Hybrid Systems:
From Models to Code

Tom Henzinger
UC Berkeley

UC Berkeley: Chess
Vanderbilt University: ISIS
University of Memphis: MSI

Foundations of Hybrid and Embedded Software Systems

French Guyana, June 4, 1996
$800 million embedded software failure

Mars, December 3, 1999
Crashed due to uninitialized variable

$4 billion development effort
40-50% system integration & validation cost

Sources of Complexity s %

-concurrency
-real time

-heterogeneity

A hybrid system consists of multiple continuous
(physical) and discrete (computational) components
that interact with each other in real time.

ITR Kickoff / Chess 5

Embedded Software Design: Current State %

No formal connection
between requirements,
model, and resources:

Design
Simulate

Model
(e.g., Simulink) expensive development

cycle iterates all stages

Redesign ' Code generation
Optimize No exact correspondence
Test Code between model and code:

-difficult to upgrade code
-difficult to reuse code

ITR Kickoff / Chess 6

Embedded Software Design: Our Vision @

B

Design
Verify Model

Compilation (analysis, optimization,
| and code generation)

ITR Kickoff / Chess 7

The FR ~ CO Project
(Formal R al-Time oftware Components)

_ MASACCIO:
Hybrid System Model correctness by formal verification
‘againstrequirements

' K1

. GIOTTQ
Time-Safe Code correctness by Echedulbility’
analysis against resources

Continuous (Euclidean) Systems %

State space: R"
Dynamics: initial condition + differential equations

Room temperature: x(0) = X,
X X'(t) = -K-x(t)

Analytic complexity.

ITR Kickoff / Chess 9

Discrete (Boolean) Systems %

State space: B™
Dynamics: initial condition + transition relation

Heater:

off

on

Combinatorial complexity.

ITR Kickoff / Chess 10

{|_The Curse of Cohcur-rér_l-c-y =
7300,000 latches T =

i}

R
1
b

k|
1|

101% stars

£

Hybrid Systems @

State space: B™ xR"
Dynamics: initial condition + transition relation
+ differential equations

. Thermostat: off
X' =-K-x

Xo \/ x=L

\ x<| X>U
off 2]

X' = K-(H-x)
x<Uu
on
t

ITR Kickoff / Chess 13

Hybrid Automata %

ITR Kickoff / Chess 14

Hybrid Automata %

x'€[30,50]
x <100

ITR Kickoff / Chess 15

Hybrid Automata

raise? lower? raise?

closed . lower

y'=0

K gate Iowy

ITR Kickoff / Chess 16

Hybrid Automata %

app exit

S S

t:=0

controller/

lower raise

ITR Kickoff / Chess 17

Requirements %

Safety: VL (x<10 = loc[gate] = closed)
Liveness: VO V< (loc[gate] = open)

Real time: V[1z:=0.(z2 =1 =
v< (loc[gate] = open A z<60))

Verification and failure analysis by model checking
(e.g., HyTech).

ITR Kickoff / Chess 18

Two Problems with Hybrid Automata %

1. Scalability

Possible solutions:

-hierarchy (MASACCIO)
-assume-guarantee decomposition (interfaces)

2. Robustness

Possible solutions:

-g-variability

-discounted future

MASACCIO l Hierarchical Hybrid Automata

ITR Kickoff / Chess 19

Crossing blocked?

obstacle: bool — ==

Initial location

start

EailCrossing
I

|— == 1 real

o ¥liresl
— v real

Dristance of train from gate

Angle of left gate
Angle of right gate
(closed: ¥=0; open: w=90)

