
1

NSF

Foundations of Hybrid and Embedded Software Systems

UC Berkeley: Chess
Vanderbilt University: ISIS
University of Memphis: MSI

Design of Embedded Systems:
Methodologies, Tools and Applications

Alberto Sangiovanni-Vincentelli
Dept. of EECS
University of California
Berkeley

Chess/ISIS/MSI 2

Disaggregation:
Electronic Systems Design Chain

Design Science

Manufacturing

Implementation

System Design

Platforms

IP

InterfacesFabrics

2

Chess/ISIS/MSI 3

Outline

• Automotive Applications
• Distributed System Design Methodology

and Flow
• Platform-based Design
• UAV Control Example
• Metropolis

Chess/ISIS/MSI 4

The Automotive Electronic Design Chain

Product DefinitionProduct Definition

IPIPDesign And AssemblyDesign And Assembly

Platforms

Interfaces

3

Chess/ISIS/MSI 5

Product Specification & Architecture Definition
(e.g., determination of Protocols and Communication standards)
System Partitioning and Subsystem Specification
Critical Software Development
System Integration

Automotive Supply Chain:
Car Manufacturers

Chess/ISIS/MSI 6

Electronics for the Car: A Distributed System

Information
Systems

Te
le

m
at

ic
s

Fa
u

lt
 T

ol
er

an
t

Body
Electronics B

od
y

Fu
n

ct
io

n
s

Fa
il

Sa
fe

Fa
u

lt
Fu

n
ct

io
na

l

Body
Electronics

D
ri

vi
n

g
an

d
V

eh
ic

le
D

yn
am

ic
 F

u
n

ct
io

n
s

Mobile Communications Navigation

Fire
Wall

Access to
WWWDAB

Gate
Way

Gate
Way

Theft warning

Door Module Light Module

Air
Conditioning

Shift by
Wire

Engine
Management

ABS

Steer by
Wire

Brake
by Wire

MOSTMOST
FirewireFirewire

CANCAN
LinLin

CANCAN
TTCANTTCAN

FlexRayFlexRay

Today, more
than 80
Microprocessors
and millions of
lines of code

4

Chess/ISIS/MSI 7

1 Transmission ECU
2 Actuation group
3 Engine ECU
4 DBW
5 Active shift display
6/7 Up/Down buttons
8 City mode button
9 Up/Down lever
10 Accelerator pedal

position sensor
11 Brake switch

Subsystem Partitioning
Subsystem Integration
Software Design: Control Algorithms, Data Processing
Physical Implementation and Production

Automotive Supply Chain:
Tier 1 Subsystem Providers

Chess/ISIS/MSI 8

HW layerHW layer

SW Platform layer
(> 60% of total SW)
SW Platform layer
(> 60% of total SW)

Application Platform layer
(≅ 10% of total SW)

Application Platform layer
(≅ 10% of total SW)

µControllers Library

OSEK
RTOS

OSEK
COMI/O drivers & handlers

(> 20 configurable modules)

Application Programming Interface

Boot Loader
Sys. Config.

Transport
KWP 2000

CCP

Application
Specific
Software

Speedom
eter

Tachom
eter

W
ater tem

p.

Speedom
eter

Tachom
eter

O
dom

eter

Application
Libraries

Nec78kNec78k HC12HC12HC08HC08 H8S26H8S26 MB90MB90

Customer
Libraries

Automotive Supply Chain:
Tier 2 Platform & IP Providers

“Software” platform: RTOS and communication layer
“Hardware” platform: Hardware and IO drivers

