
1

Type-Safe Programming in C

George Necula

EECS Department
University of California, Berkeley

 

George Necula - CHESS Kickoff Meeting 11/14/02 2

Why Memory Safety ?

• The most basic safety property
– Ensures isolation of component failures

• All programs must have it
– Does not even need an explicit specification

• Most program analyses are unsound without it

• 50% of security errors are due to buffer overruns



2

George Necula - CHESS Kickoff Meeting 11/14/02 3

C and Memory Safety

A large part of embedded software is written in C

C was designed with flexibility and efficiency in mind
– Has many operators that can be used in an unsafe way
– Memory safety is sacrificed

But…
• Many C programs use unsafe operators safely

• In the remaining C programs there are only small 
portions which are responsible for unsafe behavior

George Necula - CHESS Kickoff Meeting 11/14/02 4

CCured Idea

1. Devise a program analysis that discovers the safe uses 
of potentially unsafe operators

2. Insert run-time checks (e.g. array-bounds checks) in 
those places where safety cannot be statically 
verified

This way we sacrifice performance instead of safety
– Goal: 0-30% performance penalty
– Performance improves with hardware progress. Unlike safety!



3

George Necula - CHESS Kickoff Meeting 11/14/02 5

Checkable Errors

• Array bounds checks
– Pointer arithmetic outside of object bounds
– Not always caught by Purify

• Dereferencing a non-pointer (or NULL)
– Complicated by casts and union types

• Freeing non-pointers, using freed memory

George Necula - CHESS Kickoff Meeting 11/14/02 6

Kinds of Pointers

• Many pointers are completely “safe”
– No bad casts, no arithmetic, etc.
– e.g., FILE * fin = fopen(“input”, “r”);
– These can be represented without any extra information 

(just a NULL check when used)

• Other pointers are involved in pointer arithmetic 
but not in bad casts
– Must carry bounds with them for bounds checking

• Other pointers cannot be typed statically
– Must carry type information with them



4

George Necula - CHESS Kickoff Meeting 11/14/02 7

Static Analysis and Inference

• For every pointer in the program
– Try to infer the “fastest” sound representation
– This is like eliminating classes of run-time checks we 

know will never fail

• Can be formulated as constraint-solving
– Linear-time whole-program algorithm
– Can be modularized if the interfaces are annotated

• Proved sound
• Extremely simple, fast and predictable

George Necula - CHESS Kickoff Meeting 11/14/02 8

Experimental Results

• We have a working prototype
– Handles the complete ANSI C and gcc extensions
– Used on programs up to 1M lines of code
– Used on low level code

• Experimented with 
– SPEC95
– Linux device drivers
– Apache modules
– Network applications: sendmail, openssl, bind, ftpd

• Found new bugs
– Bugs that Purify missed

• Slowdown: 10-80% (with an average at 50%)
• Typically 70% of the pointers are found safe 



5

George Necula - CHESS Kickoff Meeting 11/14/02 9

Conclusion

• C programs are “mostly” type safe
– A static analysis can figure this out

• C programs can be made provable type safe
– Use run-time checking where static analysis fails

• Safe native methods for Java and C#

• The performance cost is acceptable in some cases
• More work is required to reduce the cost

– Code size, data size, running time
• Try it out: http://www.cs.berkeley.edu/~necula/ccured


