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French Guyana, June 4, 1996
$800 million embedded software failure
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Mars, December 3, 1999
Crashed due to uninitialized variable

$4 billion development effort
40-50% system integration & validation cost
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Sources of Complexity

-concurrency

-real time

-heterogeneity

A hybrid system consists of multiple continuous 
(physical) and discrete (computational) components 
that interact with each other in real time.
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Embedded Software Design:  Current State

Code 

Model           
(e.g., Simulink)

Design 
Simulate

Optimize 
Test

Code generation

No exact correspondence 
between model and code:

-difficult to upgrade code    
-difficult to reuse code

No formal connection 
between requirements, 
model, and resources:

expensive development 
cycle iterates all stages

Redesign
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Embedded Software Design:  Our Vision

Code 

Model           
Design 

Verify

Compilation (analysis, optimization, 
and code generation)
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The FRESCO Project
(Formal Real-Time Software Components)

Hybrid System Model
MASACCIO:          
correctness by formal verification 
against requirements

Time-Safe Code
GIOTTO:   
correctness by schedulability 
analysis against resources
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Continuous (Euclidean) Systems

State space: R                                                 
Dynamics: initial condition + differential equations

n

Room temperature: x(0) = x0
x’(t) = -K·x(t)x

t

x0

Analytic complexity.

ITR Kickoff / Chess 10

Discrete (Boolean) Systems

State space: B                                                 
Dynamics: initial condition + transition relation

m

Heater:

heat

t

off

on

off on

Combinatorial complexity.
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The Curse of Concurrency
300,000 latches

10    stars11
10    stars

10           states100,000

11
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Hybrid Systems

State space: B    × R
Dynamics: initial condition + transition relation           

+ differential equations

m

Thermostat:

t

off

on

n

x0

off
x’ = -K·x

on
x’ = K·(H-x)

x ≤ l x ≥ u

x ≤ U

x ≥ L
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x

y

Hybrid Automata
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far
x’∈[-50,-40]

x ≥ 1000

near
x’∈[-50,-30]

x ≥ 0

past
x’∈[30,50]

x ≤ 100

x = 1000

x = 0x = 100 →
x :∈ [2000,∞)

app!

exit!

app

exit

train

Hybrid Automata
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up
y’ = 9

open
y’ = 0

raise

lower

gate

y ≤ 90

y = 90

down
y’ = -9

closed
y’ = 0

y ≥ 0

y = 0

raise? lower? raise?

lower?

Hybrid Automata
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t’ = 1
t ≤ α

t := 0
app?

lower!

t’ = 1
t ≤ α

t := 0
exit?

raise!

app exit

idle

controller

raiselower

Hybrid Automata
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Safety: ∀! ( x ≤ 10  ⇒ loc[gate] = closed )

Liveness: ∀! ∀" ( loc[gate] = open )

Real time: ∀! z :=0. ( z’ = 1  ⇒
∀" ( loc[gate] = open  ∧ z ≤ 60 ))

Requirements

Verification and failure analysis by model checking 
(e.g., HyTech).
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1. Scalability

Possible solutions:                                 
-hierarchy (MASACCIO)
-assume-guarantee decomposition (interfaces)

2. Robustness

Possible solutions:                                             
-ε-variability                                                     
-discounted future 

Two Problems with Hybrid Automata
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MASACCIOMASACCIO Hierarchical Hybrid Automata
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MASACCIOMASACCIO Hierarchical Hybrid Automata
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MASACCIOMASACCIO Hierarchical Hybrid Automata



12

ITR Kickoff / Chess 23

MASACCIOMASACCIO Hierarchical Hybrid Automata
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MASACCIOMASACCIO
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1. Scalability

Possible solutions:                                 
-hierarchy (MASACCIO)
-assume-guarantee decomposition (interfaces)

2. Robustness

Possible solutions:                                             
-ε-variability                                                     
-discounted future 

Two Problems with Hybrid Automata
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slightly perturbed automaton

The Robustness Problem

Hybrid Automaton Property
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Safe

Hybrid 
Automaton

x = 3

The Robustness Problem

ITR Kickoff / Chess 28

Unsafe

Hybrid 
Automaton

x = 3+ε

The Robustness Problem
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A Possible Solution of the Robustness Problem:               
Metrics on Traces                     

Model Property

instead 
of

consider

Yes or No

ε-Variation
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value(Model,Property): States → {Yes, No}

value(Model,Property): States → R

A More Radical Solution of the Robustness Problem:              
Discounting the Future
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value(Model,Property): States → {Yes, No}

value(m,"T) = µX. (T ∨ pre(X))

discountedValue(Model,Property): States → R

discountedValue(m,"T) = µX. max(T, λ⋅pre(X))

discount factor 0<λ<1

A More Radical Solution of the Robustness Problem:              
Discounting the Future
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Robustness Theorem:

If discountedBisimilarity(m1,m2) > 1 - ε,                                    
then |discountedValue(m1,p) - discountedValue(m2,p)| < f(ε).

