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Abstract

Component technology tries to solve many problems of
todays software industry practice: the productivity and pro-
duced quality should be increased and a better infrastruc-
ture for maintenance of the products is promised. The in-
tegration ofoff-the-shelf componentsto build customized
products allows to source out the development of general
purpose components. A crucial prerequisite for the in-
tended scenario of component usage is their strong separa-
tion. Especially in a distributed environment, synchroniza-
tion aspects are of great importance to identify a suitable
architecture and to decide whether a component matches
some requirements. The presented approach allows to
model the synchronization aspect ofcontractsin a flexible
manner including a whole spectrum of different degrees of
preciseness from declaration of abstraction barriers to com-
plete synchronization specifications describing the explicit
behavior. The used Petri net basedOCoN behavior specifi-
cation formalism is structurally embedded in the UML and
supports analysis and design of component systems.

1. Introduction

The complexityof todays software projects is continu-
ously growing and so does the need for sophisticated system
analysis and design. Object-oriented analysis and design
[5, 32, 22, 12] offers methods for analysis, design and im-
plementation of systems in a seamless fashion. In contrast
to structured analysis[13], the transition from design to
implementation is more continuous. Traditionally, object-
oriented techniques are used to specify fine grain structures
using classes and their relations. Normally, one of the pop-
ular object-oriented programming languages, like C++, is
chosen as target language. Often, the overall architecture or
the coarse grain structure has been neglected or ignored at
all. On the other hand, a dedicated design of a suitablesoft-
ware architecture[34] is often needed to improve software
quality and to provide better maintainable products. But the

hope that object technology can be used to establish system-
atic reusehas failed. The shift from objects to components
reflects these additional requirements. A fixed architectural
basis and system level mechanisms instead of programming
language mechanisms are the crucial point to handle the de-
scribed additional requirements and to achieve a more flex-
ible notion for the composition of elements.Component
technology[37] goes one step further in comparison with
object-orientationas a language feature by decomposing
an application or system into runtime elements, that can be
build, analyzed, tested and maintained independently. The
integration of availableoff-the-shelf componentsinto appli-
cations and their combination can help to further improve
productivity and decrease the time to market in the software
industry.

A development method for component based applica-
tions and systems must be aware of additional problems.
The design is further separated intocomponent design,
where a single independent shippable product for general
use is the intention, andcomponent system design, which
considers combination and configuration of given compo-
nents or the decomposition of a task into given and appli-
cation specific components.Component designis restricted
to isolated components having a fixed contract with the en-
vironment, while thecomponent system designhas to con-
sider the coarse grain design and separation. The isolation
between design and implementation of a component has to
be supported by the architecture and a suitable separation.
Otherwise the postulated component exchangeability and
independence between component provider and component
integrating products is not realistic. Both kinds of design
problems have to face the resulting problems of late inte-
gration. The knowledge of common models forsoftware
testingusingmoduleandintegration testingis not sufficient
any more. The component notion ofquality has to satisfy
higher expectations, because the late integration phase is not
available for testing any more. Thus, software components
have to be more robust than usual applications. This addi-
tional demand for software quality may delay the develop-
ment of a component market. The support for maintenance,
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management and configuration has to be integrated into the
component infrastructure.

Up to now, software products often provide isolated solu-
tions for business or industry applications. Today software
begins to interlink the different isolated information system
structures. Interoperability, flexible data exchange and shar-
ing as well as support for group work become essential re-
quirements. Thus,distributionandconcurrencyare aspects,
further generations of software have to manage.

The presented approach provides techniques and nota-
tions to tackle the additional requirements of component
design. Structure and connections ofcomponent systems
are specified using the structure description notations of the
UML [31], the de-facto standard for object-oriented mod-
eling. The common notion of interfaces is extended by a
protocol to support contract-based design for components.
Synchronization restrictions can further be specified in a
flexible manner to describe dependencies between different
contracts of the same component. Thus, the concrete in-
teraction can be specified and architectural aspects become
more obvious.

In the following section, several relevant characteristics
of components and the available technology are discussed.
Then, component synchronization and its impact is con-
sidered in section 3. The proposed approach is sketched
in section 4 and its structural embedding into the UML is
presented. An example in section 5 presents several differ-
ent design decisions and their modeling with the approach.
The article closes with some remarks on related work.