ITR Kickoff / Chess 20

MASACCIO l Hierarchical Hybrid Automata %

start
Il :
approach: evt raize; ewt

obstacle: bool
leave: evt lower: evt real
Train Contral Gate }g: r:l

— stop: evt yere
P cloged: bool
x real
g0: eVt

ITR Kickoff / Chess 21

MASACCIO l Hierarchical Hybrid Automata

% real approach: evt leawe: evt

t 1

approachl

obstacle: bool

stop: evt

go: et

start

ITR Kickoff / Chess 22

MASACCIO l Hierarchical Hybrid Automata %

—= xreal

stop: evt

remote: bool
brake: bool

gn: evt Radio

driver: baol

|—= approach: evt
obstacle: ool

= leawve: evt

exdt

ITR Kickoff / Chess 23

MASACCIO l br&ktl: baol

P
DCrrive
rspeedup
entry ¢ : : . et
slowdown ;
Halt

Voo

1 real dx: real

ITR Kickoff / Chess 24

Two Problems with Hybrid Automata @%

1. Scalability

Possible solutions:
-hierarchy (MASACCIO)
-assume-guarantee decomposition (interfaces)

2. Robustness
Possible solutions:

-g-variability
-discounted future

ITR Kickoff / Chess 25

The Robustness Problem %

—— Propert

slightly perturbed automaton

ITR Kickoff / Chess 26

The Robustness Problem %

Safe

ITR Kickoff / Chess 27

The Robustness Problem %

Hybrid
Automaton

—— Unsafe

X = 3+¢

ITR Kickoff / Chess 28

A Possible Solution of the Robustness Problem: %
Metrics on Traces L

B

 Model Property
instead w
of —_— w

Yes or No

consider — w
n

e-Variatio

ITR Kickoff / Chess 29

A More Radical Solution of the Robustness Problem: , '
Discounting the Future

value(Model,Property): States — {Yes, No}

. 2

value(Model,Property): States — R

ITR Kickoff / Chess 30

A More Radical Solution of the Robustness Problem: g
Discounting the Future]

i

value(Model,Property): States — {Yes, No}
value(m,&T) = uX. (T v pre(X))

. 2

discountedValue(Model,Property): States —» R
discountedValue(m,<T) = uX. max(T, A-pre(X))

discount factor O<i<1

ITR Kickoff / Chess 31

A More Radical Solution of the Robustness Problem: , '
Discounting the Future

Robustness Theorem:

If discountedBisimilarity(m;,m,) > 1 - &,
then |discountedValue(m,,p) - discountedValue(m,,p)| < f(¢).

Further Advantages of Discounting:

-approximability because of geometric convergence
(avoids non-termination of verification algorithms)

-applies also to probabilistic systems and to games
(enables reasoning under uncertainty and control)

ITR Kickoff / Chess 32

The FR CO Project
(Formal R al-Time oftware Components)

_ MASACCIO:
Hybrid System Model correctness by formal verification
against requirements

_ GIOTTO:
Time-Safe Code colrectness by schedulability
analysis against resources

The History of Computer Science:
Lifting the Level of Abstraction

High-level languages: Requirements

Programming to the application focused code
1 Compilation

The “assembly age”: Resource

Programming to the platform focused code

-Traditional high-level languages abstract time.

-This abstraction is unsuitable for real-time applications, which are
still programmed in terms of platform time (“priority tweaking”).

-GIOTTO: Real-time programming in terms of application time.

ITR Kickoff / Chess 34

GIOTTO l Time-Triggered Programming @%

ITR Kickoff / Chess 35

TG nicEs
BSOS sTick FLitar

"‘—'l. -.--'-:_- L
— TN
& =i
.". ._i —
'::_,.-" ar datn
il BENAGTS

ITR Kickoff / Chess 36

GIOTTO l Time-Triggered Programming %

— o
: | 400 Hz nt oj Ff Bj Bi

.'\.
R S
.' i s]
P _- P [0
. | & \
ey { e 1-|--|'-"
Wik WA IR
1 kHz
L] L] L] L] l :. 1
1 I 11 11 11 1]]
v ¥ v ¥ " v . 1 v
- - * .. + = L. = & -
i : L 1] i i H i

ITR Kickoff / Chess 37

GIOTTO l Time-Triggered Programming

1. Concurrent Periodic Tasks:

-sensing
-control law computation
-actuating

2. Multiple Modes of Operation:

-navigational modes (autopilot, manual, etc.)
-maneuver modes (taxi, takeoff, cruise, etc.)
-degraded modes (sensor, actuator, CPU failures)

ITR Kickoff / Chess 38

GIOTTO Time-Triggered

!

