

Automotive Supply Chain: Car Manufacturers

- Product Specification & Architecture Definition (e.g., determination of Protocols and Communication standards)
 System Partitioning and Subsystem Specification
- Critical Software Development
- System Integration

Complexity, Quality, Time-to-Market:						
		PWT UNIT	BODY GATEWAY	INSTRUMENT CLUSTER	TELEMATIC UNIT	
	MEMORY	256 KB	128 KB	184 KB	8 MB	
	LINES OF CODE	50.000	30.000	45.000	300.000	
	PRODUCTIVITY	6 LINES/DAY	10 LINES/DAY	6 LINES/DAY	10 LINES/DAY*	
	RESIDUAL DEFECT RATE @ END OF DEV	3000 PPM	2500 PPM	2000PPM	1000 PPM	
	CHANGING RATE	3 YEARS	2 YEARS	1 YEAR	< 1 YEAR	
	DEV. EFFORT	40 MAN-YEAR	12 MAN-YEAR	30 MAN-YEAR	200 MAN-YEAR	
	VALIDATION TIME	5 MONTHS	1 MONTH	2 MONTHS	2 MONTHS	
	TIME TO MARKET	24 MONTHS	18 MONTHS	12 MONTHS	< 12 MONTHS	
	* C** CODE FABIO ROMEO, Magneti-Marelli Design Automation Conference Las Vegas June 20th 2011 Chess/ISIS/IMSI 9					

Chess/ISIS/MSI 21

Top-Down:

- Define a set of abstraction layers
- From specifications at a given level, select a solution (controls, components) in terms of components (Platforms) of the following layer and propagate constraints

Bottom-Up:

- Platform components (e.g., micro-controller, RTOS, communication primitives) at a given level are abstracted to a higher level by their functionality and a set of parameters that help guiding the solution selection process. The selection process is equivalent to a covering problem if a common semantic domain is used.

UAV Syste	2 M: Sensor Overview	
R-50 Hovering GPS Card GPS Antenna	 Goal: basic autonomous flight Need: UAV with allowable payload Need: combination of GPS and Inertial Navigation System (INS) GPS (senses using triangulation) Outputs accurate position data Available at low rate & has jamming INS (senses using accelerometer and rotation sensor) Outputs estimated position with unbounded drift over time Available at high rate Fusion of GPS & INS provides needed high rate and accuracy 	INS
		Chess/ISIS/MSI 24

Platform Based Design for UAVs

Device Platform

- <u>Isolates</u> details of sensor/actuators from embedded control programs
- <u>Communicates</u> with each sensor/actuator according to its own data format, context, and timing requirements
- <u>Presents</u> an API to embedded control programs for accessing sensors/actuators
- Language Platform
 - Provides an environment in which synchronous control programs can be scheduled and run
 - <u>Assumes</u> the use of generic data formats for sensors/actuators made possible by the Device Platform

