
The STATEMATE Semantics of
Statecharts
DAVID HAREL
The Weizmann Institute of Science
and
AMNON NAAMAD
i-Logix, Inc.

We describe the semantics of statecharts as implemented in the STATEMATE system. This
was the first executable semantics defined for the language and has been in use for almost a
decade. In terms of the controversy around whether changes made in a given step should take
effect in the current step or in the next one, this semantics adopts the latter approach.

Categories and Subject Descriptors: D.2 [Software]: Software Engineering; F.3.2 [Logics
and Meanings of Programs]: Semantics of Programming Languages

General Terms: Languages

Additional Key Words and Phrases: Behavioral modeling, reactive system, semantics, state-
chart, STATEMATE

1. INTRODUCTION

The article that introduced the language of statecharts [Harel 1987]
presented only a brief discussion of how its semantics could be defined. A
rigorous semantics was first defined for the language in Harel et al. [1987].
Since then, many variants of statecharts have been proposed in the
literature, and several papers include definitions of semantics too. Some
examples are Huizing and de Roever [1991], Huizing et al. [1988], Kesten
and Pnueli [1992], Leveson et al. [1995], Maraninchi [1992], and Pnueli and
Shalev [1991]. A recent survey [von der Beek 1994] discusses nearly 20
variants.

This work is a revised version of “The Semantics of Statecharts,” Technical Report, i-Logix,
Inc., 1989 and 1991. D. Harel’s work was supported by a grant from the Israel Academy of
Sciences.
Authors’ addresses: D. Harel, The Weizmann Institute of Science, Rehovot, Israel; email:
harel@wisdom.weizmann.ac.il; A. Naamad, i-Logix, Inc., Andover, MA 01810; email:
amnon@ilogix.com.
Permission to make digital / hard copy of part or all of this work for personal or classroom use
is granted without fee provided that the copies are not made or distributed for profit or
commercial advantage, the copyright notice, the title of the publication, and its date appear,
and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1996 ACM 1049-331X/96/1000–0293 $03.50

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996, Pages 293–333.

Subtle issues arise when one tries to define a semantics for the language,
and there is no consensus on the “right” way to go about the task. Since
statecharts were intended from the start to be used by real engineers in
specifying real systems, one of the central considerations in deciding upon a
useful semantics is clarity and simplicity. A user need not see the details of
the mathematical definition, but he or she must be able to understand how
it works in a relatively intuitive way.

This article describes the semantics of the language of statecharts as
implemented in the STATEMATE1 system [Harel et al. 1990; Harel and
Politi 1996]. The initial version of this semantics was developed by a team
about 10 years ago. With the added experience of the users of the system it
has since been extended and modified. This executable semantics has been
in operation in driving the simulation, dynamic tests, and code generation
tools of STATEMATE since 1987, and a technical report describing it has
been available from i-Logix, Inc. since 1989. We have now decided to revise
and publish the report so as to make it more widely accessible, to alleviate
some of the confusion about the “official” semantics of the language, and to
counter a number of incorrect comments made in the literature about the
way statecharts have been implemented. For example, the survey [von der
Beek 1994] does not mention the STATEMATE implementation of state-
charts or the semantics adopted for it at all, although this semantics is
different from the ones surveyed therein (and was developed earlier than
all of them except for Harel et al. [1987]). As another example, Leveson et
al. [1995] describe a case that exhibits an unacceptable kind of behavior in
a statechart, which they say is what the “semantics of statecharts” leads to
(pp. 695–697). Unfortunately, they base their discussion of statechart
semantics on one of the many semantics proposed by various authors (that
of Pnueli and Shalev [1991]) and give the reader the impression that this is
the official semantics of the language.

Being an unofficial language, statecharts clearly have no official seman-
tics, and researchers are free to propose semantics as they see fit. However,
the only implemented and working semantics for statecharts has for many
years been the one described here, and it does not in any way exhibit the
kind of behavior described in the example and surrounding text in Leveson
et al. [1995].2 In fact, our semantics is quite similar to the approach
suggested (seven years later, we might add) in Leveson et al. [1995] itself,
although almost a dozen years ago we contemplated building STATEMATE
with a semantics close to that of Harel et al. [1987] and Pnueli and Shalev
[1991]. The main difference, which served as the central topic of our often
heated deliberations, was whether changes that occur in a given step (such
as generated events or updates to the values of data items) should take
effect in the current step or in the next one. The semantics we finally

1The current version of STATEMATE, available from i-Logix, Inc., has been termed STATE-
MATE MAGNUM.
2These parts of Leveson et al. [1995] have managed to alarm some users of STATEMATE, who
feared that their models were dangerously erroneous.

294 • David Harel and Amnon Naamad

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

adopted, in contrast to those of Harel et al. [1987] and Pnueli and Shalev
[1991], takes the latter approach. In Appendix A we address the compari-
son of our semantics with others, and especially relate to the issues spelled
out in von der Beek [1994].

The main consideration behind the definition and selection of the seman-
tics described here is that STATEMATE is a commercial tool, designed for
the specification and design of real-life complex systems, coming from a
variety of disciplines. As such, the semantics has to be rich enough to
support different styles of modeling, yet it should be simple and intuitive.
It must also be technically straightforward enough to enable fast simula-
tion of models and to generate useful hardware and software code out of
these models. It is noteworthy that VHDL, the IEEE standard language for
the description of hardware, which evolved around the time the semantics
of statecharts as described here was defined, adopted the same approach,
i.e., that changes carried out in a given step (or “delta” in the VHDL
nomenclature) can be sensed only in the following one.

Despite all of this, we make no qualitative claims about this semantics
(and, as any semanticist knows, anomalous examples can be constructed for
almost any semantics proposed for a concurrent language), except that it
represents the way the language has been implemented in STATEMATE.

Due to the somewhat different goals and usage of STATEMATE’s analy-
sis tools (simulation and dynamic tests) on the one hand and its generated
code on the other, in some extreme cases there may be slight differences
between the behaviors entailed by these tools. These include the treatment
of nondeterminism, racing, and states without enabled default transitions.
In all such cases, the analysis tools issue a warning message. More details
are provided later.

The article concentrates mainly on notions that are special to state-
charts, such as the hierarchy of states, orthogonality, and history connec-
tors. There are a number of issues that are not unique to statecharts yet
are not widely available in other formalisms either, and thus they may be
new to STATEMATE users. Some of these, such as generic charts, multi-
value logic (MVL), and queues, are treated in detail in i-Logix documents,
and we do not describe them here. We do describe one of these in Appendix
B, namely, combinational assignments. Also, Appendix C discusses the
priority of transitions, which is in the process of undergoing a change in
coming versions of STATEMATE.

2. THE BASICS

The STATEMATE set of languages is used for modeling reactive systems
[Harel and Pnueli 1985] based on the structured analysis paradigm. It is
described in more detail in Harel et al. [1990] and Harel and Politi [1996].
The backbone of the system model is an activity-chart, which is a
hierarchical data-flow diagram, and in which the functional capabilities of
the system are captured by activities and the data elements and signals
that can flow between them. The semantics of this functional description is

The STATEMATE Semantics of Statecharts • 295

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

dynamically noncommitting, in that it asserts that activities can be active,
that information can flow, and so on, but it does not specify what will
happen, or when or why. These behavioral aspects are specified in state-
charts—sometimes called control activities—potentially one for each
activity in the activity-chart. An activity’s statechart controls the dynamics
of subactivities and their data-flow, including the ability to activate and
deactivate activities, to cause data to be written, modified, and read, to
send signals, and to sense when such things have happened, thus affecting
subsequent behavior. Figure 1 shows the structure of a simple hierarchy of
activities in a STATEMATE model. The A-boxes are activities, and the
rounded S-boxes are their control activities, which, as mentioned, are
specified using statecharts.

