
1

NSF

Foundations of Hybrid and Embedded Software Systems

UC Berkeley: Chess
Vanderbilt University: ISIS
University of Memphis: MSI

Hybrid Systems:
From Models to Code

Tom Henzinger
UC Berkeley

French Guyana, June 4, 1996
$800 million embedded software failure

2

ITR Kickoff / Chess 3

Mars, December 3, 1999
Crashed due to uninitialized variable

$4 billion development effort
40-50% system integration & validation cost

3

ITR Kickoff / Chess 5

Sources of Complexity

-concurrency

-real time

-heterogeneity

A hybrid system consists of multiple continuous
(physical) and discrete (computational) components
that interact with each other in real time.

ITR Kickoff / Chess 6

Embedded Software Design: Current State

Code

Model
(e.g., Simulink)

Design
Simulate

Optimize
Test

Code generation

No exact correspondence
between model and code:

-difficult to upgrade code
-difficult to reuse code

No formal connection
between requirements,
model, and resources:

expensive development
cycle iterates all stages

Redesign

4

ITR Kickoff / Chess 7

Embedded Software Design: Our Vision

Code

Model
Design

Verify

Compilation (analysis, optimization,
and code generation)

ITR Kickoff / Chess 8

The FRESCO Project
(Formal Real-Time Software Components)

Hybrid System Model
MASACCIO:
correctness by formal verification
against requirements

Time-Safe Code
GIOTTO:
correctness by schedulability
analysis against resources

5

ITR Kickoff / Chess 9

Continuous (Euclidean) Systems

State space: R
Dynamics: initial condition + differential equations

n

Room temperature: x(0) = x0
x’(t) = -K·x(t)x

t

x0

Analytic complexity.

ITR Kickoff / Chess 10

Discrete (Boolean) Systems

State space: B
Dynamics: initial condition + transition relation

m

Heater:

heat

t

off

on

off on

Combinatorial complexity.

6

The Curse of Concurrency
300,000 latches

10 stars11
10 stars

10 states100,000

11

7

ITR Kickoff / Chess 13

Hybrid Systems

State space: B × R
Dynamics: initial condition + transition relation

+ differential equations

m

Thermostat:

t

off

on

n

x0

off
x’ = -K·x

on
x’ = K·(H-x)

x ≤ l x ≥ u

x ≤ U

x ≥ L

ITR Kickoff / Chess 14

x

y

Hybrid Automata

8

ITR Kickoff / Chess 15

far
x’∈[-50,-40]

x ≥ 1000

near
x’∈[-50,-30]

x ≥ 0

past
x’∈[30,50]

x ≤ 100

x = 1000

x = 0x = 100 →
x :∈ [2000,∞)

app!

exit!

app

exit

train

Hybrid Automata

ITR Kickoff / Chess 16

up
y’ = 9

open
y’ = 0

raise

lower

gate

y ≤ 90

y = 90

down
y’ = -9

closed
y’ = 0

y ≥ 0

y = 0

raise? lower? raise?

lower?

Hybrid Automata

9

ITR Kickoff / Chess 17

t’ = 1
t ≤ α

t := 0
app?

lower!

t’ = 1
t ≤ α

t := 0
exit?

raise!

app exit

idle

controller

raiselower

Hybrid Automata

ITR Kickoff / Chess 18

Safety: ∀! (x ≤ 10 ⇒ loc[gate] = closed)

Liveness: ∀! ∀" (loc[gate] = open)

Real time: ∀! z :=0. (z’ = 1 ⇒
∀" (loc[gate] = open ∧ z ≤ 60))

Requirements

Verification and failure analysis by model checking
(e.g., HyTech).

