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Thrust I: Hybrid System Theory

* Models and semantics
- Abstract semantics for Interchange Format
- Hybrid Category Theory

» Analysis and verification
- Detecting Zeno

- Automated abstraction and refinement
* Fast numerical algorithm
» Symbolic algorithm

» Control
- Stochastic games
- Optimal control of stochastic hybrid systems
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Hybrid System Model: Basics

i = falw,u,d)
T = fj_(.iﬂ‘,u,d)
...;. J:'IF
i = fs(z,u, d)
z = fa(z,u,d)
= fo(x,u,d)
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Interchange format for HS: Abstract s
‘

Semantics (Model)

Definition: AHS isatuple H = (V,E,D,I,0,w,p)
V = {v1,...,un} is a set of variables
E = {e1,...,em} is a set of equations
D C 2R(V) s a set of domains
I CN is aset of indexes
o : 2R(V) _, oI gssociates a set of indexes to

each domain

- w: I — 2¥ associates a set of equations to
each index

e p:2R(V) x 2R(V) x R(V) — 2R(V) s the reset
mapping

. COmPOSiTiOH defined [Pinto, Sangiovanni-Vincentelli]
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Interchange format for HS: Abstract i
Semantics (Execution) 161§

The semantics is defined by the set B of pairs (’Y, i) of valuations and time stamps.

The set B is determined by the following elements: (H, T, resolve, init, update)

resolve(t)
D' < {D € D|val(V;) € D} //Active domains
Time Stamper I<=0, Bt <=0
B = {(Vp,0)} I <= Upepro(D) //Active dynamics
for all i €I do
0 Ey = Ey Uw(?) //Active equations
end for
sort(E;, ) //Order the equations
for all e; € E; do
solve(e;,t)
end for
D" < {D € D|val(V}) € D} //Active domains*
markchange ( D',D" ) //Domain change \

[Pinto, Sangiovanni-Vincentelli]
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Hybrid Category Theory

* Reformulates hybrid systems categorically so
that they can be more easily reasoned about

» Unifies, but clearly separates, the discrete
and continuous components of a hybrid system

* Arbitrary non-hybrid objects can be
generalized to a hybrid setting

- Novel results can be established

[Ames, Sastry]
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Hybrid Category Theory: Framework

* One begins with:
- A collection of "non-hybrid” mathematical objects

- A notion of how these objects are related to one
another (morphisms between the objects)

- Example: vector spaces, manifolds, dynamical systems
* Therefore, the non-hybrid objects of interest
form a category, T
- Example: T = Vect; T = Man; T = Dyn;
 The objects being considered can be “hybridized"
by considering a small category (or "graph”) H
together with a functor (or "function”):

SH! T

- H is the “discrete” component of the hybrid system
- T is the “continuous” component
» Example: hybrid vector space SIH ! Vect; hybrid manifold
S:H! Man; hybrid system SISH! Dyn

[Ames, Sastry]
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Hybrid Category Theory: Properties

Composition: hybrid category theory can be used to
reason about heterogeneous system composition:
- Prove that composition is the limit of a hybrid object over this
category |
Pill.a P2 =

a1

@(@1—%40‘—2%)

- Derive necessary and sufficient conditions on when behavior is
preserved by composition

Reduction: can be used to decrease the dimensionality

of systems; a variety of mathematical objects needed

(vector spaces, manifolds, maps), hybrid category

theory allows easy “hybridization” of these.

[Ames, Sastry]
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Hybrid Reduction Theorem

Classical Reduction Theorem

m Given a symplectic manifold M (the phase space), there
exists a symplectic manifold M, such that M,, inherits the
symplectic structure from that of M.

m Dynamical trajectories of the Hamiltonian H on M
determine corresponding trajectories on the reduced space.

Hybrid Reduction Theorem

m Given a hybrid symplectic manifold M (the hybrid phase
space), there exists a hybrid symplectic manifold M ,, such
that M ,, inherits the hybrid symplectic structure from that of
M.

m Dynamical hybrid trajectories of the hybrid Hamiltonian H
on M determine corresponding hybrid trajectories on the
) L
reduced hybrid space. ;'@3
[Ames, Sastry] ¥
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Other results: detecting zeno %

Zeno: hybrid trajectory switches infinitely often in a finite amount of time
Detection of Zeno is critical in control design
Progress in identification of Sufficient Conditions for detection

Diagonal, "First Quadrant” HS

T,
guard Foracycle 1 —-2...— K —1...
i Sufficient Conditions: forall ¢ € {1,2..., K}
2 Ti | ' 1 < O < 2 .
Fl Dy 1 | Qg g \ Genuine
. . A > | Zeno Behavior
........ <1
s
Aq [Abate, Ames, Sastry]
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Zeno: a TCP control example %

Topology of a 2-user,
2 links (one wireline,
one wireless) network

"Hybrid System Theory", C. Tomlin
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Zeno: a TCP control example

study of a cycle
reduction in first quadrant form

$2=CQ

e__
z2 =02
o/ l.=
; 1 =C1—C>
x1 = C1 —C>
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Reminder

Some classes of hybrid automata:
Timed automata
Rectangular automata
....... Linear automata .. oo
Affine automata
Polynomial automata

etc.