The precise way in which statecharts describe behavior and thus control
the behavior of the entire setup of activities and data over time is at the
heart of the system model, which is why defining the semantics of state-
charts is so crucial. In operational terms, STATEMATE’s simulation, code
generation, and dynamic tests tools all execute the model, either explicitly
or implicitly, based on that very semantics.

A full definition of the allowed syntax of statecharts in STATEMATE is
beyond the scope of this article. We refer the reader to a short description

Figure 1.

296 • David Harel and Amnon Naamad

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

in Harel et al. [1990] and a full one in Harel and Politi [1996]. Here are
some brief reminders.

There are three types of states in a statechart: OR-states, AND-states,
and basic states. OR-states have substates that are related to each other
by “exclusive-or,” and AND-states have orthogonal components that are
related by “and.” Basic states are those at the bottom of the state hierar-
chy, i.e., those that have no substates. The state at the highest level, i.e.,
the one with no parent state, is called the root.

The general syntax of an expression labeling a transition in a statechart
is “e[c]/d,” where e is the event that triggers the transition; c is a
condition that guards the transition from being taken unless it is true
when e occurs; and a is an action that is carried out if and when the
transition is taken. All of these are optional.

There are several special events, conditions, and actions that relate to a
STATEMATE model’s other entities, such as activities, data items, or other
states. For example, a can be the special action start(P) (abbreviated
st!(P)) that causes the activity P to start. Similarly, rather than being
simply an external, primitive event, e might be the special event entered(S)
(abbreviated en(S)) that occurs (and hence causes the transition to take
place) when state S is entered. Many of these are not mentioned explicitly
in this article, as we concentrate on the statecharts themselves.

Events are closed under the Boolean operations or, and, and not, and so
are conditions. The expression e[c] above is interpreted as “e and c.”

Besides allowing actions to appear along transitions, they can also
appear associated with the entrance to or exit from a state (any state, on
any level). Actions associated with the entrance to a state S are executed in
the step in which S is entered, as if they appear on the transition leading
into S. Similarly, actions associated with the exit from S are executed in
the step in which S is exited, as if they appear on the transition exiting
from S. (On the other end, the events en(S) and ex(S) are sensed one step
after S was entered or exited, respectively.)

In addition, each state can be associated with static reactions (SRs),
which are of the same format as a transition label, namely, e[c]/a, and are
to be carried out (whenever enabled) as long as the system is in (and is not
exiting) the state in question. Semantically, each SR in state S can be
regarded as a transition in a virtual substate of S that is orthogonal to its
ordinary substates and to the other SRs of S. For example, Figures 2(a) and
2(b) depict the same behavior.

An activity can be linked directly to a state S, by specifying it to take
place throughout S or within S. The semantics of “activity A is active
throughout state S” is that A starts being active upon entering S and stops
upon leaving it. The semantics of “activity A is active within state S” is
that A may be active when the system is in S; it entails stopping A when S
is exited.

An action a can be scheduled for d time units later on by carrying out a
new action of the form schedule(a, d) (abbreviated sc!(a, d)). Similarly,
the special event timeout(e, d) (abbreviated tm(e, d)) occurs d time units

The STATEMATE Semantics of Statecharts • 297

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

after the most recent occurrence of the event e. The way these are
calculated is discussed in Sections 8 and 9.

The behavior of a system described in STATEMATE is a set of possible
runs, each representing the responses of the system to a sequence of
external stimuli generated by its environment. A run consists of a series of
detailed snapshots of the system’s situation; such a snapshot is called a
status. The first in the sequence is the initial status, and each subsequent
one is obtained from its predecessor by executing a step (see Figure 3). As
we shall see, defining a step precisely, with all its ramifications and
side-effects, is what the semantics is all about.

A status contains information about active states and activities, values of
data-items and conditions, generated events and scheduled actions, and
some information regarding the system’s history (its past behavior). At the
beginning of each step, the environment supplies the system under descrip-
tion with external stimuli. These, together with changes that occurred in
the system during and since the previous step, trigger transitions between
states and static reactions within states. As a result, the system moves into
a new status. Some states are exited, and some are entered; values of
conditions and data-items are modified; new events are generated; activi-
ties are started and stopped, and so on.

Some of the general principles we have adopted in defining the semantics
are the following:

(1) Reactions to external and internal events, and changes that occur in a
step, can be sensed only after completion of the step.

(2) Events “live” for the duration of one step only, the one following that in
which they occur, and are not “remembered” in subsequent steps.

(3) Calculations in one step are based on the situation at the beginning of
the step (e.g., which states the system was in, which activities were
active, and the values of conditions and data-items at that time.)

(4) A maximal subset of nonconflicting transitions and SRs is always
executed. We refer to this as the “greediness property” of the semantics.

The execution of a step takes zero time. The time interval between the
executions of two consecutive steps is not part of the step semantics.

Figure 2.

298 • David Harel and Amnon Naamad

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

Rather, it depends on the execution environment and the time model, over
which users of the tool have a significant degree of control. This is
discussed in Section 9. It is important to note, however, that STATEMATE
supports time models in which several steps may execute at the same point
in time. An event generated in step n at time t may be sensed in step n !
1 only. Moreover, this occurrence of the event is not sensed in steps that
follow step n ! 1, even if those steps also execute at time t.

In general, it is quite straightforward to define the effect of a step
involving a single statechart transition, or several nonconflicting transi-
tions in separate orthogonal components. However, there are less trivial
situations. For example, when several transitions are enabled, some of
them may be conflicting and thus unable to participate together in the
same step. Also, when a transition arrow crosses the boundaries of nested
states, one has to accurately define the states that have been exited by
taking the transition and those that are entered. The main technical goal of
this article is to describe the way the general case is treated. We have
organized the definition incrementally, starting with the simplest and most
obvious cases and complicating things as we go along.

3. BASIC SYSTEM REACTION

A configuration is a maximal set of states that the system can be in
simultaneously. More precisely, given a root state R, a configuration
(relative to R) is a set of states C obeying the following rules:

—C contains R.
—If C contains a state A of type OR, it must also contain exactly one of A ’s

substates.
—If C contains a state A of type AND, it must also contain all of A ’s

substates.
—The only states in C are those that are required by the above rules.

It follows that configurations are “closed upwards”; that is, when the
system is in any state A, it must also be in A ’s parent state (unless, of
course, A is the root, in which case it has no parent). In fact, to uniquely
determine a configuration it is sufficient to know its basic states. Conse-
quently, we use the term basic configuration to refer to a maximal set of
basic states that the system can be in simultaneously, or in other words,
the set of basic states in a legal configuration. To illustrate, consider Figure
4. In it, {B1, C1, D1} is a basic configuration, and its full configuration
contains also B, C, D, A, and S (the root). {B1, C1} is not maximal and
hence is not a basic configuration. {B1, B2, C1, D1} is not a legal
configuration, because the system cannot be simultaneously in the two

Figure 3.

The STATEMATE Semantics of Statecharts • 299

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

offspring of the OR-state B. {E} is a basic configuration, and its full
configuration is the set {E, S}.