ST10ST10

5

Chess/ISIS/MSI 9

Complexity, Quality, Time-to-Market:
TODAY

MEMORY 256 KB 128 KB 184 KB 8 MB

LINES OF CODE 50.000 30.000 45.000 300.000

CHANGING RATE 3 YEARS 2 YEARS 1 YEAR < 1 YEAR

DEV. EFFORT 40 MAN-YEAR 12 MAN-YEAR 30 MAN-YEAR 200 MAN-YEAR

VALIDATION TIME 5 MONTHS 1 MONTH 2 MONTHS 2 MONTHS

TIME TO MARKET 24 MONTHS 18 MONTHS 12 MONTHS < 12 MONTHS

PWT UNIT BODY GATEWAY TELEMATIC
UNIT

INSTRUMENT
CLUSTER

PRODUCTIVITY 6 LINES/DAY 10 LINES/DAY 6 LINES/DAY 10 LINES/DAY*

RESIDUAL DEFECT
RATE @ END OF DEV 3000 PPM 2500 PPM 2000PPM 1000 PPM

* C++ CODE FABIO ROMEO, Magneti-Marelli
Design Automation Conference, Las Vegas, June 20th, 2001

Chess/ISIS/MSI 10

Embedded Software Design: Our Take

• Embedded Software Design must not be seen
as a problem in isolation, it is an, albeit
essential, aspect of EMBEDDED SYSTEM
DESIGN

• Our vision is to change the way in which ESW
is developed today by linking it:
– Upwards in the abstraction layers to system

functionality
– Downwards in the programmable platforms that

support it thus providing the means to verify whether
the constraints posed on Embedded Systems are met.

6

Chess/ISIS/MSI 11

Outline

• Automotive Applications
• Distributed System Design Methodology

and Flow
• Platform-based Design
• UAV Control Example
• Metropolis

Chess/ISIS/MSI 12

now

re
al

re
al

vi
rtu

al

vi
rtu

al

Fct1

Spec
&

Sim.

Fctn

Spec
&

Sim.

IntegrationIntegration
ECU1 ECUn

re
al

re
al

vi
rtu

al

vi
rtu

al

Fct1

Spec
&

Sim.

Fctn

Spec
&

Sim.

IntegrationIntegration
ECU1 ECUn

tomorrow

IntegrationIntegration

VirtualVirtual

IntegrationIntegration

Fct1

Spec
&

Sim.

Fctn

Spec
&

Sim.

ECU1 ECUk

analysisanalysis

system designsystem design

implementationimplementation

production & after sales

specificationspecification

calibrationcalibrationECU1 ECUk

Fct1

Spec
&

Sim.

Fctn

Spec
&

Sim.

Virtual Integration is key for Distributed
System Design

Source BMW

Communication Protocol
Adoption and Validation

Safety Concept Proof via Fault
Injection

ECU Optimization/Derivative
Design

ECU SW Scheduling Adoption
and Validation

Functional Network Definition and
Validation (Timed and un-Timed)

7

Chess/ISIS/MSI 13

Design Flow

Physical Prototyping

Requirement SpecificationRequirement Specification

MappingMapping

Synthesis
Export

Synthesis
Export

Algorithm DesignAlgorithm Design

Performance SimulationPerformance Simulation

Algorithms

Architectural IPs

Algorithm Specifications

Behavioral
Modeling

Architecture
IP

Authoring

Architecture
IP

Authoring

Distributed
Architecture Analysis

Distributed
Architecture Analysis

Algorithm AnalysisAlgorithm Analysis

ECU Scheduling
Analysis

ECU Scheduling
Analysis

SW platform SW tasks Communication
Protocol

Configuration

Behavior IPs

System Model

Architectural ModelingArchitectural Modeling

Compile/Link
/Load

Compile/Link
/Load

Algorithm
Performance
Algorithm

Performance
LoadLoad

Virtual Prototyping

Environment-Test
Bench Modeling

Environment-Test
Bench Modeling

Chess/ISIS/MSI 14

Focus on Safety-Critical Real Time

• Most challenging problem
• Needs tight integration between

algorithms and implementation
• Constraints include timing and fault

tolerance
• Fault tolerance can be addressed at all

levels of abstraction

8

Chess/ISIS/MSI 15

f f fff

CPU+

Host (uC)RAM

HW Int.
Sensors

Actuators

Task1 Task2

Safety Critical Issues: Fault Analysis

OS

CPUI/O

Tasks

Dev. Driv.