2. Component Notion

A general notion of acomponentshould also include tra-
ditional component types likelibraries or modules. Even
when they do not support all characteristics of todaysoff-
the-shelf componentconcepts, it is important to keep the
basic concepts and their implications in mind. Besides the
pureoff-the-shelf componentnotion, there may exist sev-
eral levels of component usage, which are of interest, too.
Imported and exported types of a component are a rele-
vant aspect as well as its connections with the environment.
Szyperski[37, 38] defines acomponentas follows:”A Soft-
ware component is an unit of composition with contractu-
ally specified interfaces and explicit context dependencies
only. A software component can be deployed independently
and is subject to composition by third parties.”For each in-
terface a component has either contractually obligations or
demands and thus at least some kind of informal contract
for each of them exists.

The general description of a component consists of the
component or subsystem itself and its imported or exported
contracts. To make the contract notion more concrete, the
approach clearly distinguishes between exported contracts,

calledprovidedand imported contracts, calledused, w.r.t. a
component. For provided contracts, the component has the
obligation to serve it and for used ones the component may
demand several contractual properties.

To figure out which aspects are of importance for a suit-
able contract notion, several characteristics of todays com-
ponent concepts like linkage time and linkage typing are
discussed next. Afterwards, the additional constraints for
component design and the need to consider thesynchroniza-
tion between components is demonstrated.

A central characterization for component contracts or
connections is the point in time when the connections are
established (linkage). The traditional cases arestatic link-
ageof subcomponents at construction time of a program,
dynamic linkageduring the program startup orruntime link-
agewhere running components are interconnected.

The typing of linked connections is also of considerable
interest. For interprocess communication,untyped interac-
tion based on streams, shared memory, etc. or even ab-
stract synchronization with mutex or semaphores are used,
while linking programs, modules and libraries often sup-
ports procedure typing on the compiler level. The case of
runtimelinkage is of special interest for todays component
technology. Several levels of typing have been introduced.
On the socket level, several services based on TCP connec-
tions have been standardized (ftp, nfs, http, etc.). To further
support remote or local procedure call client/server inter-
action, common packet formats and integrated marshaling
stubs (e.g.DCE [9]) have been used. These approaches
still provide only a host-server abstraction, while object-
oriented extensions introduce the object or interface notion
to make service access points first class elements.CORBA
[27] started from scratch 1989 as an initiative to build an in-
teroperable object bus standard with suitable infrastructure.
Its main antagonist is Microsoft’sDCOM [10] which is a
step by step extension ofCOM (component object model,
formerly namedcommon object model). These approaches
allow to send and distribute interface references as usual
parameter values.Java RMI [36] further extends this devel-
opment by also supporting theobject per value discipline
within its remote method invocationmechanism.CORBA,
DCOM andJava RMI are enabling technologies which pro-
vide typed component linkage at runtime. To discuss this
development, the relevant aspects for runtime linkage are of
interest.

When untyped basis mechanisms like TCP sockets are
the linkage mechanism, a suitable connection has to be de-
scribed by defining all valid packet formats and an agree-
ment on the protocol built upon the packet formats. When
abstracting from the basic TCP protocol steps to estab-
lish a connection, often simplestatelessprotocols like
the common basicHTTP [3] protocol, which uses the re-
quest/response scheme, are used. These protocols provide
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a high degree of independence, which is often useful in a
distributed environment.

The further improved typing using client/server ap-
proaches manages the error prone encoding of packets and
provides the higher level concept of aremote procedure
call. In general this basic scheme of interaction does not
make an explicit interaction protocol obsolete. Client/server
systems often provide astatelessprotocol, e.g.,NFS [35] is
based on a standardizedremote procedure callmechanism
and is astatelessand idempotentprotocol to handle con-
nection aborts and re-transmissions. It is remarkable, that
common network based services likeNFS avoid any com-
plex interaction with third components and thus build final
leaves in the component tree or directed acyclic graph.

TheCORBA or DCOM object bus approaches provide the
illusion of a virtual object space, where interfaces instead
of hosts abstract from physical locations. These references
can be further distributed to make them available to other
clients. But, their typing notion is still restricted to the syn-
tactical interface aspect. Complex protocols and their im-
pact on a correct cooperation are not considered. The object
businterfaceconcept does essentially combine data and be-
havior by applying the object metaphor. Thus, the resulting
protocols might not always remainstatelessas common for
the design of services likeNFS or HTTP.