In a step, the system will typically carry out operations of four types:
transitions, static reactions, actions performed when entering a state, and
actions performed when exiting a state. In this section we discuss the
simplest kind of step, involving a single transition in an ordinary, un-
adorned statechart. Consider Figure 5, and assume that the system is in
state A and that event ev has just occurred.3 The response of the system
will be as follows:

—The transition t1 becomes enabled because the system is in t1’s source
state and because its trigger (the event ev) is generated. Hence, t1 is
taken, meaning that the system will exit state A, enter state B, and
execute action act.

—The special events exited(A) and entered(B) are generated (and will be
sensed in the following step).

—The special condition in(A) becomes false, and the condition in(B)
becomes true.

—The actions specified to take place upon exiting state A are executed.
—The actions specified to take place upon entering state B are executed.
—All the SRs of state S that are enabled, that is, whose trigger is true, are

executed. (This is because the system was in state S before the step and
did not exit S during the step.)

—All activities that were specified as being active within or throughout
state A are deactivated, while those defined as being active throughout
state B (but not necessarily those defined as being active within B) are
activated.

3In the figures we often write names for transitions, such as t1 in Figure 5. These are not
parts of the STATEMATE syntax and are added just to help in the exposition. Also, shaded
states in the figures serve to represent the basic configuration the system is in at the moment.

Figure 4.

300 • David Harel and Amnon Naamad

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

As a consequence of the direct changes listed above, other events might
very well be generated, and other conditions might change their value. For
example, if the special event fs(in(A)) (or tr(in(B))) appears somewhere in
the model, it will be generated as a result of executing t1, since it occurs
whenever the condition in (A) becomes false. Also, if an activity P is
activated, then the event started(P) occurs, and the condition active(P)
becomes true.

As mentioned in the introduction, all these changes are sensed only in
the following steps. For example, the fact that state A is exited indeed
generates the event exited(A), but any static reaction in S that is to be
triggered by that event will be executed only in the next step. The same
applies to all generated events and changes in conditions and data-items.
Among other things, this means that the system cannot enter and then exit
a given state in the same step. (Interestingly, it is possible, by a self-
looping transition, to exit and then reenter a state in one step.)

As an example, suppose that in Figure 5 the action act is defined as

X !" X ! 1; Y !" X " 5; if X " 5 then act1 else act2 end if

The value of X used in evaluating the arithmetic expression X " 5 and the
Boolean expression X " 5 is the value X had at the beginning of the step
(before it was incremented). If the value of X at the beginning of the step
was 4, then act2 (and not act1) is executed. Thus, the semicolon in an
action (whether appearing along a transition or within a static reaction)
signifies more of “do this too” rather than “and then do,” meaning that
actions are to be executed as if in parallel.

When two or more actions executing in the same step call for changing
the value of a common data-item, we cannot predict the outcome. Thus, two
correct implementations of the same semantics may yield different results.
In such cases, we say that we have a racing condition. The example
above illustrates a less acute type of racing, which according to STATE-
MATE’s semantics cannot affect the behavior: one action changes, and
others use the value of X in the same step. Since the change occurs only at
the end of the step there is no issue of unpredictability or differences in
behavior, but this situation should be detected too, since the modeler’s
intention might have been different from the outcome. Both types of racing
are detected and reported by STATEMATE’s simulation and dynamic tests
tools. Racing is discussed in more detail later.

Figure 5.

The STATEMATE Semantics of Statecharts • 301

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

4. COMPOUND TRANSITIONS

Execution of a step must always lead the system to a legal configuration. In
particular, a statechart cannot be “stuck” during execution at a connector
(with the exception of a termination connector). Similarly, a statechart
cannot be in a nonbasic state without the ability to enter the appropriate
substates. With this in mind, the actual transition between configurations
that is taken in a step is often more complicated than that of Figure 5. It
may consist of a number of separate transitions appearing in different
orthogonal state components, and each of these may consist of a number of
linked transition segments, which are the labeled arrows that connect
states and connectors of various kinds.

This section illustrates the way transition segments are combined to
form full transitions. It uses a number of different kinds of compound
transitions. The first of these is a basic compound transition (CT),
which is a maximal chain of transition segments, linked by connectors, that
are executable simultaneously as a single transition. The trigger of a CT is
taken to be the conjunction of the triggers of its constituent segments, and
its action is the concatenation of the actions thereof.

The connectors that enable transition segments to be combined to form a
CT come in two forms: AND and OR.

The joint and fork are AND-connectors (see Figures 9 and 10). The
transition segments connected to an AND-connector will all participate in
the same CT. In other words, if T is the set of transition segments leading
to or emanating from an AND-connector C, then any CT that contains a
segment from T must contain all the segments of T.

The condition, selection, and junction are OR-connectors (e.g., see
Figures 7 and 31). Given an OR-connector C, let T1 and T2 be the sets of
transition segments leading to and emanating from C, respectively. Any CT
that contains a segment from T1 ! T2 must contain exactly one segment
from T1 and one from T2.4

There are two types of basic CTs: an initial CT is a CT whose source is a
state, and a continuation CT is a CT whose source is a default or history
connector. The targets of both types of basic CTs are states or history or
termination connectors. A full CT is a combination of one initial CT and
possibly several continuation CTs, which, when executed, lead the system
to a full basic configuration. In many cases, like the one depicted in Figure
6(b), a full CT consists of only one basic transition. As the following
examples show, the execution of a basic CT does not guarantee that the
system will end up in a legal configuration. Therefore, a full CT is the
central concept we have to work with.

4Another type of OR-connector is the diagram connector. Diagram connectors help reduce the
clutter of arrows in the chart. Semantically, the best way to view diagram connectors is as if
all the ones with the same label are actually a single OR-connector that happens to appear in
several locations.

302 • David Harel and Amnon Naamad

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

—The transition t1 in Figure 6(a) cannot be executed without also execut-
ing t2. Thus the set {t1, t2} is a CT (actually, it is a full CT) whose
source is A and whose target is B. Its trigger is ev1 & ev2, and its action
is act1; act2. Thus Figure 6(a) is equivalent to Figure 6(b).

—In Figure 7 there are two CTs: {t1, t2} and {t1, t3}, and they are also full
CTs. (We have left out the triggers and conditions here.)

—In Figure 8, t1 is an initial CT that must be accompanied by t2 to form a
full CT.

—Since the transitions t1, t2, and t3 in Figure 9 must be executed
together, {t1, t2, t3} (but none of its subsets) is a CT. Note that this CT
has two targets, whereas that of Figure 10 has two sources. A CT can
thus have several sources and several targets, and we may refer to its
source set and target set.

—Figure 11(a) depicts a more complex situation. In it, t1 and t2 must be
executed together, and to lead to a full configuration they must be
accompanied by t5 and by either t3 or t4. What we have are one initial
CT, {t1, t2}, and two continuation CTs, {t5, t3} and {t5, t4}, which form
two full CTs, {t1, t2, t5, t3} and {t1, t2, t5, t4}.

