
1

Design Support for Design Support for
Embedded ProcessorsEmbedded Processors
and Applicationsand Applications

Prof. Kurt KeutzerProf. Kurt Keutzer
EECSEECS

University of CaliforniaUniversity of California
Berkeley, CABerkeley, CA

keutzer@eecs.berkeley.edukeutzer@eecs.berkeley.edu

2

Embedded system needs meet technology constraintsEmbedded system needs meet technology constraints

◆◆ Embedded system design needs: Embedded system design needs:
▲▲ FastFast--time to markettime to market
▲▲ Predictability Predictability
▲▲ ReliabilityReliability
▲▲ RobustnessRobustness
▲▲ EfficiencyEfficiency
▲▲ EconomyEconomy

◆◆ ApplicationApplication--specific integrated circuits failing to deliver thisspecific integrated circuits failing to deliver this
▲▲ Design riskDesign risk
▲▲ Design/tool costDesign/tool cost
▲▲ Unmanageable complexityUnmanageable complexity

2

3

Demise of ASIC: Total IC DesignsDemise of ASIC: Total IC Designs

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

Year

IC
 D

es
ig

ns

ASSP
ASIC

ASIC

ASSP

Handel Jones, IBS
9/23/2002

4

Customer needs meet technology constraintsCustomer needs meet technology constraints

◆◆ Customer needs: Customer needs:
▲▲ FastFast--time to markettime to market
▲▲ Predictability Predictability
▲▲ ReliabilityReliability
▲▲ RobustnessRobustness
▲▲ EfficiencyEfficiency
▲▲ EconomyEconomy

◆◆ Looking for ``platforms’’ Looking for ``platforms’’ –– devices that will amortize system design costs over devices that will amortize system design costs over
multiple generations multiple generations

◆◆ ``"Based on our analysis, having a software approach is the only``"Based on our analysis, having a software approach is the only way to scale to way to scale to
the next generation," the next generation," CorganCorgan (, Intel PMM said) . "If you have to approach each (, Intel PMM said) . "If you have to approach each
fourfold increase in speed fourfold increase in speed —— from OCfrom OC--48 [2.5 48 [2.5 GbitsGbits/second] to OC/second] to OC--192 [10 192 [10 Gbits/sGbits/s],],
say say —— with a new architecture, it's not costwith a new architecture, it's not cost--effective."effective."

3

5

Solution: ASIC => ASSP => ASIPSolution: ASIC => ASSP => ASIP
ASIP: Programmable PlatformsASIP: Programmable Platforms

◆◆ Develop platforms that allow for Develop platforms that allow for
amortization of design costs over multiple amortization of design costs over multiple
generationsgenerations

◆◆ Make platforms Make platforms programmable programmable so that so that
they have maximum flexibility with they have maximum flexibility with
minimum overheadminimum overhead

SDRAM
Controller

µengine
PCI

Interface

SRAM
Controller

Strong
Arm
Core

I$

µengine

µengine

µengine

µengine

µengine

Mini
D$

D$

IX Bus
Interface

Hash
Engine

Scratch
Pad

SRAM

6

TM-xxxx
D$

I$

TriMedia CPU

DEVICE I/P BLOCK

DEVICE I/P BLOCK

DEVICE I/P BLOCK

.

.

.

DVP System Silicon

VLIW Media
Processor:
• 100 to 300+ MHz
• 32-bit or 64-bit

Nexperia
System Busses
• PI bus
• Memory bus
• 32-128 bitPI

 B
U

S

SDRAM

MMI

D
VP

 M
EM

O
R

Y
B

U
S

DEVICE I/P BLOCK

PRxxxx
D$

I$

MIPS CPU

DEVICE I/P BLOCK.

.

.DEVICE I/P BLOCK

PI
 B

U
S

General Purpose
RISC Processor
• 50 to 300+ MHz
• 32-bit or 64-bit
Library of Device
Blocks
• Image