— Limit for symbolic computation of Post with HyTech

—— Limit for decidability of Language Emptiness

[Doyen, Henzinger, Raskin]
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Methodology

Affine automaton A and set of states Bad
Check that Reach(A) " Bad = @

Affine dynamics is too complex ?
mmpp Abstract it automatically |

Abstraction is too coarse ?
mmp Refine it automatically |

LA AN
[Doyen, Henzinger, Raskin] ~%¥¥
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Methodology

1. Abstraction: over-approximation

Affine dynamics Rectangular dynamics

f()

12]=[min ., f(x),max, ., f(x
Inv_{O£x£3} Then [F12]=[min,,, T(X), (x)]

Let

[Doyen, Henzinger, Raskin]
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Methodology

2. Refinement: split locations by a line cut

Line | = x

|l
N |w

¢
]

Linear optimization problem ! &2
[Doyen, Henzinger, Raskin] ~%¥¥
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Methodology

Original Automaton

A v
(Abs’rmc’r) ( Refine )

Al
N
(Reach(A )"Bad £ @) =
\ Yes
Pr'oper'Ty ver'ified [Doyen, Henzinger, Raskin] sy
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Symbolic Reachability Analysis

Want to find initial conditions that converge to a
particular steady-state

+ Compute reach sets symbolically, in terms of model
parameters, from the desired r'eachable states

PrOblem J1+(1212+b2

L1 —I-Gsrz + b3

- Large state space o1+ asea + b
SO I UTiOn o r 1_:}:'311‘135‘2 + by
- Abstract!

~ N D
Notch || Neten
D'e

1 / == T

Delta
" J\_ Deltq, (Ghosh. Tomlin]
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Abstraction Algorithm %

* Partition state-space such that
each partition has one or less exit
Transition

- Use Lie derivative to compute
Transitions

[Ghosh, Tomlin]
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Abstraction Algorithm Step 1

A simple example: Aj, by, o, B
are symbolic

A; diagonal

i = Az + by
1 1 — 1tz + 81 =0

& = Aoz + by

Step 1. Separate partitions into interiors and boundaries

o @

| Interior L
Boundary 2
[Ghosh, Tomlin]
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Abstraction Algorithm Step 2 %

Step 2: Compute transitions between modes. In mode 1:

- Determine direction of flow across the boundary

- Compute sign of Lie derivative of function describing boundary, with
respect to mode 1 dynamics:£ 4,5+, (21 + @122 + B1)

- If £< 0 then flowis from mode 1 to mode 2
- If £=0 then flow remains on boundary

Interior e

Interior

Boundary

[Ghosh, Tomlin]
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Transition Checking: Lie Derivative

§(x1 + a1z + B1)

5 (Ai1z 4+ b1)
I

LAzt (T1 +ar1z0 + F1) =

Mode 1 =1 +aizp+ 581 >0

7777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777777

Mode 2 z1 +aizp+ 81 =0

Mode 3 1+ a1z + 01 <0

NSF

[Ghosh, Tomlin]
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Abstraction Algorithm Step 3 @

Step 3: Partition modes that have more than one exit transition
- In Mode 2, split the mode at the point of intersection or inflexion, where £ = 0

- In Mode 3, partition between those states which remain in 3 and those which enter
mode 2. The separation line (or surface) is the analytical solution of the differential
equations of the mode passing through the separation point.

N\
i
x = exp(Ast)zg + f{‘.} exp(As7)bodT
time ¢ is eliminated to form a 294 a8 = ¢
closed f(_er polynomial  mmp 21— 13 =0
expression

[Ghosh, Tomlin]
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Illustration: 2 Cell Delta-Notch

» Partitioning step:

~|lstate:q,f - “state:qg,| -
A\ LN — = < ]
N A o~ = = = { - e 4
=X, — X, =0 —
AN B\ NN N N e e
State: gl & N\C Soo S : ﬁ -
AN AN o0 N D N
T\ N RN [ZI.—/l—'\'(X4 xz)j _Lﬁj -0
AR I NN N RN hN
AN AN AN N NS ~ =
ol (State gl | N  State : g, |~ | State : gy,
x —hy =0 ~ TN T T T T
| N X XX X DN AN

[Ghosh, Tomlin]
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....And its Results: Reachability

»+ Compute reachable set
from equilibrium states
by tracing executions
backward through
discrete state-space

» Certain regions of
continuous state-space Reach Set for 1 =
may hot be resolvable e

- Resultant reachable sets . —
are under-approximations @ @

[Ghosh, Tomlin]
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Visualization of Reach Sets