Figure 11 exhibits one of the very few situations in which STATE-
MATE’s simulation tool behaves differently from the generated code.
Consider a case in which the system is in state S, and ev1 and ev2 are
generated, but both C3 and C4 are false. According to the semantics,
Figures 11(a) and 11(b) are identical, and the simulation tool will
therefore stay in S. It will, however, notify the user that it could not
reach basic states after an initial CT was enabled. This message serves to
warn the user that the generated code may behave differently from the
simulation and that a potentially undesired (probably unintentional)
behavior was discovered. As to the generated code, it will execute the
initial CT, and only after reaching W will it discover that it cannot enter
basic states; and at this point it will not “roll back” to S. It is theoreti-
cally feasible to generate code that would roll back under these circum-
stances, but we could not find an efficient way to do so. This issue seems
to require more research.

—In Figure 12, the initial CT {t1, t2, t3} must by accompanied by the two
continuation CTs t4 and t5 in order to become a full CT.

The rest of the article concentrates on full CTs.

Figure 6.

The STATEMATE Semantics of Statecharts • 303

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

5. DEALING WITH HISTORY

Statecharts feature two kinds of history connectors: H and H*. Here is the
basic algorithm for interpreting history. Suppose we are executing a CT t1
whose target is a history connector h of state S. (Note that the graphical
syntax of statecharts requires the connector to reside in some state’s area,
so that S cannot be an AND-state, which has no area of its own.)

if S has history
then if h is an H connector

then let S# be the substate of S which the system was in when most
recently in S; t1 is treated as if its target is S#.

else (h is an H* connector)
let S# be the basic configuration relative to S which the system was in
when it was most recently in S. t1 is treated as if its targets are all the
states in S#.

else (the system was never in S, or S ’s history was erased by a clear-history
action since it was last in S)

t1 is treated as if its target is S; however, if there are transitions
emanating from h, then these have priority higher then those emanating
from the default connector of S.

As an example, consider Figure 13, in which t1 is to be taken. If the
system was in B1 when it was most recently in B, then we have the
following: t1 is treated as if its target state was B1, and the full transition
taken is {t1, t2}; whereas if the system was most recently in B2 the target
state of t1 is taken to be B2, and the full transition taken is {t1, t3}. If the
system was never previously in B, or if B ’s history was cleared since the

Figure 7.

Figure 8.

304 • David Harel and Amnon Naamad

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

system was last in B, then t1 is treated as if its target is B, and the full
transition taken is {t1, t4, t2}. In this last case t4 is taken, in contrast to
the case where B1 is entered by virtue of B ’s history, and hence any actions
associated with t4 are executed.

Figure 9.

Figure 10.

Figure 11.

The STATEMATE Semantics of Statecharts • 305

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

The actions that erase the history of a state are history-clear(S), which
applies to the history of S itself, and deep-clear(S), which has the same
effect but applies to S and all of its descendant states too. A new entrance
to S (and in the case of deep-clear the entrance to any descendent too)
causes a new item of history information to be registered for subsequent
entrances, capturing the substate of S presently entered.5

5The type of clear action that is taken has nothing to do with the type of history connector that
is being cleared. When the history of state S is cleared by either action it applies to both the
ordinary history connector H and the deep-history connector H*.

Figure 12.

Figure 13.

306 • David Harel and Amnon Naamad

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

Here is a more complicated situation, illustrating the priority given to
transitions that emanate from history connectors. Consider Figure 14, and
assume the system is in state A, that event e is generated, and that state B
has no history. Upon the execution of t1, transition t2 gets priority over B ’s
default entrance t3 and is executed. However, if C1 is false, the default t3
is attempted, which will succeed if C2 is true. However, if C2 is also false,
it would appear that we are in a loop. STATEMATE will detect this, and
both the simulation and generated code will issue an appropriate message.

A nice way of illustrating the fact that values of elements are changed
only at the conclusion of a step is the following. Suppose that in the same
step we enter a history connector drawn in state S and perform an action
that clears the history of S, as in Figure 15 (hc! abbreviates history-clear).
Do we first clear the history of S (and then, lacking history, enter the
default substate of S, which in Figure 15 is A), or do we first enter S via its
history and only then clear the history? The answer is the latter. Recall,
however, that once we have entered S we do not leave it again in the same
step. This has the curious effect of making redundant the subsequent
clearing of S ’s history, since this most recent entrance to S will register as
its history even if the clearing is not performed.

6. THE SCOPE OF TRANSITIONS

Let us now be a little more precise about how full CTs are assembled. A full
CT is really a collection of transitions, some of which are linked in a
head-to-tail fashion by the rules governing the different connectors. If the
result of these attachments contains an internal loop (i.e., one from
connector to connector—not a loop from source state back to the same state,
which is allowed, of course), the compound transition is illegal.

The maximality requirement on these attachments implies that the
source of the full CT contains states only (no connectors), and its target
contains basic states and termination connectors only. Otherwise the
statechart is incomplete, since it presumably lacks one or more default
arrows. For the CT to be legal, every two states in the source and every two
states in the target must be mutually orthogonal (so that both the source

Figure 14.

The STATEMATE Semantics of Statecharts • 307

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

and the target can be parts of legal basic configurations). In fact, the target
set must be maximal: if it contains a descendant of a component of an
AND-state, then it contains descendants of all of its other components too.
A CT is said to be enabled in a step if at the beginning of the step the
system is in all the states of its source set and if its trigger (i.e., the
conjunction of all its components’ triggers) is true. We should mention that
empty triggers always evaluate to true.

As a simple example, consider Figure 16. If at the beginning of the step
the system was in state A, and events e and f were generated during the
previous step, t1 becomes enabled, but t2 does not. The reason is that
although t2’s trigger f was true at the beginning of the step, and its source
state B is entered during the step, the system was not in t2’s source state
at the beginning of the step. As explained earlier, unless event f occurs
again while the system is actually in B, the transition t2 will not be taken
even in the next step, since the previous occurrence of f is lost.

In taking a transition from the source to the target, the CT will often
pass through different levels of the statechart hierarchy. The question
arises as to which nonbasic states are exited and entered in the process of
taking a transition. This is important for several reasons, one of which is
the set of actions that may be called for when exiting and entering states.
For example, when executing t1 in Figure 17, do we exit and then reenter
state A? When executing t4 in Figure 18, do we exit and then reenter state
V? When executing t6 in Figure 19 do we exit and then reenter state U?

To answer these and similar questions we introduce the concept of the
scope of a compound transition.6 The scope of a CT tr is the lowest
OR-state in the hierarchy of states that is a proper common ancestor of all
the sources and targets of tr, including nonbasic states that are explicit
sources or targets of transition arrows appearing in tr. History connectors
that are targets of such arrows are represented by the states in which they

6In the previous reports related to this semantics (in particular, in the 1989 document “The
Semantics of Statecharts”), we used the lowest common ancestor (LCA) instead of scope.

Figure 15.

308 • David Harel and Amnon Naamad

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

are actually drawn. When the transition tr is taken, all proper descendants
of its scope in which the system resided at the beginning of the step are
exited,7 and all proper descendants of that scope in which the system will
reside as a result of executing tr are entered. Thus, the scope is the lowest
state in which the system stays without exiting and reentering when
taking the transition.

In Figure 17, for example, the scope of t1 is S (and not A, which is of type
AND), and taking it implies exiting states B2, B, A, C, and either C1 or
C2, depending on which one of them the system was in at the beginning of
the step, and entering states A, B, B1, C, C2. State S is not exited. It is
noteworthy that this would be the case even if t1’s arrow would have been

7Clearly, the system is in the transition’s scope, and perhaps in other states too, before the
step starts.

Figure 16.

Figure 17.

Figure 18.