10

ITR Kickoff / Chess 19

1. Scalability

Possible solutions:
-hierarchy (MASACCIO)
-assume-guarantee decomposition (interfaces)

2. Robustness

Possible solutions:
-ε-variability
-discounted future

Two Problems with Hybrid Automata

ITR Kickoff / Chess 20

MASACCIOMASACCIO Hierarchical Hybrid Automata

11

ITR Kickoff / Chess 21

MASACCIOMASACCIO Hierarchical Hybrid Automata

ITR Kickoff / Chess 22

MASACCIOMASACCIO Hierarchical Hybrid Automata

12

ITR Kickoff / Chess 23

MASACCIOMASACCIO Hierarchical Hybrid Automata

ITR Kickoff / Chess 24

MASACCIOMASACCIO

13

ITR Kickoff / Chess 25

1. Scalability

Possible solutions:
-hierarchy (MASACCIO)
-assume-guarantee decomposition (interfaces)

2. Robustness

Possible solutions:
-ε-variability
-discounted future

Two Problems with Hybrid Automata

ITR Kickoff / Chess 26

slightly perturbed automaton

The Robustness Problem

Hybrid Automaton Property

14

ITR Kickoff / Chess 27

Safe

Hybrid
Automaton

x = 3

The Robustness Problem

ITR Kickoff / Chess 28

Unsafe

Hybrid
Automaton

x = 3+ε

The Robustness Problem

15

ITR Kickoff / Chess 29

A Possible Solution of the Robustness Problem:
Metrics on Traces

Model Property

instead
of

consider

Yes or No

ε-Variation

ITR Kickoff / Chess 30

value(Model,Property): States → {Yes, No}

value(Model,Property): States → R

A More Radical Solution of the Robustness Problem:
Discounting the Future

16

ITR Kickoff / Chess 31

value(Model,Property): States → {Yes, No}

value(m,"T) = µX. (T ∨ pre(X))

discountedValue(Model,Property): States → R

discountedValue(m,"T) = µX. max(T, λ⋅pre(X))

discount factor 0<λ<1

A More Radical Solution of the Robustness Problem:
Discounting the Future

ITR Kickoff / Chess 32

Robustness Theorem:

If discountedBisimilarity(m1,m2) > 1 - ε,
then |discountedValue(m1,p) - discountedValue(m2,p)| < f(ε).

Further Advantages of Discounting:

-approximability because of geometric convergence
(avoids non-termination of verification algorithms)

-applies also to probabilistic systems and to games
(enables reasoning under uncertainty and control)

A More Radical Solution of the Robustness Problem:
Discounting the Future

17

ITR Kickoff / Chess 33

The FRESCO Project
(Formal Real-Time Software Components)

Hybrid System Model
MASACCIO:
correctness by formal verification
against requirements

Time-Safe Code
GIOTTO:
correctness by schedulability
analysis against resources

ITR Kickoff / Chess 34

The History of Computer Science:
Lifting the Level of Abstraction

The “assembly age”:
Programming to the platform

High-level languages:
Programming to the application

Compilation

-Traditional high-level languages abstract time.

-This abstraction is unsuitable for real-time applications, which are
still programmed in terms of platform time (“priority tweaking”).

-GIOTTO: Real-time programming in terms of application time.

Requirements
focused code

Resource
focused code

18

ITR Kickoff / Chess 35

MASACCIOGIOTTO Time-Triggered Programming

ITR Kickoff / Chess 36

MASACCIOGIOTTO Time-Triggered Programming

19

ITR Kickoff / Chess 37

200 Hz
400 Hz

200 Hz 1 kHz

MASACCIOGIOTTO Time-Triggered Programming

ITR Kickoff / Chess 38

1. Concurrent Periodic Tasks:
-sensing
-control law computation
-actuating

2. Multiple Modes of Operation:
-navigational modes (autopilot, manual, etc.)
-maneuver modes (taxi, takeoff, cruise, etc.)
-degraded modes (sensor, actuator, CPU failures)

MASACCIOGIOTTO Time-Triggered Programming

20

ITR Kickoff / Chess 39

Mode 1

Mode 4Mode 3

Mode 2

Task S 400 Hz

Task C 200 Hz

Task A 1 kHz

Task S 400 Hz

Task C 200 Hz

Task A’ 1 kHz

Task C’ 100 Hz

Task A 1 kHz

Task S 400 Hz

Task C 200 Hz

Task A 2 kHz

Task A” 1 kHz

Condition 1.2

Condition 2.1

MASACCIOGIOTTO Time-Triggered Programming

ITR Kickoff / Chess 40

Host code
e.g. C

Glue code
Giotto

Functionality.
-Real time.
-Reactive.
-Concurrent.

