the literature, these ideas
certainly are related to the methods introduced
in Bloch et al. (2001).

Shape space. We begin by considering an
abelian Lie group, G, given by:

G = (S1 × S1 × · · · × S1)︸ ︷︷ ︸
m−times

×Rp,

with k = m + p = dim(G); here S1 is the
circle. The starting point for classical Routhian
reduction is a configuration space of the form Q =
S×G, where S is called the shape space; we denote
an element q ∈ Q by q = (θ, ϕ) where θ ∈ S
and ϕ ∈ G. Note that we have a projection map
π : TS × TG → TS where (θ, θ̇, ϕ, ϕ̇) 7→ (θ, θ̇).

Almost-Cyclic Lagrangians. We will be in-
terested (in the context of bipedal walking) in
Lagrangians of a very special form. We say that a
Lagrangian Lλ : TS×TG → R is almost-cyclic if,
in coordinates, it has the form:

Lλ(θ, θ̇, ϕ, ϕ̇) = (3)

1
2

(
θ̇
ϕ̇

)T (
Mθ(θ) 0

0 Mϕ(θ)

) (
θ̇
ϕ̇

)
− Vλ(θ, ϕ),

where

Vλ(θ, ϕ) = Ṽ (θ)− 1
2
λ(ϕ)T M−1

ϕ (θ)λ(ϕ)

for some function λ : G → Rk. Here Mθ(θ) ∈
Rn×n and Mϕ(θ) ∈ Rk×k are both symmetric
positive definite matrices; here n = dim(S).

Momentum maps. Fundamental to reduction
is the notion of a momentum map J : TQ → Rk,
which makes explicit the conserved quantities in
the system. In the framework we are considering
here,

J(θ, θ̇, ϕ, ϕ̇) =
∂Lλ

∂ϕ̇
(θ, θ̇, ϕ, ϕ̇) = Mϕ(θ)ϕ̇.

Typically, one sets the momentum map equal to
a constant µ ∈ Rk; this defines the conserved
quantities of the system. In our framework, we
will breach this convention and set J equal to
a function: this motivates the name functional
Routhian reduction.

Functional Routhians. For an almost-cyclic
Lagrangian Lλ as given in (3), define the corre-
sponding functional Routhian L̃ : TS → R by:

L̃(θ, θ̇) =
[
Lλ(θ, θ̇, ϕ, ϕ̇)− λ(ϕ)T ϕ̇

]∣∣∣
J(θ,θ̇,ϕ,ϕ̇)=λ(ϕ)



Because J(θ, θ̇, ϕ, ϕ̇) = λ(ϕ) implies that ϕ̇ =
M−1

ϕ (θ)λ(ϕ), by direct calculation, the functional
Routhian is given by:

L̃(θ, θ̇) =
1
2
θ̇T Mθ(θ)θ̇ − Ṽ (θ).

That is, any Lagrangian of the form given in
(1) is the functional Routhian of an almost-cyclic
Lagrangian.

We can relate solutions of the Lagrangian vector
field f

L̃
to solutions of the Lagrangian vector field

fLλ
and vice versa (in a way analogous to the

classical Routhian reduction result, see Marsden
and Ratiu (1999)).

Theorem 1. Let Lλ be an almost-cyclic La-
grangian, and L̃ the corresponding functional
Routhian. Then (θ(t), θ̇(t), ϕ(t), ϕ̇(t)) is a solution
to the vector field fLλ

on [t0, tF ] with

ϕ̇(t0) = M−1
ϕ (θ(t0))λ(ϕ(t0)),

if and only if (θ(t), θ̇(t)) is a solution to the vector
field f

L̃
and (ϕ(t), ϕ̇(t)) satisfies:

ϕ̇(t) = M−1
ϕ (θ(t))λ(ϕ(t)).

We now have the necessary material needed to
introduce our framework for hybrid functional
Routhian reduction.

Definition 3. If Hλ = (Dh, Gh, R, fLλ
) is a uni-

laterally constrained Lagrangian hybrid system,
Hλ is almost-cyclic if the following conditions
hold:

• Q = S ×G
• h : Q = S ×G → R is cyclic,

∂h

∂ϕ
= 0,

and so can be viewed as a function h̃ : S → R.
• Lλ : TS × TG → R is almost-cyclic,
• πϕ(R(θ, θ̇, ϕ, ϕ̇)) = ϕ, where πϕ is the pro-

jection onto the ϕ-component.
• The following diagram commutes:

Rk

Gh
R -

J |Gh
-

Dh

J |Dh

�

Gh̃

π
? R̃ - Dh̃

π
?

for some map R̃ : Gh̃ → Dh̃.