The STATEMATE Semantics of Statecharts • 309

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

drawn as exiting S ’s contour. S, and not S ’s parent, would have still been
t1’s scope. The notion of scope does not depend on the way the arrow itself
is drawn, but on its sources and targets only.

In Figure 18, the scope of t4 is U, and taking it implies exiting states W
and V and entering states V and W, but U is not exited.

Finally, in Figure 19 the scope of t6 is W (since the history connector is
represented by U), and taking it implies exiting and entering U. This
might appear to be somewhat counterintuitive, since an arrow drawn
entirely within a state can cause that state to be exited. However, again the
way the arrow is drawn is unimportant, and the semantics in this case is a
result of the special nature of history connectors, which must always be
entered from outside the state.

A full CT with scope S always exits a legal configuration relative to one
substate of S, and enters a legal configuration relative to potentially (but
not necessarily) another substate of S.

7. CONFLICTING TRANSITIONS

We say that two CTs are in conflict if there is some common state that
would be exited if any one of them were to be taken. In Figure 20, for
example, t1 and t2 are in conflict because they would each imply exiting
state A. Also, t4 is in conflict with all of t1, t2, and t3, since if and when t4
is taken, the system must have been in U and thus also in one of its
substates. It follows that t1 and t4, for example, cannot both be taken in
the same step.

The semantics treats these two kinds of conflicts differently. In the first
case, if the triggers of both t1 and t2 are enabled at the beginning of a step,
the system is faced with nondeterminism, since there is no reason to
prefer one of them over the other. The situation is different when t1 and t4
are enabled in the same step. Here t4 has priority over t1 (and over t2 and
t3), and there is no nondeterminism. Currently, priorities between transi-
tions are determined outside-in, as we now describe, but this priority
scheme is being revised for future versions of STATEMATE; see Appendix
C.

Let tx and ty be two conflicting transitions, and let Sx and Sy be their
scopes, respectively. Since the two transitions are in conflict, there must be

Figure 19.

310 • David Harel and Amnon Naamad

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

a common state in their source sets, which implies that their scopes cannot
be orthogonal or exclusive. Unless they are equal, one of the two scopes
must be an ancestor of the other in the state hierarchy. Accordingly,
priority is given to the transition whose scope is higher in the hierarchy. If
Sx " Sy, neither one of tx and ty has priority over the other, and
nondeterminism occurs. In Figure 21, for example, the scope of t1 and t2 is
A; the scope of t3 is V; and the scope of t4 is U. Thus t1 and t2 have the
same priority, and t3 has higher priority than t1 or t2. On the other hand,
t4 is not in conflict with any of t1, t2, and t3.

In general, nondeterminism occurs when two or more conflicting CTs
with the same priority are enabled in the same step, and no other
conflicting CT with higher priority is enabled. In such a case, different
steps are possible, which can lead to different statuses. Of course, at most
one of these steps can be taken in any particular run.8 Here is how the
various STATEMATE tools deal with nondeterminism that arises during
an execution. With the simulation tool STATEMATE waits for one of the
possibilities to be selected. The selection can be carried out interactively by
the user, or by specifying a selection criterion at the start. The dynamic
tests tool will try out all the different possibilities in an exhaustive fashion.
The code synthesized by the software code generator will select the first
possibility it finds that is enabled and will proceed to execute it. The
hardware code generated behaves similarly, but the user also has the
option of asking that the code detect and report nondeterministic situa-
tions.

We should say a word about static reactions (SRs). As explained earlier,
an enabled static reaction defined in state S is executed if the system was
in S at the beginning of the step, but S was not exited by any CT during the
step. In the present context, we might say that an SR defined in state S is
in conflict with all the CTs that exit S or one of S ’s ancestors. Furthermore,

8Note that nondeterminism will occur even if both transitions lead to the same target state,
since it is not only the resulting states that count; the two transitions might involve different
actions.

Figure 20.

The STATEMATE Semantics of Statecharts • 311

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

CTs have higher priority than SRs, since if a state S is exited as a result of
some CT, its SRs are not executed. Note that if S is exited and reentered in
the same step, its SRs will not be executed in that step.

8. THE BASIC STEP ALGORITHM

In this section we present a schematic description of the algorithm that
executes a single step. It lies at the heart of all the dynamic analysis tools
of STATEMATE.

The Inputs

(1) The status of the system, which includes:
—a list of states in which the system currently resides;
—a list of activities that are currently active;
—current values of conditions and data-items;
—a list of events that were generated internally in the previous step;
—a list of scheduled actions and their time for execution;
—a list of timeout events and their time for occurrence;
—relevant information on the history of states;

(2) The current time (see the discussion of time later).
(3) A list of external changes presented by the environment since the last

step. These may include, for example, events that have occurred and
changes in the values of conditions and data-items.

Comment. A scheduled action appears in the list as a pair (a, next-a),
where a appeared in an action expression of the form sc(a, d) that has
already been carried out, and next-a is the time at which the scheduled a is
to be executed. Similarly, a timeout event E of the form tm(e, d) appears

Figure 21.

312 • David Harel and Amnon Naamad

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

as a pair (E, next-E), where next-E is the time for the next generation of
the timeout event E itself.

The Output

—A new system status.

The Algorithm

Stage 1: Step Preparation

(a) Add the external events to the list of internally generated events.
(b) Execute all the actions implied by the external changes. This includes

changing the values of data-items, conditions, and activities, but not
states.

(c) For each pair (a, next-a) in the list of scheduled actions, do the
following:

if next-a # current-time
then carry out a and remove (a, next-a) from the list.

(d) For each pair (E, next-E) in the timeout event list, with E " tm(e, d),
do the following:

if e is generated
then set next-E !" current-time ! d;
else if next-E # current-time then

generate E and set next-E !" $.

Comments

(i) The order of execution at this stage is important. Timeouts are
evaluated last because we want to guarantee that E " tm(e, d)
cannot occur at the same step in which e occurs.

(ii) As a result of executing stage 1, the system status may change. This
potentially includes data-items, conditions, activities, and new
events. In the rest of the algorithm, the new status is used.

(iii) Logically we could use equality (i.e., ") for time comparison (and not
#), but in practice, because of floating-point inaccuracies, and be-
cause in real life steps do take time, we use #.

(iv) It is important to note that if the delay d is an expression (i.e., not a
constant) then it is evaluated with the values its operands have when
the triggering event e is generated. In this sense, the interpretation of
tm(e, d) is not “e occurred last d time units ago,” but rather it should
be viewed as an operation, which, whenever e occurs, is recorded to be
carried out in the future.

Stage 2: Compute the Contents of the Step. (At this stage, we mark the
CTs and SRs to be executed.)

(a) Compute the set of enabled CTs.
(b) Remove from this set all the CTs that are in conflict with an enabled

The STATEMATE Semantics of Statecharts • 313

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

CT of higher priority.
(c) Split the set of enabled CTs into maximal nonconflicting sets.

(Comment: A set of CTs is nonconflicting if no two CTs in the set are in
conflict. Being maximal means that each enabled CT not included in
the set is in conflict with at least one CT that is included in the set. An
example of nonconflicting sets is given below.)

(d) For each set of CTs, compute the set of enabled SRs defined in states
that are currently active and are not being exited by any of the CTs in
the set.