coprocessors
• DSPs
• UART
• 1394
• USB

•…and more

TriMediaTMMIPSTM

Example: Philips Example: Philips NexperiaNexperiaTMTM

Flexible architecture for digital video applications

4

7

Configurable/Reconfigurable ProcessorsConfigurable/Reconfigurable Processors

FPGA Processor

Specialized
Micro-Architectures

Specialized
Instruction-Set
Architectures

Domain-Specialization

Chameleon
Systems

Morphics

Frontier Design

Tensilica

ARC

Improv Systems
PMC Sierra

Xilinx Altera AtmelTriscend
Actel

Adaptive Silicon
ProcelereASIC

8

0

2

4

6

8

10

12

14

16

18

20

0 1 2 3 4 5 6 7 8 9
Issue width per PE

N
um

be
r o

f P
Es

32

48

64

Cognigine

Cisco

EZchip

Xelerated

IBM
Lexra
Motorola

Intel

BRECIS
Broadcom

Applied
Micro

Clearwater

ClearSpeed
Vitesse

Agere

PMC-Sierra

Alchemy
Conexant

64 instrs/cycle

16 instrs/cycle

8 instrs/cycle

10

Galaxy of Network ProcessorsGalaxy of Network Processors

5

9

ASIP/Programmable Platform CharacteristicsASIP/Programmable Platform Characteristics
5 Axes of the Architectural Design Space5 Axes of the Architectural Design Space

◆◆ Approaches to Parallel Processing Approaches to Parallel Processing
▲▲ Processing Element (PE) levelProcessing Element (PE) level
▲▲ InstructionInstruction--levellevel
▲▲ BitBit--levellevel

◆◆ Elements of Special Purpose HardwareElements of Special Purpose Hardware

◆◆ Structure of Memory ArchitecturesStructure of Memory Architectures

◆◆ Types of OnTypes of On--Chip Communication MechanismsChip Communication Mechanisms

◆◆ Use of PeripheralsUse of Peripherals

Era of a single RISC PE (+ 1 DSP) over!Era of a single RISC PE (+ 1 DSP) over!

This is not a ``run POSIX on an ARM’’ problem!This is not a ``run POSIX on an ARM’’ problem!

Explosion of application specific solutions Explosion of application specific solutions
=>=>ASIPsASIPs

RISC
+

SFU

RISC
+

SFU

RISC
+

SFU

RISC

Co-
proc

Co-
proc

CAM

Ether
net

MAC

SRAM

10

Three Key Problem Areas EmergeThree Key Problem Areas Emerge

◆◆ Development of programmable platforms/ASIP:Development of programmable platforms/ASIP:
▲▲ Characterizing target applicationsCharacterizing target applications
▲▲ Design space explorationDesign space exploration

◆◆ Deployment of programmable platforms/ASIP:Deployment of programmable platforms/ASIP:
▲▲ Development of programming modelDevelopment of programming model
▲▲ Provision of software environmentProvision of software environment

◆◆ Mapping applications onto programmable platforms/ASIP:Mapping applications onto programmable platforms/ASIP:
▲▲ Application modelingApplication modeling
▲▲ Application mappingApplication mapping

6

11

Addressing the problem areasAddressing the problem areas
MModern odern EEmbedded mbedded SSystems ystems CCompilers ompilers
AArchitectures and rchitectures and LLanguagesanguages

MESCALMESCAL research mission: research mission:
▲▲ To bring a disciplined methodology, To bring a disciplined methodology,

and a supporting tool set, to the and a supporting tool set, to the
development, deployment, and development, deployment, and
programming of applicationprogramming of application--specific specific
programmable platforms programmable platforms akaaka
application specific instruction application specific instruction
processors.processors.

Invited paper: ``From ASIC to ASIP:
The Next Design Discontinuity’’,
K. Keutzer, S. Malik, R. Newton,
Proceedings of ICCD, pp. 84-91, 2002.
www.gigascale.org/mescal

Press coverage Sept 2002:
Programmable Platforms will Rule:
http://www.eetimes.com/story/OEG20020911S0063
High on MESCAL
http://www.eetimes.com/story/OEG20020911S0065

SDRAM
Controller

µengine
PCI

Interface

SRAM
Controller

Strong
Arm
Core

I$

µengine

µengine

µengine

µengine

µengine

Mini
D$

D$

IX Bus
Interface

Hash
Engine

Scratch
Pad

SRAM

12

Three Key Problem AreasThree Key Problem Areas

◆◆ Development of programmable platforms:Development of programmable platforms:
▲▲ Characterizing target applicationsCharacterizing target applications
▲▲ Design space explorationDesign space exploration

◆◆ Deployment of programmable platforms:Deployment of programmable platforms:
▲▲ Development of programming modelDevelopment of programming model
▲▲ Provision of software environmentProvision of software environment

◆◆ Mapping applications onto programmable platformsMapping applications onto programmable platforms
▲▲ Application modelingApplication modeling
▲▲ Application mappingApplication mapping

7

13

Complementary IssuesComplementary Issues

Heterogeneous applicationsHeterogeneous applications

◆◆ Programming EnvironmentProgramming Environment

◆◆ DomainDomain--specific modelsspecific models
▼▼ Domain specific librariesDomain specific libraries
▼▼ Environmental modelsEnvironmental models