Traditionally, the basic mechanisms used for component
reuse andstatic linkageare the libraries which provide a
procedural abstractionwith strict acyclic depending layers.
The explicit sharing of resources is avoided where possible.
The common components fordynamic linkageare either
namedshared libraryor dynamic link library(dll). They
support a perfect separation for the using clients and pro-
vide the perfect illusion ofexclusiveusage, too. Also, a lay-
ered structure from the operating system API up to domain
specific or more comfortable libraries is common. Both sce-
narios provide contracts in an exclusive fashion and abstract
from code or data sharing. Theoff-the-shelf componentcon-
cept in contrast is intended to support arbitrary structures,
has to be able to allow more sophisticated interaction con-
cepts likecallbacks. Also the restriction tostatelessproto-
cols is often not possible.

Besides the basic object bus infrastructure and a com-
munication mechanism, component based development re-
quires further aspects.DCOM supports components with its
ActiveX or DNA architecture as well asJava Enterprise Jav-
aBeans(EJB) [23]. A specification of a component model
for CORBA is under development (see [1]). These com-
ponent models improve the basic object bus technology by
specifying interfaces for several basic component manage-
ment aspects and support for componentlife cycles. But be-
sides these technical solutions to obtain interoperable run-
time components, the necessary contract specification is ne-
glected. In contrast to the former definition forcomponents

which emphasizes thecontract principle[24] as essential
aspect of any component technology, the specification of
contracts in practice is not supported by any object bus tech-
nology. Instead, the handling of interface contracts is as-
sumed to take place in additional specification documents
and additional features like unique interface version num-
bers are used to achieve consistency.

3. Component Synchronization

Szyperski[37] identifies another serious problem oc-
curring whencallbacksare used. He demands to spec-
ify re-entrance conditions to cover these problems, butre-
entranceis only a special case of the more general question
how components maysynchronize. Whenstate based pro-
tocolsare considered and concurrency is present, a general
treatment ofsynchronizationaspects is needed.

? ?

Figure 1. Example structure for a callback

The structural situation of acallbackis visualized in fig-
ure 1. The provided and used contracts build a cyclic depen-
dency and thus the classical procedural abstraction fails and
insteadsynchronizationaspects have to be considered, too.
In classical layered hierarchical systems,callbacksagainst
the hierarchy calledup-call[11] cause several problems and
enforce the library designer to provide a consistent library
state even during such calls.

Usingthread-safeobjects does not ensure systems which
are alsore-entrance safe. Phenomena likeself-recursion
andre-entrance patternsadditionally lead to deadlocks (so
called self-infected deadlocks[8]). But even in simple
cases, the system malfunction may be caused by synchro-
nization effects. Consider, for example, the case of a com-
ponent with a single thread of control. When it calls an-
other component via a remote procedure, it is blocked until
the request is processed and thus any callback is blocked.
If the called component waits for the callback to fulfill the
request, at least the first component is totally blocked for-
ever due to a resource conflict concerning its single thread.
For components in a distributed environment the situation
becomes even more complex and the system operation may
critically depend on the request scheduling strategy of the
implementation.

Object-oriented type structures often contain cycles (re-
cursive data types), but traditional object-oriented systems
were not concurrent, and, hence, this aspect has often been
ignored. In the case of multiple threads or concurrency in
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general, thesynchronizationbecomes even more important.
Consider as an example the classical recursive defined di-
rectory class. A first version may not support file links and
thuscyclesare excluded. But when links are also consid-
ered, a possibly cyclic structure is described. Common re-
alizations like file systems reflect this by extending related
tools to prevent infinite processing (e.g., Unix find com-
mand). Directory like structures in distributed systems are
found in an Internet name server. There, an asynchronous
update scheme is used and thus no update request can lead
to infinite processing, because only the local cache content
is propagated. TheCORBA name service [28] also provides
the directory access in such a way that any direct usage of
related directories is excluded. Instead, the client has to tra-
verse the structure on its own. By avoiding any global oper-
ation, thesynchronizationandterminationproblems can be
excluded, but the complexity is left to the clients.

Object protocols with states or some kind oflife cycle
are common in object-oriented systems. The possible pro-
cessing orders are specified, for example, by using Harel
statecharts [19] in OMT [32] and path expressions in FU-
SION [12]. The life cycle or protocol describes the possible
non uniform service availabilityprovided by the object.