Timing and interaction.

This kind of software is
reasonably well understood.

The software complexity
lies in the glue code.

-No time.
-Atomic.
-Sequential.

MASACCIOGIOTTO Separation of Concerns

21

ITR Kickoff / Chess 41

Model

Requirements

Resources

Verification

Implementation

Environment

Two Opposing Forces

automatic (model checking)

automatic (compilation)

ITR Kickoff / Chess 42

Model

Requirements

Resources

Verification

Implementation

Environment

Two Opposing Forces

property preserving

22

ITR Kickoff / Chess 43

Component

Requirements

Resources

Verification

Implementation

Two Opposing Forces

Component
Composition

ITR Kickoff / Chess 44

Component

Requirements

Resources

Verification

Implementation

Two Opposing Forces

Component

Deep
Compositionality

no change

no change

(time, fault tolerance, etc.)

23

ITR Kickoff / Chess 45

Achieving Verifiability and Compositionality in GIOTTO:
The FLET (Fixed Logical Execution Time) Assumption

Software Task

read sensor
input at time t

write actuator
output at time
t+d, for fixed d

d>0 is the
task's "logical
execution time"

ITR Kickoff / Chess 46

Embedded Programming in GIOTTO

The programmer specifies sample rate d and jitter j
to solve the control problem at hand.

The compiler ensures that d and j are met on a given
platform (hardware resources and performance);
otherwise it rejects the program.

24

ITR Kickoff / Chess 47

time t time t+d

possible physical
execution on CPU buffer output

Implementing the FLET Assumption

ITR Kickoff / Chess 48

Contrast the FLET with Standard Practice

output as soon
as ready

25

ITR Kickoff / Chess 49

-predictable timing and value behavior
(no internal race conditions, minimal jitter)

-portable, composable code (as long as the
platform offers sufficient performance)

Advantages of the FLET and GIOTTO

ITR Kickoff / Chess 50

From Hybrid Models
-robust hybrid models (tube topologies, discounting)

-model checking for hierarchical and stochastic hybrid models

-multi-aspect assume-guarantee decomposition of hybrid models
(interface theories for time, resources, fault tolerance)

To Embedded Code
-distributed schedulability analysis and code generation

-on-line code modification and fault tolerance

Research Agenda

26

ITR Kickoff / Chess 51

Scalable and Robust Hybrid Systems: Luca de Alfaro,
Arkadeb Ghosal, Marius Minea, Vinayak Prabhu,
Marcin Jurdzinski, Rupak Majumdar

GIOTTO: Ben Horowitz, Christoph Kirsch, Rupak
Majumdar, Slobodan Matic, Marco Sanvido

Credits

ITR Kickoff / Chess 52

-Alex Aiken on time-safety analysis of embedded code

-Karl Hedrick on Giotto implementation of electronic throttle control

-Edward Lee on Giotto modeling and code generation in Ptolemy

-Edward Lee on rich interface theories as type theories for component
interaction

-George Necula on model checking device drivers

-George Necula on scheduler-carrying embedded code

-Alberto Sangiovanni-Vincentelli on synthesis of protocol converters
from interfaces

-Alberto Sangiovanni-Vincentelli and Shankar Sastry on platform-based
design of a helicopter flight control system using Giotto

-Shankar Sastry on hybrid automata

Collaborators of the FRESCO Project