◆◆ ``Software architecture’’/MOC``Software architecture’’/MOC

◆◆ Primitive computation and Primitive computation and
communication mechanismscommunication mechanisms

◆◆ Mapping to implementationMapping to implementation

Heterogeneous programmable platforms/ASIPHeterogeneous programmable platforms/ASIP

◆◆ Programming modelProgramming model

◆◆ DomainDomain--specific presentationspecific presentation
▼▼ Device Specific LibrariesDevice Specific Libraries
▼▼ Environmental supportEnvironmental support

◆◆ System architecture/microSystem architecture/micro--architecture/MOCarchitecture/MOC

◆◆ Primitive computation and communication Primitive computation and communication
mechanismsmechanisms

Port 0 IP Forwarding
Engine

Port 0

14

Our ApproachOur Approach
◆◆ BottomBottom--up view up view -- create abstractions of existing devices create abstractions of existing devices

▲▲opacity opacity -- hide microhide micro--architectural details from programmerarchitectural details from programmer
▲▲visibility visibility -- sufficient detail of the architecture to allow the sufficient detail of the architecture to allow the

programmer to improve the efficiency of the programprogrammer to improve the efficiency of the program
◆◆ Top down Top down –– experiment with existing modeling/programming experiment with existing modeling/programming

environmentsenvironments
▲▲Learn from their abstractions of the devicesLearn from their abstractions of the devices
▲▲Try to maximize performance within these environmentsTry to maximize performance within these environments

8

15

Our Constraint/Angle/PrejudiceOur Constraint/Angle/Prejudice

◆◆ In realIn real--time embedded systems correct logical functionality can time embedded systems correct logical functionality can
never be divorced from system performancenever be divorced from system performance

◆◆ In commercial (especially consumerIn commercial (especially consumer--oriented) embedded systems oriented) embedded systems
system price is an utmost concernsystem price is an utmost concern

◆◆ QuantitativeQuantitative
▲▲(Quantitatively) examine trade(Quantitatively) examine trade--offs among:offs among:

▼▼QualityQuality--ofof--results (e.g. speed, but also power, device cost)results (e.g. speed, but also power, device cost)
▼▼Programmer productivity (how long does all this take?)Programmer productivity (how long does all this take?)

16

Application: IPv4 Forwarding BenchmarkApplication: IPv4 Forwarding Benchmark

Port 1

Port 2

Port 15

.

.

.

Port 1

Port 2

Port 15

.

.

.

Ingress
Ports FIFOs Functionality FIFOs Egress

Ports

Port 0 IP Forwarding
Engine

Port 0

IP Forwarding
Engine

IP Forwarding
Engine

9

17

Example Programming target Example Programming target –– IXP1200IXP1200

◆◆ Intel IXP1200Intel IXP1200
▲▲ Multiple processorsMultiple processors
▲▲ specialized execution unitsspecialized execution units
▲▲ hardware context swaphardware context swap

◆◆ ``Intel Corp., … chose a "fully ``Intel Corp., … chose a "fully
programmable" architecture with programmable" architecture with
plenty of space for users to add their plenty of space for users to add their
own software own software —— but one that turned but one that turned
out to be difficult to program. ‘’out to be difficult to program. ‘’

◆◆ http://www.eetimes.com/story/OEG200http://www.eetimes.com/story/OEG200
20830S006120830S0061

SDRAM
Controller

µengine
PCI

Interface

SRAM
Controller

Strong
Arm
Core

I$

µengine

µengine

µengine

µengine

µengine

Mini
D$

D$

IX Bus
Interface

Hash
Engine

Scratch
Pad

SRAM

◆◆ How do we program these architectures? What’s the right programmHow do we program these architectures? What’s the right programming model?ing model?

18

BaseBase--line reference implementations from Intelline reference implementations from Intel
AssemblerAssembler

◆◆ Reference applicationReference application

uEngineuEngine C FeaturesC Features

◆◆ Reference application modifiedReference application modified

◆◆ Basic C language constructs like loops, condition statements andBasic C language constructs like loops, condition statements and basic basic
data types (char, data types (char, intint, float), float)

◆◆ IXP library defines additional data types, macros and functions IXP library defines additional data types, macros and functions (useful for (useful for
common networking applications)common networking applications)

◆◆ Memory management is user defined. Hence explicit declaration ofMemory management is user defined. Hence explicit declaration of
memory allocation (and no support for pointers).memory allocation (and no support for pointers).