Figure 2. The protocol of a read file handle

Consider for example the read file handle protocol pre-
sented in figure 2. Reading data chunks is only supported
afteropen the file. Than, data chunks can beread until the
end of file ([eof]) is reached. When the file is closed (close),
again no read operation is available. TheOCoN notation
[17] is used to describe the resulting state changes and the
available operations in each state as well as the resulting
state. Hexagons represent possible states and actions con-
sisting of a call and return step with possible multiple return
alternatives are represented by squares.

The combination of components during thecomponent
system designis different from combining and designing
classes during the fine grain object-oriented design. The
object-oriented techniques support encapsulation by private
and public access to classes. This style does not fulfill the
additional requirements for separation.CORBA, DCOM and
Java RMI use interfaces to decouple specification and im-
plementation, but additional information necessary to en-
sure a correct integration is missing. As demonstrated, the

syntactical interface typing does not cover all relevant as-
pects for component composition. It determines all mes-
sage formats of a protocol by defining a standard encoding,
but it does not describe which processing order is needed.
Only interfaces withstatelessprotocol in situations without
re-entranceand cyclic structures are covered. Suggested
trace-based extensions [29, 30, 25] can exclude the occur-
rence of message not understood errors, but fail to consider
synchronization effects.

Following Szyperski[37], a contract should contain a
functional specification usually given by pre and post condi-
tions and non-functional requirements often namedservice-
levelor quality of servicecontaining aspects likeavailabil-
ity, throughput, latency and capacity. As demonstrated
above, synchronization is another important aspect, but be-
havior modeling is an inherent complex problem.Beug-
nard et al. [4] present a contract hierarchy that system-
atically distinguishesbasic contractswhich represent the
common interface notion,behavioral contractsthat provide
pre and postconditions,synchronization contractsfor sev-
eral request synchronization policies andquality of service
contractscovering aspects likeavailability, throughput, la-
tencyetc.

Config

Provide

Use

Use

Config

Provide

abstraction
barrier

Use

Config

Provide

possible
synchrononization

FSM

Figure 3. Abstraction barrier

When the interaction of arbitrary structured systems of
components is considered, thesynchronizationis of crucial
importance. The abstraction assumed for a component (fig-
ure 3, left-hand-side) is usually characterized by anabstrac-
tion barrier (middle), while the real synchronization (right-
hand-side) does not respect it. A formalism like a finite state
machine (FSM) has to be used to describe the behavior as-
pect using states and transitions.

When components are connected, their external synchro-
nization specification has to be combined to obtain the re-
sulting behavior. This explicit combination results already
for very restricted system models to serious problems. For
the finite state machineformalism chosen in figure 3 and
every more expressive formalism, the state space grows ex-
ponential, known as thestate explosion problem[39] for
system analysis. Formal approaches to system verification
and validation try to overcome this problem, but the explicit
modeling of interaction includes several aspects like syn-
chronization distances which contradict this.
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But this problem is also of crucial impact for the system
design concerningchange impact. The exponential growing
model sizes coincide with an exponential growing number
of implicit implementation dependencies. The transitive na-
ture of synchronization for two connected component sys-
tems causes this problem. Thus, to change a component
implementation may influence every other implicitly con-
nected one. This effect can be prevented by restricting the
general interaction and structure as done in the case of li-
braries. The approach proposed here avoids the demon-
strated problems by using theabstraction barrier, visual-
ized in figure 3, when suitable and the explicit specification
of synchronization if needed. The synchronization can even
be described with different levels of preciseness. This also
improves the resulting situation for the design of the sys-
tem. Callbacks or even cyclic structures introduce complex
interaction dependencies and the concrete external behav-
ior has to be specified very early in the design. Otherwise
both involved components can not be further considered in
isolation. Thus, the proposed approach does combine the
improvement for the analysis and design as well as formal
modeling by supportingabstraction barriersas design prin-
ciple and as mechanisms to make a formal analysis feasible.

4. Contract-based Design

The presented approach emphasizes contract-based de-
sign to improve separation usingsynchronization contracts,
extends the contract notion to cover bilateral interaction in a
manner which still leads to unilateral dependencies as well
as the explicit design concerning the component contract
structures and cycles.