(e) If there are no enabled CTs or SRs
then the step is empty
else if stage (c) above resulted in a single set

then this set constitutes the step
else (i.e., stage (c) produced more than one set) we have nondeter-

minism, and any one of the sets can be chosen as the step.
(Comment: The simulation tool informs the user that nondeterminism
was detected and will let him or her select the set to be executed. The
generated code will select a set arbitrarily and upon specific request
will also issue a message that nondeterminism was encountered.)

Stage 3: Execute the CTs and SRs. Let EN be the set of enabled CTs and
SRs computed in stage 2.

(a) For each SR X in EN, execute the action associated with X.
(b) For each CT X in EN, let Sx and Sn be the sets of states exited and

entered by X, respectively;

update the history of all the parents of states in Sx;
delete the states in Sx from the list of states in which the system

resides;
execute the actions associated with exiting the states in Sx;
execute the actions of X;
execute the actions associated with entering the states in Sn;
add to the list of states in which the system resides all states in Sn.

Notes and Comments

(i) Figure 22 contains an example of nonconflicting sets (see item (c) in
stage 2 of the algorithm). In it the various sr denote static reactions
associated with the corresponding states. Assume that the system is in
the configuration represented by the shaded basic states and that all
the transitions and static reactions are enabled. Now, t3 has higher
priority than t1 and t2; t4 and t6 have higher priority than t5; and the
three transitions in the right-hand component have the same priority.
Thus, in the left-hand component t3 will be taken, which implies that
sr1 will be carried out in this step but not sr4. In the middle
component t4 or t6 will be taken, and sr2 will be carried out; and in
the right-hand component one of the three transitions will be taken,
and sr3 will be carried out. More compactly, the maximal nonconflict-

314 • David Harel and Amnon Naamad

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

ing sets are as follows, which means that there are six steps that can
be taken:

%t3, t4, t7, sr1, sr2, sr3&
%t3, t4, t8, sr1, sr2, sr3&
%t3, t4, t9, sr1, sr2, sr3&
%t3, t6, t7, sr1, sr2, sr3&
%t3, t6, t8, sr1, sr2, sr3&
%t3, t6, t9, sr1, sr2, sr3&

(ii) In order to implement the semantics of a step, assignments are
carried out in two stages. The first creates a list of pairs, each one of
the form 'element, new-value(. Such a pair specifies that the element
is to be assigned to the new-value at the end of the step. This
guarantees that during the execution of the step the old values of
elements are used, and thus the system is insensitive, as much as
possible, to the order in which actions are executed. (For example, the
semantics does not specify the order in which the CTs and SRs are
executed in stage 7, nor does it specify the order in which the actions
of a given CT or SR are executed.) Now, only after this first stage has
been completed for all the actions executing in the current step, the
second stage starts, in which the elements are assigned their new
values.

When an element is assigned a new value more than once during a
step, the last assignment is the one that counts. In such cases, which
we refer to as write-write racing, the order of action execution can
affect the results of the step. STATEMATE’s simulation and dynamic
tests tools are able to detect these cases. In Section 10 we discuss
racing detection in more detail.

(iii) Actions performed on activities may cause chain reactions. When an
activity is stopped or suspended, all its subactivities are stopped or
suspended too. An activity that has not been endowed with a control-
ling statechart has default rules for its subactivities: when it is
started, all its subactivities are started too, and when all its subac-

Figure 22.

The STATEMATE Semantics of Statecharts • 315

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

tivities have stopped, the parent activity is stopped too. All these
reactions are executed in the same step. An activity with control can
activate its subactivities only following the step in which it was
activated itself.

(iv) All the events generated in a step are collected in a new list of
generated events, which is used as one of the inputs to the next step.
The current list of events (containing those generated in the previous
step) is used in step 7 to evaluate actions that have the form

when 'event(then . . . else . . . end when

(v) An action a that is scheduled for later on in a scheduled action
expression of the form sc(a, d) is not executed in stage 7. Rather, it
is added to the list of scheduled actions as the pair (a, d !
current-time).

(vi) A termination connector is treated as a basic state, whose parent
state is the one in which it is drawn. Upon entering a termination
connector, however, no more steps are executed. For example, if
event e occurs in Figure 23, the termination connector will be
entered, and no more steps will be executed, even if f occurs later.
Moreover, if the statechart in question serves as the control
activity of activity P, then when execution enters a termination
connector therein, activity P is stopped (at the end of the step), and
the event sp (P) is generated.

9. TWO MODELS OF TIME

So far we have discussed the semantics of a single step and have skirted
issues involving sequences of steps. One particularly important issue is
that of time and its relationship to steps: when is the internal clock
advanced relative to the execution of steps, and how long do steps take in
terms of the clock?

STATEMATE supports two models of timing: synchronous and asynchro-
nous. The synchronous time model assumes that the system executes a
single step every time unit, reacting to all the external changes that occur
in the one time unit that elapsed since the completion of the previous step.
The asynchronous time model assumes that the system reacts whenever

Figure 23.

316 • David Harel and Amnon Naamad

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

an external change occurs, allowing for several external changes to occur
simultaneously and, most importantly, allowing several steps to take place
within a single point in time. Such a collection of steps is sometimes called
a superstep. In both models, the very execution of a step may be viewed as
taking zero time as far as the environment is concerned, since during the
execution of the step itself no external changes have any effect, and it is as
if time stops for the duration of the execution.

While the basic algorithm for a step given in the previous section is
implemented in STATEMATE’s simulation and dynamic tests tools, and in
its various code generators, each of these executes a step under somewhat
different circumstances, and the way the two models of time are reflected
in the execution differs slightly among them. We shall concentrate on the
way time is treated in the simulation tool and then briefly discuss its
treatment in the other tools.

The synchronous time model fits systems that are highly synchronous.
Assuming that the previous step was executed at time t, issuing a GO
command during a STATEMATE simulation works as follows:

execute all external changes reported since completion of the previous step;
increment the clock by one time-unit;
execute all timeout events and scheduled actions whose due time falls inside

(t, t ! 1] (that is, the interval that excludes t but includes t ! 1);
execute one step.

The asynchronous time model (which we might call the greedy model) fits
most kinds of asynchronous systems. In this time model, since the execu-
tion of steps does not advance the internal time of the simulation, the
simulator’s operator or environment must do so explicitly. There are
several different GO commands that let the user control the advance of
time during simulation.

The most important GO command is GO-REPEAT, which works as
follows:

execute all external changes reported since completion of the previous step;
execute all timeout events and scheduled actions whose time is due (up to and

including the current time);
repeatedly execute one step until the system is in a stable state (i.e., there are

no generated events and no enabled CTs or SRs).

Note that GO-REPEAT does not increment the internal clock, so that many
steps may be executed at the same point in time. The repeat loop in the
above description is thus a superstep, namely, the series of steps that are
executed in the course of a single GO-REPEAT command at the same point
in time without external changes occurring between the constituent steps.

A GO-REPEAT command may result in an infinite loop. Suspected
infinite loops are detected by the simulation tool. As an example, consider
Figure 24, and assume that the conditions C1, C2, and C3 are false and
that event e was generated by the environment. The GO-REPEAT com-
mand will cause the following four steps to be executed:

The STATEMATE Semantics of Statecharts • 317

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

(1) transition t1 is taken, leading to the basic configuration {A2, B1, D1},
making C1 true and generating f;

(2) transitions t3 and t4 are taken, leading to the basic configuration {A2,
B2, D2}, and making C2 true;

(3) transition t2 is taken, leading to the basic configuration {A3, B2, D2},
and making C3 true. Note that t5 is not taken because event f is “alive”
only during step (2); in step (3) it no longer exists.