10

19

Commercial NPU programming environmentCommercial NPU programming environment

TejaTeja TechnologiesTechnologies

◆◆ TejaTeja is founded by is founded by AkashAkash DeshpandeDeshpande –– Student of Prof. Student of Prof. PravinPravin VaraiyaVaraiya

◆◆ Based on his thesis “Control of Hybrid Systems” (1994)Based on his thesis “Control of Hybrid Systems” (1994)

TejaTeja Language FeaturesLanguage Features

◆◆ User interacts mostly with the graphical interface (which exportUser interacts mostly with the graphical interface (which exports pres pre--
defined application primitives)defined application primitives)

◆◆ Extending the Extending the TejaTeja primitives is done via a FSMprimitives is done via a FSM--based model (however, based model (however,
this still requires coding in assembly via the graphical interfathis still requires coding in assembly via the graphical interface)ce)

◆◆ Memory management for preMemory management for pre--defined primitives is done by defined primitives is done by TejaTeja. User can . User can
alter this process (but is tedious and error prone)alter this process (but is tedious and error prone)

20

TejaTeja FeaturesFeatures

11

21

Our own NPU programming environment: Our own NPU programming environment: NPClickNPClick
◆◆ Based on ClickBased on Click

▲▲ Popular environment for describing/implementing network applicatPopular environment for describing/implementing network applicationsions
▲▲ Developed by Eddie Kohler, MIT=> ICSIDeveloped by Eddie Kohler, MIT=> ICSI

◆◆ NPClickNPClick
▲▲ Implemented subset of element library in IXP Implemented subset of element library in IXP uCuC
▲▲ Element communication via function callsElement communication via function calls

▼▼ maintained semantics (packet push/pull)maintained semantics (packet push/pull)
▲▲ packet storage fixed:packet storage fixed:

▼▼ header in SRAMheader in SRAM
▼▼ payload in DRAMpayload in DRAM

◆◆ Designer needs to specify:Designer needs to specify:
▲▲ thread boundariesthread boundaries
▲▲ thread/thread/uEngineuEngine assignmentassignment
▲▲ memory allocation of queues (SRAM, DRAM, Scratch)memory allocation of queues (SRAM, DRAM, Scratch)

◆◆ Opportunities for optimization (future work)Opportunities for optimization (future work)
▲▲ redundant memory loads/stores based on element/thread mappingredundant memory loads/stores based on element/thread mapping
▲▲ schemes for multiplexing hardware resources among multiple elemeschemes for multiplexing hardware resources among multiple element nt

instantiations (e.g. instantiations (e.g. muxingmuxing TFIFO among 8 to Device’s)TFIFO among 8 to Device’s)

22

Programming Models for IXP1200Programming Models for IXP1200

0

200

400

600

800

1000

1200

1400

Th
ro

ug
hp

ut
 (M

b/
s)

Click Teja uEngineC ASM

12

23

Productivity EstimatesProductivity Estimates
◆◆ ``First time’’ learning curve issues makes it difficult to comp``First time’’ learning curve issues makes it difficult to compare the productivity of these approachesare the productivity of these approaches

◆◆ Based on our experience, we estimate the following design times Based on our experience, we estimate the following design times for implementing an IPv4 routerfor implementing an IPv4 router

2 weeks2 weeks2 days2 daysNPClickNPClick

33--4 weeks4 weeks2 weeks2 weeksTejaTeja

6 weeks6 weeks4 weeks4 weeksuCuC

8 weeks8 weeks8 weeks8 weeksASMASM

Additional time for Additional time for
performance tuningperformance tuning

Time to functional correctnessTime to functional correctness

◆◆ The advantages with The advantages with TejaTeja and and NPClickNPClick come from the ability to perform designcome from the ability to perform design--space space
exploration at a higher levelexploration at a higher level

24

Conclusions: Programming Embedded SystemsConclusions: Programming Embedded Systems
◆◆ Neither Neither ASICsASICs or generalor general--purpose processors will fill the needs of most embedded system purpose processors will fill the needs of most embedded system

applicationsapplications
◆◆ System design teams will increasingly choose System design teams will increasingly choose ASIPsASIPs/programmable platforms/programmable platforms
◆◆ Programming these devices is a new challenge:Programming these devices is a new challenge:

▲▲ ParallelismParallelism
▼▼ ProcessProcess
▼▼ OperatorOperator
▼▼ Bit/gate levelBit/gate level

▲▲ SpecialSpecial--purpose execution unitspurpose execution units
◆◆ Need to develop matches between application development environmNeed to develop matches between application development environments and ents and

programming models of programming models of ASIPsASIPs/programmable platforms/programmable platforms
◆◆ Match must consider:Match must consider:

▲▲ EfficiencyEfficiency
▲▲ ProductivityProductivity
▲▲ RobustnessRobustness
▲▲ ReliabiltyReliabilty