Hybrid functional Routhian. If Hλ =
(Dh, Gh, R, fLλ

) is an almost-cyclic unilaterally
constrained Lagrangian hybrid system, we can
associate to this hybrid system a reduced hybrid

system, termed a functional Routhian hybrid sys-
tem, denoted by H̃ and defined by:

H̃ := (Dh̃, Gh̃, R̃, f
L̃
).

The following theorem quantifies the relationship
between Hλ and H̃ .

Theorem 2. Let Hλ be a cyclic unilaterally con-
strained Lagrangian hybrid system, and H̃ the as-
sociated functional Routhian hybrid system. Then
χHλ = (Λ, I, {(θi, θ̇i, ϕi, ϕ̇i)}i∈Λ) is a hybrid flow
of Hλ with

ϕ̇0(τ0) = M−1
ϕ (θ0(τ0))λ(ϕ0(τ0)),

if and only if χH̃ = (Λ, I, {θi, θ̇i}i∈Λ) is a hybrid
flow of H̃ and {(ϕi, ϕ̇i)}i∈Λ satisfies:

ϕ̇i(t) = M−1
ϕ (θi(t))λ(ϕi(t)),

ϕi+1(τi+1) = ϕi(τi+1).

4. CONTROLLED SYMMETRIES APPLIED
TO 2D BIPEDAL WALKERS

In this section, we begin by studying the standard
model of a two-dimensional bipedal robotic walker
walking down a slope (walkers of this form have
been well-studied by McGeer (1990) and Goswami
et al. (1996), to name a few). We then use con-
trolled symmetries to shape the potential energy
of the Lagrangian describing this model so that it
can walk stably on flat ground.

l = a+ b

b

a

M

m m

y

z

x

θs
−θns

θ

γ

Fig. 1. Two-dimensional bipedal robot.

2D biped model. We begin by introducing a
model describing a controlled bipedal robot walk-
ing in two-dimensions down a slope of γ degrees.
That is, we explicitly construct the controlled
hybrid system

H γ
2D = (Dγ

2D, Gγ
2D, R2D, f2D).

describing this system.

The configuration space for the 2D biped is Q2D =
S2 and the Lagrangian describing this system is:

L2D(θ, θ̇) =
1
2
θ̇T M2D(θ)θ̇ − V2D(θ),

where θ = (θns, θs)T . Table 1 gives M2D and V2D.



Using the controlled Euler-Lagrange equations,
the dynamics for the walker are given by:

M2D(θ)θ̈ + C2D(θ, θ̇)θ̇ + N2D(θ) = B2Du.

These equations yield the control system: (θ̇, θ̈) =
f2D(θ, θ̇, u) := fL2D(θ, θ̇, u).

We construct Dγ
2D and Gγ

2D by applying the
methods outlined in Section 2 to the unilateral
constraint function: hγ

2D(θ) = cos(θs)− cos(θns) +
(sin(θs) − sin(θns)) tan(γ), which gives the height
of the foot of the walker above the slope with
normalized unit leg length.

Finally, the reset map R2D is given by:

R2D(θ, θ̇) =
(
S2Dθ, P2D(θ)θ̇

)
,

where S2D and P2D are given in Table 1. Note that
this reset map was computed using the methods
outlined in Section 2 coupled with the condition
that the stance foot is fixed (see Grizzle et al.
(2001) for more details).

Setting the control u = 0 yields the standard
model of a 2D passive bipedal robot walking
down a slope. For such a model, it has been
well-established (for example, in Goswami et al.
(1996)) that for certain γ, H γ

2D has a walking gait.
For the rest of the paper we pick, once and for all,
such a γ.

Controlled Symmetries. Controlled symme-
tries were introduced in Spong and Bullo (2002)
and later in Spong and Bullo (2005) in order
to shape the potential of bipedal robotic walkers
to allow for stable walking on flat ground based
on stable walking down a slope. We will briefly
apply the results of this work to derive a feedback
control law that yields a hybrid system, H s

2D, with
stable walking gaits on flat ground.

The main idea of Spong and Bullo (2005) is
that inherent symmetries in H γ

2D can be used to
“rotate the world” (via a group action) to allow
for walking on flat ground. Specifically, we have a
group action Φ : S1 ×Q2D → Q2D denoted by:

Φγ(θ) := (θns − γ, θs − γ)T ,

for γ ∈ S1. Using this, define the following feed-
back control law:

u = Kγ
2D(θ) = B−1

2D

∂

∂θ
(V2D(θ)− V2D(Φγ(θ))) .