The formalism of theOCoN approach [41, 16, 17, 18]
for seamlessobject-oriented behavior modeling is used also
to cover the behavioral aspects of components.OCoNs
(ObjectCoordinationNets) formally defined in [15], a spe-
cial form of Petri nets[6], are used to describe the possible
protocol interactions in a visual manner. These nets specify
the intended interaction and allow to describe procedure-
call and message-passing oriented interaction within one
formalism. In object-oriented design practice, behavioral
aspects are often only considered when already implement-
ing the system. Thus,synchronizationaspects have not
been well or completely documented during design phase
and the needed information concerning the synchronization
with the environment are usually not available during the
design. In contrast, theOCoN approach supports the model-
ing of synchronization and coordination aspects during the
design. The resulting component specification can be ex-
tracted from the component design and not from the imple-
mentation. On the other hand, if contracts are specified dur-
ing the decomposition of the system, new general purpose
or application specific component specifications including

their synchronization behavior are obtained.
By emphasizing the contract idea, the using and provid-

ing components have to agree oneach contract. The fol-
lowing parts of a contract description can be distinguished:
a protocoldescribing the provided coordination sequences
and afunctional specificationgiven by pre and post con-
dition formulas. While the protocol is already considered
during the design phase, the pre and post conditions can
only be used forverificationand runtime checks. Thus, the
approach concentrates on the protocol aspect, which can be
supported by tools for restricted models.

The contract notion is of central relevance for the de-
sign process.Nierstrasz[26] proposes to add a finite state
machine to an object interface to buildregular types. This
approach is extended by also integrating the occurrence of
return alternatives andspontaneouscontract behavior into
the protocol specification. Thus, instead of error prone di-
rect callback designs, an encoding into the protocol states
and spontaneous behavior can be used in most cases. Thus,
a client obtains an unilateral contract which does not con-
tain any obligations for the client side. The only exception
is that the replies for pending operation calls must be at least
buffered by the client to exclude the blocking of the called
component.

«contract»

Observable

update();(Data)

Observable

Figure 4. An Observable contract

For an example consider theObservable contract pre-
sented in figure 4, which provides a solution for the ob-
server pattern that is still unilateral concerning the synchro-
nization and typing dependencies. An additional arbitrary
state change for the observable contract is modeled using
a quiescentstep [15]. Its occurrence is neither determined
nor guaranteed. The client may observe the state change
and do anupdate as needed. The still unilateral contract
thus can be used to avoid cyclic dependencies as introduced
by the general scheme of a callback presented in figure 1.
Thus, the approach integrates bilateral interaction into an
unilateral contract and can further provide maximal degree
of flexibility for the using side (client).

The component behavior can be specified in an oper-
ational fashion also using theOCoN approach (see [17]).
Thus, the contract protocol can be used to simulate parts
of a system in an abstract fashion by representing the envi-
ronment by its contract protocols. But such explicit design
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including several component internal aspects is not suitable
in general. A more abstract and implicit solution is needed.

Traditionally, architectural aspects are often neglected
in object-oriented system design. By considering connec-
tions like connectorsto be a kind of first class elements
of an architecture (see [2]), it is achieved that the architec-
tural aspect is specified adequately. In order to apply the
concept of connectors and thecontract principle, an UML
<<contract>>stereotype containing an interface describing
a set of interaction steps and a protocol description specify-
ing the supported interaction orders is introduced. A sin-
gle contract is unilateral and describes what behavior one
interface of a component assures and how another compo-
nent can interact with it. For a more detailed description see
[18, 15].

InOut

«contract»

InOut

put(Data)
get();(Data)

depend

«synchronization»

Through

Through

InOut

InOut

u

p

«contract»

Check {shared}

check(Data)

Check

Figure 5. Structural extensions to the UML

The contract is used to describe the combination of an in-
terface and aprotocol net. In contrast to the UML interface
notion, the contracts are instances and the relations among
them are explicitly modeled as presented in figure 8.

There are two distinct kinds of contracts,exclusiveand
sharedones. This technical distinction for contracts is in
conformance with the ISO Open Distributed Processing
model [21], where implicit and explicit bound objects are
distinguished. Theexclusivecontracts are interpreted as ex-
plicit bound objects whilesharedcontracts fit to implicit
bound objects (cf. [25]).

For anexclusive contract, the interface circle symbol is
used as a shortcut (see figure 5) and for all usage connec-
tions an implicit xor and client side cardinality1 is assumed
and thus omitted, too. For the connection to the providing
component only the number of served instances is of in-
terest. Each contract is served by exactly one component
and thus the component side cardinality is omitted. For
shared contractsalso sharing by multiple clients is allowed
and thus the usual cardinality annotations can be used for
connections to the clients. A circle with double border is
used as shortcut. The annotations for connections to the
providing component are the same as for theexclusivecase.