(4) t6 is taken, leading to the basic configuration {W}.

The GO-ADVANCE command is designed to be used in conjunction with
GO-REPEAT, to advance the clock. Before doing so, however, it must pay
all “debts” that are due before the time planned for the advance. Suppose
that the current time is t and that the command GO-ADVANCE n is used
to advance the time to t ! n. Here is what happens:

execute all external changes reported since the completion of the previous step;
set t# !" t ! n;
repeat the following until t " t#:

execute all timeout events and scheduled actions whose time is due (up to
and including the current time t);

execute GO-REPEAT;
set t) to be the time of the closest scheduled action or timeout event;
set t to the smaller of t# or t).

The GO-REPEAT and GO-ADVANCE commands suffice to implement
the greedy asynchronous time model. However, the following additional GO
commands make life a little easier:

—GO-STEP: Executes one step without advancing the time. This com-
mand enables easier debugging of the model.

Figure 24.

318 • David Harel and Amnon Naamad

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

—GO-NEXT: Advances the clock to the time of the next timeout event or
scheduled action without carrying out a step. Before the time is actually
advanced, all the steps that can be executed are executed.

—GO-EXTENDED: A combination of GO-NEXT and GO-REPEAT, which
is intended to execute the next superstep that really does something. It
works as follows:

execute all external changes reported since the completion of the previous step;
if there are generated events or if there are enabled CTs or SRs

then execute a superstep
else advance the clock to the time of the next timeout event or scheduled

action;
execute the scheduled actions and timeout events whose time is due;
execute a superstep.

This completes our discussion of the treatment of time in the simulation
tool of STATEMATE. In the dynamic tests tool, external changes are
sensed only once every fixed period of time in both time models, but the
user has the option of injecting external changes between steps of a
superstep too.

STATEMATE’s hardware code generators let the user select between two
code styles, each compatible with a different time model. The RTL code
style means generation of VHDL or Verilog code in which the mechanism
that determines when a step should execute is sensitive to one event only:
the rising or falling edge of a clock. This is similar to STATEMATE’s
synchronous mode. On the other hand, HDL code generated with the
behavioral code style reacts to any change in the inputs the moment
they occur. This is identical to STATEMATE’s asynchronous mode.

The software code generators generate one style of code; however, two
different schedulers are provided that support different time models. One
of them uses the CPU clock time. This has the effect that steps, and
therefore supersteps, take more than zero time. As in the simulation,
external changes are sensed only at the start of a step. Since steps take
more than zero time, however, external changes, timeout events, and
scheduled actions may occur before the system has stabilized. In other
words, the synchrony hypothesis (see Berry and Gonthier [1992] and Pnueli
and Shalev [1991]) is not preserved. This also means that with the CPU
clock time model, the equivalent of STATEMATE’s simulator’s GO-RE-
PEAT, is not supported.

Another scheduler uses a simulated clock. The simulated clock advances
only after the system is in a stable status. External changes, timeout
events, and scheduled actions occur only when the system is stable. The
simulated clock time model guarantees a behavior which is identical to
STATEMATE’s asynchronous mode.

The STATEMATE Semantics of Statecharts • 319

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

10. RACING CONDITIONS

Racing conditions arise when the value of an element is modified more than
once or is both modified and used at a single point in time. Now, since our
approach in the greedy model is that multiple steps can be executed at
(what appears to be) the same point in time, racing problems can arise not
only within a step, but also between transitions or actions that are
executed in different steps. Thus racing must be checked within supersteps,
not only within single steps, and we must take into account causality
dependencies between the transitions that are carried out in different steps
within a single superstep.

For example, suppose a transition labeled “e / f; X !" 5” is executed in
some step, enabling another transition in the same superstep labeled
“f / X !" 6.” Here, although X is modified more than once at the same
point in time, there is no racing problem, since the second transition
necessarily comes after the first. Thus, while the steps in a superstep are
executed in zero time, they are considered to be executed in order.

Let us be a little more precise about how racing is defined. In each step
and superstep several transitions may be enabled. The enabled transitions
are viewed as executing in some implementation-sensitive order. However,
this order must be consistent with the enabling order, in the sense that
each transition is to be executed after the ones that enabled it. A race
situation is one in which, had we executed the enabled transitions in a
different order (yet a legal one according to the above criteria), we might
have obtained different results in one or more of the data-items or condi-
tions.

Consider Figure 25. When event e occurs, the semantics prescribes that
transition t1 will be taken in the first step, t2 and t3 in the second step,
and t4 in the third step. Consequently, X will attain the value 5 in the
second step, and Y will attain 6 in the third step. However, notice that the

Figure 25.

320 • David Harel and Amnon Naamad

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

only constraints on the ordering of these transitions are that t1 must come
before t2 and t3, and that t3 must come before t4. It is only the greediness
of our semantics that causes t2 and t3 to be taken in the same step. There
is actually nothing wrong with a semantics that would postpone taking t2
until after both t3 and t4 are taken (in two consecutive steps), but this may
result in a different value in Y. Cases like this will also cause STATEMATE
to report a racing condition.

11. MULTIPLE STATECHARTS

The semantics as described applies in all its aspects to several statecharts
running simultaneously, which in STATEMATE occurs when they repre-
sent activities that happen to be active concurrently.

Multiple active statecharts are treated basically as orthogonal compo-
nents at the highest level of a single statechart, except that when one of the
statecharts becomes nonactive (by entering a termination connector, or
when the activity it controls is stopped) the other charts continue to be
active. When an activity is restarted, the statechart controlling it is
reactivated by reentering its default configuration.

Consider, for example, the two charts of Figure 26. They are treated
essentially as the single chart of Figure 27. Notice that entering a termina-
tion connector in the original chart is just like entering the special idle
state in the corresponding orthogonal component of the new chart. The
special start events leading out of these idle states depict the events that
cause the original statechart to start, such as started(activity) for the
activity that is controlled by the statechart in question.

In the asynchronous time model, the steps in multiple statecharts are
carried out in synchronization, just as they would have if they were
represented as orthogonal components of one big statechart. Thus, what is
really happening is that the greediness property applies at the system level
too, meaning that not only are all enabled transitions in a single chart
executed simultaneously, but so are those in all of the charts, and therefore
all the transitions in the entire system are executed simultaneously. In the
synchronous time model, on the other hand, each chart may have its own
clock, telling it when to execute a step. And since each of these may be

Figure 26.

The STATEMATE Semantics of Statecharts • 321

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

specified to have a different time unit (i.e., a different clock rate), what is
happening here is that within a chart all the orthogonal components
remain synchronized, but each chart is synchronized with its own clock and
not necessarily with the other charts. In both time models, the time units
used for evaluating time expressions (in timeout events and scheduled
actions) may be defined differently for each chart. Thus, for example, if two
actions schedule(a, n) and schedule(b, n) are executed in the same step in
the statecharts A and B of Figure 26, respectively, actions a and b might
not be carried out at the same time, since the time units for evaluation in A
and B could have been defined differently.

APPENDIX

A. COMPARISON WITH OTHER WORK

This appendix is devoted to issues regarding the comparison of our seman-
tics with other proposed semantics for statecharts.