Applying this control law to the control system
(q̇, q̈) = f2D(θ, θ̇, u) yields the dynamical system:

(θ̇, θ̈) = fγ
2D(θ, θ̇) := f2D(θ, θ̇, Kγ

2D(θ))

which is just the vector field associated to the
Lagrangian

Lγ
2D(θ, θ̇) =

1
2
θ̇T M2D(θ)θ̇ − V γ

2D(θ),

where V γ
2D(θ) := V2D(Φγ(θ)). That is, fγ

2D = fLγ
2D

.

Now define, for some γ that results in stable
passive walking for H γ

2D,

H s
2D := (D0

2D, G0
2D, R2D, fγ

2D),

which is a unilaterally constrained Lagrangian
hybrid system. In particular, it is related to H γ

2D

as follows:

Theorem 3. (Spong and Bullo (2005)). χH s
2D =

(Λ, I, {(Φγ(θi), θ̇i)}i∈Λ) is a hybrid flow of H s
2D

if χH γ
2D = (Λ, I, {(θi, θ̇i)}i∈Λ) is a hybrid flow of

H γ
2D.

Theorem 3 implies that if (θ0(τ0), θ̇0(τ0)) is the
initial condition of H γ

2D, then (Φγ(θ0(τ0)), θ̇0(τ0))
is the initial condition of H s

2D. That is, if H γ
2D

walks (stably) on a slope, then H s
2D walks (stably)

on flat ground.

5. FUNCTIONAL ROUTHIAN REDUCTION
APPLIED TO 3D BIPEDAL WALKERS

In this section we construct a control law that
results in stable walking for a simple model of a
3D bipedal robotic walker. In order to achieve this
goal, we shape the potential energy of this model
via feedback control so that when hybrid func-
tional Routhian reduction is carried out, the result
is the 2D walker H s

2D introduced in the previous
section. We utilize Theorem 2 to demonstrate that
this implies that the 3D walker has a walking gait
on flat ground (in three dimensions). This is the
main contribution of this work.

l = a+ b

b
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Fig. 2. Three-dimensional bipedal robot.

3D biped model. We now introduce the model
describing a controlled bipedal robot walking in
three-dimensions on flat ground, i.e., we will ex-
plicitly construct the controlled hybrid system
describing this system:

H3D = (D3D, G3D, R3D, f3D).

The configuration space for the 3D biped is Q3D =
S2 × S and the Lagrangian describing this system
is given by:



Additional equations for H2D:

M2D(θ) =

 l2m

4
−

l2m cos(θs − θns)

2

−
l2m cos(θs − θns)

2

l2m

4
+ l2(m + M)

 S2D =

(
0 1

1 0

)

V2D(θ) =
1

2
gl((3m + 2M) cos(θs)−m cos(θns)) B2D =

(
−1 0
1 1

)
P2D(θ) =

1

−3m− 4M + 2m cos(2(θs − θns))

(
2m cos(θns − θs) m− 4(m + M) cos(2(θns − θs))

m −2(m + 2M) cos(θns − θs)

)
Additional equations for H3D:

m3D(θ) =
1

8
(l2(6m + 4M) + l2(m cos(2θns)− 8m cos(θns) cos(θs) + (5m + 4M) cos(2θs))

V3D(θ, ϕ) = V2D(θ) cos(ϕ)

p3D(θ) =
−m cos(2θns) + 8(m + M) cos(θns) cos(θs)−m(2 + cos(2θs))

6m + 4M + (5m + 4M) cos(2θns)− 8m cos(θns) cos(θs) + m cos(2θs)

Table 1. Additional equations for H2D and H3D

L3D(θ, θ̇, ϕ, ϕ̇) = (4)

1
2

(
θ̇
ϕ̇

)T (
M2D(θ) 0

0 m3D(θ)

) (
θ̇
ϕ̇

)
− V3D(θ, ϕ),

where m3D(θ) is given in the Table 1. Note that,
referring to the notation introduced in Section
3, Mθ(θ) = M2D(θ) and Mϕ(θ) = m3D(θ). Also
note that L3D is nearly cyclic; it is only the
potential energy that prevents its cyclicity. This
will motivate the use of a control law that shapes
this potential energy.

Using the controlled Euler-Lagrange equations,
the dynamics for the walker are given by:

M3D(q)q̈ + C3D(q, q̇)q̇ + N3D(q) = B3Du,

with q = (θ, ϕ) and

B3D =
(

B2D 0
0 1

)
.

These equations yield the control system: (q̇, q̈) =
f3D(q, q̇, u) := fL3D(q, q̇, u).

We construct D3D and G3D by applying the
methods outlined in Section 2 to the unilateral
constraint function

h3D(θ, ϕ) = h0
2D(θ) = cos(θs)− cos(θns).