To provide the demanded component specification, the syn-
chronization ofprovidedandusedcontracts has to be spec-
ified. Two situations for contracts are further distinguished.
Either they aresimpleand their guaranteed operations are
not restricted or an additional<<synchronization>>stereo-
type is used to further restrict the protocol by introducing
synchronizations with other provided or used contracts of
the same component (see figure 5). These synchronization
declarations are added to each component type and are addi-
tionally visualized using a dashed box around every covered
contract. Each contract can at most take place in one such
synchronization and thus the dashed rectangles of one com-
ponent can not share any contract declaration. TheThrough
synchronization presented in figure 5 describes how theput
and get operations of the provided contractInOut p are
mapped to the used contractsu of the same type. The ac-
tions with a shadow describe the processing of incoming re-
quests for thep contract while the usual actions specify the
requested operations for contractu. The synchronization is
described using untyped places (circles) and additional pre
and post condition arcs. Each requestedput or get is for-
warded fromp to u and the return is processed vice versa.

Config

Provide

Use

depend

Comp

depend

depend

depend

depend

Figure 6. Embedding and depend relation

Besides these explicit synchronization descriptions, also
an implicit description using asynchronization dependency
relation depend (!) is supported by the approach. The
synchronization is not explicit described and instead any
arbitrary but valid usage ofused dependingcontracts and
no synchronizationwith used independent(not connected)
contracts is assumed. If neither an explicit specification nor
such an explicit relation is given, simply the worst case of
a full dependency relation is assumed. This way the tra-
ditional abstraction barrier between exported provide con-
tracts and imported use contracts can be used. A behavior
cover is build by all possible implementations for each pro-
vided contract that synchronizes at most with all used con-
tracts, the provided contract depends on (!). Each correct
implementation has to respect this behavioral cover. Each
orthogonal line to all depend arcs builds a suitable abstrac-
tion barrier. But the provided abstraction is not valid in gen-
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eral. The transitive extension of all local depend annotations
has to be acyclic to make the assumed abstraction a correct
one.

As demonstrated in figure 6, the depend relation restricts
the valid embedding of a component. But this way, an
explicit and complete synchronization specification can be
avoided. The provided contractConfig is used to configure
the component and thus should be implemented in a fashion
that does not rely on the usedUse contract. In contrast, the
Provide contract will rely on the correct responses of the
Use contract. This dependency is specified by defining a
component specific depend relation ”!” using dashed arcs.
Thus, the possible component behavior is already restricted
concerning the possible synchronization dependencies, but
still a whole bunch of possible internal component behav-
iors are suitable solutions.

Config

Provide

Use

depend

Comp

Config

Provide

Use

depend?

Comp

Config

Provide

Use

Comp

Config

Provide

Use

Comp

Figure 7. Spectrum of possible specifications

The provided mechanisms for contract specification al-
low to specify the contract behavior and their synchroniza-
tion with several levels of granularity as presented in fig-
ure 7. Starting during the component system design, the
relation may be left unspecified and thus a complete de-
pend relation connection of each provided interface with all
usedones is assumed. When further knowledge about the
separation and wanted parallel availability for interfaces is
given, a refined view by specifying an explicit depend re-
lation is possible. If the planned embedding enforces the
explicit modeling of synchronization aspects concerning a
subset of the component contracts, this can be done using a
<<synchronization>> stereotype. Now,slicesof the com-
ponent behavior can be specified in an independent fashion.
A complete behavior description is also possible using a
single synchronization element that covers all provided and
used contracts. Thus, also a behavior description enclos-
ing the whole behavior as described in figure 3 (right-hand-
side), is possible. The provided spectrum allows to specify
the behavior in the adequate level of granularity during the
decomposition of the design. For already fixed components,
e.g. off-the-shelf, provided by others, a specification of suit-
able preciseness may be chosen and can be used to embed
them into a design.

To provide a sound framework to handle component
protocols and their synchronization, the correct behavioral

preorder describing a correct abstraction or refinement is
needed. The given synchronization protocols can be com-
pared as labeled nets by considering the label occurrences.
The underlying formalism to determine a valid refinement
or abstraction step concerning the component synchroniza-
tion is then reduction[7], which is the coarsest relation
w.r.t. preserving deadlock-freeness (see [40]). The symbol
v is used whereA v B states thatA is a valid refinement
of B. The abstraction from finite internal interaction can be
used to replace a synchronization combination by a single
more abstract version where the double covered contracts
are omitted (see for example figure 10).