Programming

-

&

y .
£

Mode 1 Condition 1.2

Task S 400 Hz :>
Task C 200 Hz <:|
Task A 1 kHz Condition 2.1

am

Mode 3

Task S 400 Hz

Task C 200 Hz
Task A 2 kHz

Mode 2

Task S 400 Hz
Task C 200 Hz

Task A’ 1 kHz
Task A" 1 kHz

g

Mode 4

Task C' 100 Hz

Task A 1 kHz

GIOTTO l Separation of Concerns

ITR Kickoff / Chess 39

Functionality.

Timing and interaction.

[Slo i Meolo [-No time. (eI Xeolo [0 -Real time.
e.g.C -Atomic. _ Giotto -Reactive.
-Sequential. -Concurrent.
") ()
]
I | ——
I | <——— I
I I
_ ﬂﬁ) \T)
() ()
__ I
I
I
_ J _ J

This kind of software is
reasonably well understood.

The software complexity
lies in the glue code.

ITR Kickoff / Chess 40

Two Opposing Forces % %

Requirements

Verification automatic (model checking)

Environment

Implementation automatic (compilation)

Resources

ITR Kickoff / Chess 41

Two Opposing Forces %

Requirements

Verification

Environment

Implementation property preserving

Resources

ITR Kickoff / Chess 42

Two Opposing Forces %%

Requirements

s '

Verification

Component Component

Implementation

v v

Resources

ITR Kickoff / Chess 43

Two Opposing Forces %

Requirements (time, fault tolerance, etc.)

Verification
no change

Implementation
no change

Deep
Compositionality

Resources

ITR Kickoff / Chess 44

Achieving Verifiability and Compositionality in GIOTTO: %
The FLET (Fixed Logical Execution Time) Assumption

SN NS

Software Task

d>0 is the write actuator
read sensor o -
inout at ime t task's "logical output at time
P execution time" t+d, for fixed d
ITR Kickoff / Chess 45
Embedded Programming in GIOTTO %

The programmer specifies sample rate d and jitter j
to solve the control problem at hand.

The compiler ensures that d and j are met on a given
platform (hardware resources and performance);
otherwise it rejects the program.

ITR Kickoff / Chess 46

Implementing the FLET Assumption

SN NS

-

possible physical
execution on CPU buffer output

Contrast the FLET with Standard Practice

ITR Kickoff / Chess 47

o

SN NS

output as soon
as ready

ITR Kickoff / Chess 48

Advantages of the FLET and GIOTTO %

-predictable timing and value behavior
(no internal race conditions, minimal jitter)

-portable, composable code (as long as the
platform offers sufficient performance)

ITR Kickoff / Chess 49

Research Agenda

From Hybrid Models
-robust hybrid models (tube topologies, discounting)
-model checking for hierarchical and stochastic hybrid models

-multi-aspect assume-guarantee decomposition of hybrid models
(interface theories for time, resources, fault tolerance)

To Embedded Code

-distributed schedulability analysis and code generation

-on-line code modification and fault tolerance

ITR Kickoff / Chess 50

Credits %

Scalable and Robust Hybrid Systems: Luca de Alfaro,
Arkadeb Ghosal, Marius Minea, Vinayak Prabhu,
Marcin Jurdzinski, Rupak Majumdar

GIOTTO: Ben Horowitz, Christoph Kirsch, Rupak
Majumdar, Slobodan Matic, Marco Sanvido

ITR Kickoff / Chess 51

Collaborators of the FRESCO Project

-Alex Aiken on time-safety analysis of embedded code
-Karl Hedrick on Giotto implementation of electronic throttle control
-Edward Lee on Giotto modeling and code generation in Ptolemy

-Edward Lee on rich interface theories as type theories for component
interaction

-George Necula on model checking device drivers
-George Necula on scheduler-carrying embedded code

-Alberto Sangiovanni-Vincentelli on synthesis of protocol converters
from interfaces

-Alberto Sangiovanni-Vincentelli and Shankar Sastry on platform-based
design of a helicopter flight control system using Giotto

-Shankar Sastry on hybrid automata

ITR Kickoff / Chess 52