This function gives the normalized height of the
foot of the walker above flat ground with the
implicit assumption that ϕ ∈ (−π/2, π/2) (which
allows us to disregard the scaling factor cos(ϕ)
that would have been present). The result is that
h3D is cyclic.

Finally, the reset map R3D is given by:

R3D(θ, θ̇, ϕ, ϕ̇) =
(
S2Dθ, P2D(θ)θ̇, ϕ, p3D(θ)ϕ̇

)
where p3D(θ) is given in Table 1. Note that this
map was again computed using the methods out-
lined in Section 2 coupled with the condition that
the stance foot is fixed.

Control law construction. We now proceed
to construct a feedback control law for H3D that
makes this hybrid system an almost-cyclic uni-
laterally constrained Lagrangian hybrid system,
H α

3D. We will then demonstrate, using Theorem
2, that H α

3D has a walking gait by relating it to
H s

2D.

Define the feedback control law parameterized by
α ∈ R:

u = Kα
3D(q)

= B−1
3D

∂

∂q

(
V3D(q)− V γ

2D(θ) +
1
2

α2ϕ2

m3D(θ)

)
Applying this control law to the control system
(q̇, q̈) = f3D(q, q̇, u) yields the dynamical system:

(q̇, q̈) = fα
3D(q, q̇) := f3D(q, q̇, Kα

3D(q)),

which is just the vector field associated to the
almost-cyclic Lagrangian

Lα
3D(θ, θ̇, ϕ, ϕ̇) = (5)

1
2

(
θ̇
ϕ̇

)T (
M2D(θ) 0

0 m3D(θ)

) (
θ̇
ϕ̇

)
− V α

3D(θ),

where

V α
3D(θ) = V γ

2D(θ)− 1
2

α2ϕ2

m3D(θ)
.

That is, fα
3D = fLα

3D
.

Let H α
3D := (D3D, G3D, R3D, fα

3D), which is a uni-
laterally constrained Lagrangian hybrid system.

Applying hybrid functional Routhian re-
duction. Using the methods outlined in Section
3, there is a momentum map J3D : TQ3D → R
given by:

J3D(θ, θ̇, ϕ, ϕ̇) = m3D(θ)ϕ̇.

Setting J3D(θ, θ̇, ϕ, ϕ̇) = λ(ϕ) = −αϕ implies that

ϕ̇ = − αϕ

m3D(θ)
.

The importance of H α
3D is illustrated by:



Theorem 4. H α
3D is an almost-cyclic unilater-

ally constrained Lagrangian hybrid system. More-
over, the following diagram commutes:

Rk

G3D
R3D -

J3D|G3D
-

D3D

J3D|D3D

�

G2D

π
? R2D - D2D

π
?

Therefore, H s
2D is the functional Routhian hybrid

system associated with H α
3D.

This result allows us to prove—using Theorem 2—
that the control law used to construct H α

3D in fact
results in walking in three-dimensions.

Theorem 5. χH α
3D = (Λ, I, {(θi, θ̇i, ϕi, ϕ̇i)}i∈Λ)

is a hybrid flow of H α
3D with

ϕ̇0(τ0) = − αϕ0(τ0)
m3D(θ0(τ0))

, (6)

if and only if χH s
2D = (Λ, I, {θi, θ̇i}i∈Λ) is a hybrid

flow of H s
2D and {(ϕi, ϕ̇i)}i∈Λ satisfies:

ϕ̇i(t) = − αϕi(t)
m3D(θi(t))

, (7)

ϕi+1(τi+1) = ϕi(τi+1).

To better understand the implications of Theorem
5, suppose that χH α

3D = (Λ, I, {(θi, θ̇i, ϕi, ϕ̇i)}i∈Λ)
is a hybrid flow of H α

3D. If this hybrid flow
has an initial condition satisfying (6) with α >
0 and the corresponding hybrid flow, χH s

2D =
(Λ, I, {θi, θ̇i}i∈Λ), of H s

2D is a walking gait in 2D:

Λ = N, lim
i→∞

τi = ∞, θi(τi) = θi+1(τi+1),

then the result is walking in three-dimensions.
This follows from the fact that θ and θ̇ will have
the same behavior over time for the full-order
system—the bipedal robot will walk. Moreover,
since Theorem 5 implies that (7) holds, the walker
stabilizes to the “upright” position. This is be-
cause the roll, ϕ, will tend to zero as time goes
to infinity since (7) essentially defines a stable
linear system ϕ̇ = −αϕ (m3D(θi(t)) > 0 and
α > 0), which controls the behavior of ϕ when
(6) is satisfied. This convergence can be seen in
Fig. 3 along with a walking gait of the 3D walker.
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