5. Example

To give an example, the common pipeline processing of
a compiler is considered. The structure may consist of a
pre-processor phase for macro expansion as well as a com-
piler with lexical analysis, syntactical analysis, semantical
analysis, code generation and assembly stage. This soft-
ware architecture style provides a high degree of flexibility
and distinct stages may be exchanged on demand, e.g., the
assembly stage to adjust the compiler to a certain hardware.
By specifying the data format for each stage transition, each
stage does only communicate with its predecessor and suc-
cessor and thus the coupling is minimized. In order to re-
duce the example complexity the same general interface for
each stage is assumed. Two solutions for a general pipeline
structure are presented.

Pipeline

Stage1 Stage2

Config Config

Config

Process

Process Process

«contract»

Process

init(Option[])(Option[])
process(Data):(Data)
reset()

«contract»

Config

getMode():(Data)
setMode(Mode)
reset()

Figure 8. Pipeline with coordinator

The first way to build a pipeline structure is to use filter
or transformer functionality in form ofremote procedure
calls. The resulting components are very flexible concern-
ing further embedding and can be used for arbitrary requests
or in a coordinated fashion like the pipeline structure. A
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pipeline can be build using a specific coordinator compo-
nent, as demonstrated in figure 8 for the trivial case of two
stages. It is remarkable that the structure does not reflect the
pipeline and instead the usage relationship from the coordi-
nator component toeach stage is made explicit.

This flexibility is a suitable reason to choose this so-
lution, while efficiency reasons make this solution sub-
optimal. The appliedremote procedure callinteraction and
the central coordination using an additional coordination
component results in doubling the communication and a
possiblebottleneckfor long pipelines. The bottleneck can
be avoided by using a tree like coordinator structure which
further increases the communication overhead. Each node
in the tree provides the same synchronization type as a leaf
and abstracts from the inner pipeline structure.

A more efficient design can be build by avoiding the
overhead of moving the data to the pipeline coordination
component and vice versa. Instead, the stage components
are directly connected and each component has to provide
an input and output stream (see figure 10).

Stream

«contract»

Stream

Start(Option[])
put(Data)
close()

depend

«synchronization»

Stage

Stream

Stage

Transform

1

in out

Use

Figure 9. Transform component

The general scheme of independent provided contracts
and a simple depend relation is not sufficient any more.
Instead, the complex contract notion specifying the com-
bined behavior of sets of provided and used contracts is
needed. For the provided contractin and the used con-
tract out a specific combined behavior is described in fig-
ure 9. This complex contract behavior is realized using a
<<synchronization>>Stage, which synchronizes thein and
out contracts of a single component. An incomingstart re-
quest forin asynchronously triggers astart request forout
and an internal place is initialized with a token. Afterwards
eachput is forwarded and returns immediately when no old
put request forout is pending. Closing the contract is de-
layed until theout contract confirms theclose request. Note,
that the actions are a shorthand notation for two steps, a call

and a corresponding return step. For example, theout.close
post condition is a pre condition of thein.close return step.
The resulting processing specification describes the explicit
buffering behavior and thus even cyclic pipelines like ring
structures may be build.

depend

Stream

Stage

Stream

depend

Stream

Stage

Stream

depend

Stream

CombineStage2

Stream

depend

Stream

CombineStages

1 1 2 1..*

«synchronization»

CombineStages
«synchronization»

CombineStage2

Transform Transform Transform2 TransformX

in outout in in inout out

UseUse Use Use

Figure 10. Pipeline of Transform components

For this non hierarchical structure it can also be ab-
stracted from two or more stages by combining their com-
plex contracts and abstracting from their inner communi-
cation. See figure 10 for the resulting behavioral cover
of two synchronously connectedStage synchronization re-
strictions. The resulting common behavior of two stages
has to describe the internal buffering in a concrete fash-
ion. When an arbitrary but non-determined internal buffer-
ing like described by the second abstraction, is used, the re-
sulting behavioral cover can be combined and used only in a
restricted way. Consider a cyclic pipeline case and combine
n of these abstract stage components. For a secure process-
ing at mostn� 1 data packages can be inserted. Otherwise
the cycling might be blocked and thusn or more packages
may not work. For such ring like structures abstracting from
the buffering effect is not always useful. When abstracting
from the buffer depth the information is lost and not avail-
able. The ring structure will only work if at least one buffer
element is still empty. If all buffer capacities are exhausted,
each stage will be blocked by the next one and no progress
is possible any more. Thus, abstracting from the buffering
depth may be not appropriate.