Further Advantages of Discounting:

-approximability because of geometric convergence 
(avoids non-termination of verification algorithms)

-applies also to probabilistic systems and to games
(enables reasoning under uncertainty and control)

A More Radical Solution of the Robustness Problem:              
Discounting the Future
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The FRESCO Project
(Formal Real-Time Software Components)

Hybrid System Model
MASACCIO:          
correctness by formal verification 
against requirements

Time-Safe Code
GIOTTO:   
correctness by schedulability 
analysis against resources
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The History of Computer Science: 
Lifting the Level of Abstraction

The “assembly age”:            
Programming to the platform

High-level languages: 
Programming to the application

Compilation

-Traditional high-level languages abstract time.

-This abstraction is unsuitable for real-time applications, which are 
still programmed in terms of platform time (“priority tweaking”).

-GIOTTO: Real-time programming in terms of application time.

Requirements 
focused code 

Resource 
focused code
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MASACCIOGIOTTO Time-Triggered Programming
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MASACCIOGIOTTO Time-Triggered Programming
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200 Hz
400 Hz

200 Hz 1 kHz

MASACCIOGIOTTO Time-Triggered Programming

ITR Kickoff / Chess 38

1. Concurrent Periodic Tasks:
-sensing                                                         
-control law computation                                         
-actuating                      

2. Multiple Modes of Operation:
-navigational modes (autopilot, manual, etc.)                    
-maneuver modes (taxi, takeoff, cruise, etc.)                    
-degraded modes (sensor, actuator, CPU failures)

MASACCIOGIOTTO Time-Triggered Programming
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Mode 1

Mode 4Mode 3

Mode 2

Task S   400 Hz

Task C   200 Hz

Task A   1 kHz

Task S   400 Hz

Task C   200 Hz

Task A’   1 kHz

Task C’   100 Hz

Task A   1 kHz

Task S   400 Hz

Task C   200 Hz

Task A   2 kHz

Task A”   1 kHz

Condition 1.2

Condition 2.1

MASACCIOGIOTTO Time-Triggered Programming
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Host code                
e.g. C

Glue code                
Giotto

Functionality.
-Real time.     
-Reactive.                                             
-Concurrent.

Timing and interaction.

This kind of software  is 
reasonably well understood.

The software complexity 
lies in the  glue code.

-No time.      
-Atomic.              
-Sequential.

MASACCIOGIOTTO Separation of Concerns
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Model

Requirements

Resources

Verification

Implementation

Environment

Two Opposing Forces

automatic (model checking)

automatic (compilation)
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Model

Requirements

Resources

Verification

Implementation

Environment

Two Opposing Forces

property preserving
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Component

Requirements

Resources

Verification

Implementation

Two Opposing Forces

Component
Composition
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Component

Requirements

Resources

Verification

Implementation

Two Opposing Forces

Component

Deep 
Compositionality

no change

no change

(time, fault tolerance, etc.)
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Achieving Verifiability and Compositionality in GIOTTO:                 
The FLET (Fixed Logical Execution Time) Assumption

Software Task

read sensor 
input at time t

write actuator 
output at time 
t+d, for fixed d

d>0 is the 
task's "logical 
execution time"
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Embedded Programming in GIOTTO

The programmer specifies sample rate d and jitter j
to solve the control problem at hand.

The compiler ensures that d and j are met on a given 
platform (hardware resources and performance); 
otherwise it rejects the program.
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time t time t+d

possible physical 
execution on CPU buffer output

Implementing the FLET Assumption
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Contrast the FLET with Standard Practice

output as soon 
as ready
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-predictable timing and value behavior       
(no internal race conditions, minimal jitter)

-portable, composable code (as long as the 
platform offers sufficient performance)

Advantages of the FLET and GIOTTO
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From Hybrid Models 
-robust hybrid models (tube topologies, discounting)

-model checking for hierarchical and stochastic hybrid models 

-multi-aspect assume-guarantee decomposition of hybrid models 
(interface theories for time, resources, fault tolerance)

To Embedded Code
-distributed schedulability analysis and code generation

-on-line code modification and fault tolerance

Research Agenda
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Scalable and Robust Hybrid Systems: Luca de Alfaro,
Arkadeb Ghosal, Marius Minea, Vinayak Prabhu,
Marcin Jurdzinski, Rupak Majumdar

GIOTTO: Ben Horowitz, Christoph Kirsch, Rupak 
Majumdar, Slobodan Matic, Marco Sanvido

Credits
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-Alex Aiken on time-safety analysis of embedded code

-Karl Hedrick on Giotto implementation of electronic throttle control

-Edward Lee on Giotto modeling and code generation in Ptolemy

-Edward Lee on rich interface theories as type theories for component 
interaction

-George Necula on model checking device drivers 

-George Necula on scheduler-carrying embedded code

-Alberto Sangiovanni-Vincentelli on synthesis of protocol converters 
from interfaces

-Alberto Sangiovanni-Vincentelli and Shankar Sastry on platform-based 
design of a helicopter flight control system using Giotto

-Shankar Sastry on hybrid automata

Collaborators of the FRESCO Project