Bus Interface

Network

Communication
Controller (CC)

Bus
Guardian

(BG)

Bus
Driver
(BD)

Safety Concept Proof via Fault
Injection (HW, SW, Bus..)

Chess/ISIS/MSI 16

DRAFTS: Distributed Real-time Applications
Fault Tolerant Scheduling

• Automatic (off-line) synthesis of fault tolerant
schedules for periodic algorithms on a distributed
architecture

• Automatic (off-line) verification that all intended
faults are covered

Long-term goals:
• Design Methodology for Safety Critical

Distributed Systems
• Manage the design complexity of modern Drive-

By-Wire applications

C. Pinello, UCB, T. Demmeler and J. Ehret, BMW

9

Chess/ISIS/MSI 17

DRAFTS Strategy

• Identify critical functionality and possible
faults

• Replicate critical functionality to withstand
faults

• Exploit architecture redundancy to speed-
up execution (in absence of faults)

• Functional Verification that all intended
faults are covered

Chess/ISIS/MSI 18

Outline

• Automotive Applications
• Distributed System Design Methodology

and Flow
• Platform-based Design
• UAV Control Example
• Metropolis

10

Chess/ISIS/MSI 19

ASV Triangles

Platform
Design-Space

Export

Platform
Mapping

Architectural Space

Application Space
Application Instance

Platform Instance

System
Platform (HW and SW)

Chess/ISIS/MSI 20

Platforms: Evolution
In general, a platform is an abstraction layer that
covers a number of possible refinements into a
lower level. The platform representation is a
library of components including interconnects
from which the lower level refinement can choose.

Platform

Mapping Tools

Platform

Platform stack {

11

Chess/ISIS/MSI 21

Principles of Platform methodology:
Meet-in-the-Middle

• Top-Down:
– Define a set of abstraction layers
– From specifications at a given level, select a

solution (controls, components) in terms of
components (Platforms) of the following layer
and propagate constraints

• Bottom-Up:
– Platform components (e.g., micro-controller,

RTOS, communication primitives) at a given level
are abstracted to a higher level by their
functionality and a set of parameters that help
guiding the solution selection process. The
selection process is equivalent to a covering
problem if a common semantic domain is used.

Chess/ISIS/MSI 22

Outline

• Automotive Applications
• Distributed System Design Methodology

and Flow
• Platform-based Design
• UAV Control Example
• Metropolis

12

Chess/ISIS/MSI 23

Synchronous
Platform Based
UAV Design

Platform-
Based Design

I

UAV System

II

Synchronous
Embedded
Control

III

Platform-Based Design of Unmanned
Aerial Vehicles (source: J. Liebman)

Chess/ISIS/MSI 24

INS

R-50 Hovering
• Goal: basic autonomous flight

• Need: UAV with allowable payload
• Need: combination of GPS and

Inertial Navigation System (INS)
• GPS (senses using triangulation)

• Outputs accurate position data
• Available at low rate & has

jamming
• INS (senses using accelerometer and

rotation sensor)
• Outputs estimated position with

unbounded drift over time
• Available at high rate

• Fusion of GPS & INS provides needed
high rate and accuracy

GPS Card

GPS Antenna

UAV System: Sensor Overview

13

Chess/ISIS/MSI 25

d d
GPSINS

Software Request Software

GPSINS

Pull Configuration

Shared
memory

Push Configuration

• Sensors may differ in:
• Data formats, initialization schemes (usually

requiring some bit level coding), rates, accuracies,
data communication schemes, and even data types

• Differing Communication schemes requires the most
custom written code per sensor

UAV System: Sensor Configurations

Chess/ISIS/MSI 26

Platform Based Design for UAVs

Sensors: INS, GPS
Actuators: Servo Interface
Vehicles: Yamaha R-50/R-

Max

Control Applications
(Matlab)

• Goal
– Abstract details of

sensors, actuators,
and vehicle
hardware from
control applications

Application Space
Architectural

Space

Synchronous
Embedded

Programming
(Giotto)