The described two behaviorsCombinedStage2 and the
more abstract versionCombinedStages are valid abstrac-
tions for the behavior preorder (v). Their nets describe
the explicit buffering wherex� denotesx token and the re-
source of typeint is initially filled with an arbitrary value
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n. This process of abstraction can also be reverted and the
more concrete version can be considered as arefinementof
the coarser description. Hence, a pipeline build by several
CombinedStages can be refined to aCombinedStage2 or
Stage.

6. Related Work

The presented approach extends the concept ofregular
typesof Nierstrasz[26]. In contrast to this reduction-based
approach, do trace-based notions [30, 25] not consider syn-
chronization effects and exclude only message not under-
stood errors. To reduce cycles in the usage graph, the uni-
lateral contract notion is extended to include bilateral in-
teraction. This way most of the error pronecallbackhan-
dling can be handled in a more suitable fashion. The pre-
sented protocol formalism additionally covers distinct syn-
chronization with the request replies, whileNierstraszwork
is restricted to request acceptance. This way oracle like re-
quests and the influence of distinguished replies on the re-
sulting protocol state can be incorporated, too. The concept
of explicit contract synchronizations and an implicit con-
tract depend relation further extend the framework towards
a flexible specification tool for component synchronization.

The integration into the analysis and design level instead
of the programming language or a formal calculus context
is another distinction. The approach allows to consider syn-
chronization and protocol aspects, which are of great impor-
tance for the architecture design, already during the analy-
sis and design. It supports the specification for incomplete
system, refinement and explorative design evaluations by
simulation.

Holland et al. [20] suggest a contract notion that ab-
stracts from performance and resource consumption as-
pects and includessafetyand progress conditions, which
are needed to predict the component behavior from a clients
perspective. So calledtype obligationsdemand abstract
attributes and interface aspects for each participant while
causal obligationsdescribe the ordered sequences for ac-
tions and their effect on the attributes. The CATALYSIS
[14] approach emphasizes a pre and post condition concept
but also contains a comparable concept as extension and
suggests statecharts or sequence expressions to specify the
order of internal called actions calledraised actions. The
general concept to describe object behavior for a group of
objects is promising, but the resulting system is more suit-
able for frameworks. The superposition of such interaction
concepts is not always conflict free and the pre and post
conditions or invariants make an automatic tool support im-
possible. In the area of object-oriented design for real-time
systems, the ROOM [33] method also uses protocols de-
fined for a group of objects and signal based protocol roles
called ports as connectors. In contrast to the presented ap-

proach, the protocol is used to describe the bilateral signal
exchange and no notion for behavioral abstraction is consid-
ered. The structural description techniques of the UML are
used for the structural part of architecture descriptions. For
behavior specification, theOCoN approach is used, because
it provides aseamlessintegration of used or provided con-
tracts (see [17]). The behavior description techniques of the
UML are not capable of these aspects. For a comparison
between theOCoN approach and the behavior formalisms
of the UML see [18]. Remarks concerning the great variety
of other proposed object-oriented Petri net notations can be
found in [17].

7. Conclusion

The presented approach provides mechanisms to achieve
a higher degree of independence, to exclude implicit im-
plementation dependencies and make requirements and the
provided behavior of components more concrete. The
OCoN formalism together with the presented extensions
provides a suitable framework for the described compo-
nent design techniques. An external behavioral specifica-
tion technique usingsynchronization slicesand adeclara-
tive dependrelation for implicit synchronization specifica-
tion is presented. From the perspective of formal model
specification, aseamlesstransition from totally separated
contracts and a dependency relation over slices of partial be-
havior specifications to a complete external behavior spec-
ification is supported. The unilateral contracts with possi-
bly shared protocols refining the connector concept allow to
analyze the quality of an architecture concerning decompo-
sition on well established object-oriented knowledge. The
formal description of interaction properties by object coor-
dination nets allows the analysis of behavioral properties
and possible interaction scenarios can be simulated and vi-
sualized.
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