* Projection of symbolic backward reachable

sets

[Ghosh, Tomlin]
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Equilibrium 4: (x3 —x1 < 0A x5 — 21 < 0Ax7 — 21
ONhp+x6 > ONhp+x28 > 0Nhp +24 > OANIhD + 29
OANhy — 227 — 225 — 223 > OAN hy — 227 — 225 — 221
OANhy — 227 — 223 — 221 < OAhy — 225 — 223 — 221
OA(hny —2x5 — 223 — 221 > 0V hy — 227 — 223 — 214
OVhy —2x7—2x5—2x1 > 0V (hp+a4 < O0ANAN — 227 —
205 — 2x3 > O)\/(hD +x6 <OANAhN — 227 — 225 — 2203 >
O)\/(hD+.’EQ > 0ANhy —2x7—2x5—213 > O)V(h,D+a:6 >
OANhp+axs >0ANAp+ax4 >0NAp+29 < ONAN —227 —

205—2x3 < 0)V(hp+zs < 0NN —2x7—2x5—223 > 0)))

IV AN IAIA A

able

te if it
ial

» Computationally tractable: reach set is in

disjunctive normal form

* Example query: "What steady state does
the system reach if Protein A is initially

greater than Protein B?"

[Ghosh, Tomlin]
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Reachability Analysis for Discrete Time @
Stochastic Hybrid Systems 16§
Stochastic hybrid systems (SHS) can model uncertain

dynamics and stochastic interactions that arise in many
systems

* Probabilistic reachability problem:

- What is the probability that the system can reach a
set during some time horizon?

- (If possible), select a control input to ensure that the
system remains outside the set with sufficiently high

Pf‘ObC(blllTy [Amin, Abate, Sastry]
Thermostat Trivial Switching Control Law
/0 (switch when state hits unsafe set)
' ON G OFF ' T ]

(1 _ Q)XI BKO (1 T JS)}{I ° 10 200 Timeg((i)r?min) 400
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Quantitative Verification for Timed G

Systems 16§
» Defined quantitative notions of similarity between timed
systems.

- Showed quantitative timed similarity and bisimilarity functions can be
computed to within any desired degree of accuracy for timed automata.

* Quantitative similarity is robust - close states satisfy
similar logic specifications (robustness of TCTL)

» Can view logic formulae as being real valued functions in
[0,1] on states.

- Use diiscounting in the quantification - we would like to satisfy
specifications as soon as possible.

= Dhefilned the logic DCTL - showed model checking decidable for a subset of
the logic.

[Prabhu, Majumdar, Henzinger] ¥
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Stochastic Games @

- Stochastic games: played on game graphs with probabilistic
transitions

Framework for control, controller synthesis, verification
Classification:
- How player choose moves
« Turn-based or Concurrent
- Information of the players about the game
* Perfect information or Semi-perfect information or Partial information
- Objectives: m-regular
- Captures liveness, safety, fairness
Results:

1. Equivalence of semi-perfect turn-based games and perfect concurrent
games

2. Complexity of perfect-information m-regular turn-based and concurrent
games

3. New notions of equilibria for modular verification
- Secure equilibria

- Future directions: application of such equilibria for assume-guarantgg,
style reasoning for modular verification

[Chatterjee, Henzinger ] “Sy¥
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Optimal control of Stochastic Hybrid i%‘
Systems 1§19

Minimize E[f(X)]
Subject to dX; = u( X, my)dt + o(X¢, my)dBy
u el

. {B; € R%: ¢t > 0} standard Brownian motion

+ {X: € R™ .t > 0} continuous state. Solves an SDE
whose jumps are governed by the discrete state

*{my € {1,..., M} : t > 0} discrete state:
continuous time Markov chain.

~u R" x {1,...,M} — R™ control
[Raffard, Hu, Tomlin]
"Hybrid System Theory", C. Tomlin Chess Review, Nov. 21, 2005 32




Applications:

* Engineering: Maintain dynamical system in
safe domain for maximum time.

Maximize E[f(X)] = E[ggg{t X(t) ¢ U}]

Subject to W — (X (£),u(t)) + o(m)w(t)

+ Systems biology: Parameter identification.
Minimize  E[f(X)] = ||E[CXT] — Eopserved||
Subject to AL — (X (t),0) + o (0)w(t)

* Finance: Optimal portfolio selection

Maximize E[f(X)] = E[f; > e~ r(Xy) di]
Subject to dX; = M(Xtat)dt + o (X, t)dBt + dJt g

[Raffard, Hu, Tomlin]
"Hybrid System Theory", C. Tomlin Chess Review, Nov. 21, 2005 33




Major Ongoing Efforts

+ Embedded systems modeling and deep
compositionality

- Automated abstraction and refinement of
hybrid models

» Verification and reachability analysis of
approximations

* Algorithms for control and optimization of
hybrid systems

"Hybrid System Theory", C. Tomlin Chess Review, Nov. 21, 2005 34
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