• How?
- Synchronous
Embedded Programming
Language (i.e. Giotto)
Platform

14

Chess/ISIS/MSI 27

Platform Based Design for UAVs

• Device Platform
– Isolates details of

sensor/actuators from
embedded control programs

– Communicates with each
sensor/actuator according to
its own data format, context,
and timing requirements

– Presents an API to embedded
control programs for accessing
sensors/actuators

• Language Platform
– Provides an environment in

which synchronous control
programs can be scheduled and
run

– Assumes the use of generic
data formats for
sensors/actuators made
possible by the Device
Platform

Sensors: INS, GPS
Actuators: Servo Interface
Vehicles: Yamaha R-50/R-

Max

Synchronous
Embedded

Programming
(Giotto)

Control Applications
(Matlab)

Application Space
Architectural

Space

Virtual Avionics
Platform

Device
Platform

Language Platform

Chess/ISIS/MSI 28

Outline

• Automotive Applications
• Distributed System Design Methodology

and Flow
• Platform-based Design
• UAV Control Example
• Metropolis

15

Chess/ISIS/MSI 29

Metropolis Framework

Infrastructure

• Metropolis meta-model
- language
- modeling mechanisms

• Meta-model compiler

Meta-model Library

• Models of
computation

Meta-model Library

• Architecture
platforms

Tools

Simulator QSS PIG STARS SPIN …

Application-specific methodologies

Multi-media, wireless communication, mechanical controls, processors

Chess/ISIS/MSI 30

Metropolis Project: main participants

• UC Berkeley (USA): methodologies, modeling, formal methods
• Cadence Berkeley Labs (USA): methodologies, modeling, formal

methods
• Politecnico di Torino (Italy): modeling, formal methods
• Universitat Politecnica de Catalunya (Spain): modeling, formal

methods
• Philips Research (Netherlands): methodologies (multi-media)
• Nokia (USA, Finland): methodologies (wireless communication)
• BWRC (USA): methodologies (wireless communication)
• BMW (USA): methodologies (fault-tolerant automotive controls)
• Intel (USA): methodologies (microprocessors)
• STMicroelectronics (France, Italy): methodologies (wireless

platforms)
• Cypress (USA): methodologies (network processors, pSOC, all

projects)

etropolis

16

Chess/ISIS/MSI 31

Metropolis meta-model

• Computation : f : X Z

• Communication : state evaluation and manipulation

• Coordination : constraints over concurrent actions

- process : generates a sequence of events

- medium : defines states and methods

- quantity : annotation of each event (time, energy, memory, …)

- logic : relates events and quantities, defines axioms on quantities

- quantity-manager : algorithm to realize annotation subject to
relational constraints

Concurrent specification with a formal execution semantics:

Key difference with respect to
UML, SystemC, …!!!

Concurrent specification with a formal execution semantics:

Chess/ISIS/MSI 32

• Must describe objects at different levels of abstraction
– Do not commit to the semantics of any particular model of computation

• Define a set of “building blocks”
– specifications with many useful MoCs can be described using the building

blocks
– Processes, communication media and schedulers separate computation,

communication and coordination

P1 P2M

S

P1.pZ.write() ◆ P2.pX.read()

pX pZ pX pZ

M’ M’

Computation

Communication

Coordination

Metropolis Meta-Model

17

Chess/ISIS/MSI 33

Supporting Theory

• Provide a semantic foundations for integrating different
models of computation

– Independent of the design language
– Not just specific to the Metropolis meta-model

• Maximize flexibility for using different levels of
abstraction

– For different parts of the design
– At different stages of the design process
– For different kinds of analysis

• Support many forms of abstraction
– Model of computation (model of time, synchronization, etc.)
– Scoping
– Structure (hierarchy)

Chess/ISIS/MSI 34

Concluding Remarks

• Applications are critical to drive research
and to test quality of results

• Safety-critical Real Time emphasis
• Rigorous methodology for distributed

systems
• General framework to express designs at

all levels of hierarchy and to support
integration of foreign tools and designs

18

Chess/ISIS/MSI 35

Embedded Software: Today

Chess/ISIS/MSI 36

Embedded Software: Future?