We have already mentioned the fundamental question as to whether
changes that occur in a given step (e.g., generated events and value
updates) take effect in the current step or in the next one. Our semantics
adopts the latter, and this is in contrast to the semantics of Harel et al.
[1987] and Pnueli and Shalev [1991]. We shall thus say no more about
these two papers.

The most natural candidate for comparison is the RSML language of
Leveson et al. [1995], for various reasons. First, it was some of the
comments in Leveson et al. [1995] that prompted us to publish the present
article; second, as in our case, the semantics of Leveson et al. [1995] is
claimed to be supported by a tool; third, despite a difference of around
seven years in the conception of the two semantics, most of the underlying

Figure 27.

322 • David Harel and Amnon Naamad

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

principles of the two are very similar, such as the fact that changes take
place in the next step.

The main differences between the two approaches are syntactical. For
example, RSML does not support the history connector; it features directed
communication over channels instead of broadcast communication; it al-
lows AND/OR tables for entering condition expressions; it does not support
disjunctions of trigger events, and more.

Although there appear to be no significant differences in the dynamic
semantics, we use different terms. Our steps are RSML’s microsteps, and
our supersteps are RSML’s steps. For us, a step is the basic atomic
operation, whereas a superstep is something that STATEMATE users can
compose in commands to the simulator and as an option for the generated
code. From the description in Leveson et al. [1995], it appears that their
step (our superstep) is the basic atomic operation. One of the reasons that
it is somewhat difficult to talk more precisely about the semantics of RSML
is that many issues that we discuss at length are ignored in Leveson et al.
[1995], such as how CTs are built, which are the legal configurations, etc.

We now turn to the survey in von der Beek [1994]. It lists 19 issues
relevant to proposals for the semantics of statecharts.9 Since the imple-
mented semantics of statecharts as described in this article and its 1989
precursor are not mentioned in von der Beek [1994] at all, and since these
19 issues are used in von der Beek [1994] to catalog other published
semantics, we feel that the best thing for us here is to comment on how our
approach deals with each of these issues. In the following, we list each of
the issues by number and title (similar to von der Beek [1994]), give a
one-sentence explanation thereof (often adapted from the phrasing in von
der Beek [1994]), followed by a short discussion of the way our language
and its semantics relates to it. We leave to the reader the task of consulting
von der Beek [1994] for a more detailed explanation of, and motivation for,
the issues themselves. We should mention, however, that (i) some of them
are questions about which features the language supports (note that the
approaches surveyed in von der Beek [1994] have a varying syntax too) and
(ii) the semantic aspects of most of them are relevant only to supersteps.

1. Perfect-Synchrony Hypothesis. The perfect-synchrony hypothesis as-
serts that external events are responsed to immediately.

The STATEMATE semantics supports two time models: the asynchro-
nous and the synchronous. In the asynchronous model, the system reacts in
zero time the instant it is presented with an external change. Moreover,
when the system reaction is stretched over several steps, with one event
triggering another, all these steps execute in zero time. Therefore, under
this time model, the perfect-synchrony hypothesis holds.

In the synchronous time model, the system reacts whenever it detects an
occurrence of one special event (usually the edge of a clock cycle). Hence, it

9They are referred to in von der Beek [1994] as “problems” with the way statecharts are
described in Harel [1987].

The STATEMATE Semantics of Statecharts • 323

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

is possible that nonzero time passes between the instant in which an
external event occurs and the time the system reacts to it. In this model, if
the reaction requires several steps, each step executes only when the
special event is sensed. Hence, the time it takes to react depends on the
number of steps needed to complete the system’s reaction, and the hypoth-
esis does not hold.

2. Self-Triggering, Causality. Self-triggering involves events that are
executed based on their own actions and are not caused by an external
event; causality means that each transition taken was caused (perhaps
indirectly) by an external event.

This is not really an issue in our semantics, because internal events are
sensed only in the step following the one in which they were generated.
Thus, in a rather trivial sense one might say that STATEMATE respects
causality.

3. Negated Trigger Event. A negated event is one that models the
nonoccurrence of an ordinary event.

Our approach supports negated trigger events, which are allowed by the
syntax and are covered by the semantics. STATEMATE’s simulator sup-
ports them in full. As to the code generator, experience shows that virtually
none of its users were employing negated events unless they were AND-ed
with positive events. For this reason, the code generator was set up so that
its default mode supports negated trigger events only when AND-ed with
positive events. Thus, for example, not E is not supported; F and not E is
supported; and F or not E is not supported. This expedites the execution of
the generated code by about 20%. However, a nondefault scheduler is
available to the user, which supports general negated trigger events.

4. Effect of Transition Executing is Contradictory to Its Cause. An
example of this is an event triggering an action that is essentially its
negation.

This is not an issue in our approach, since the effect of a trigger event is
sensed only in the following step. In particular, STATEMATE has no
problem with a transition labeled not E/E.

5. Interlevel Transition. A transition crossing the borderlines of states.
STATEMATE supports these transitions in full.

6. State Reference. This is the ability to refer to the states of an
orthogonal component in deciding whether a transition is to be taken.

STATEMATE supports this in full. In some cases, the main output of a
statechart is the set of states it is in. The hardware language code
generators also support adding states to the output ports.

7. Compositional Semantics, Self-Termination. Compositional seman-
tics defines the meaning of a construct based on the meanings of its
constituent constructs; by self-termination, von der Beek [1994] means that
stratified transitions are used to replace interlevel ones, to aid in making
semantics compositional.

324 • David Harel and Amnon Naamad

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

Our semantics is not defined in a compositional manner. In fact, neither
is the syntax, which allows interlevel transitions.

8. Operational versus Denotational Semantics. Our semantics is oper-
ational.

9. Instantaneous State. A state that can be entered and exited simul-
taneously (e.g., with an action generated upon entrance that also causes
the state to be exited).

In our semantics instantaneous states are prohibited in a step. However,
the assertion in von der Beek [1994], to the effect that this implies that “at
one instant of time several transitions may only be executed if they reside
in parallel components” is inaccurate, since in the asynchronous time
model several steps may execute at the same instant of time.

10. Durability of Events. This issue concerns the question of whether
an event is available for more than “an instant of time.”

In our semantics, an event is sensed only in the step following the one in
which it was generated. Even when multiple steps execute at the same
instance of time, an event generated in step n is sensed only in step n ! 1.

11. Parallel Execution of Transitions. This issue concerns the question
of whether transitions allowed to execute simultaneously must reside in
different orthogonal components.

In our approach, only transitions whose scopes are mutually orthogonal
can execute in one step.

12. Transition Refinement. This issue concerns the difference between
a single transition and its refinement into a sequence of transitions (during
a top-down development process, for example), where the latter might take
longer than the former.

In the asynchronous time model of our semantics this is not a problem,
since several steps may execute at the same instance of time, and the
refinement will be equivalent to the refined transition. In the synchronous
time model, however, the difference does exist.

13. Multiple Entering or Exiting of an Instantaneous State. This con-
cerns the possibility of an infinite loop caused by the repeated entering and
exiting of an instantaneous state.

Within one step of our semantics this is not an issue, since instantaneous
states are not supported (see issue number 9). However, this could happen
within a superstep.

14. Infinite Sequence of Transition Executions at an Instant of Time.
Similar to number 13.

15. Determinism. This is concerned with whether a statechart’s behav-
ior can exhibit nondeterministic choices.

One can model nondeterministic behavior in our statecharts. STATE-
MATE’s code generators treat it as underspecification or “don’t care,” and
the distinction is up to the user.

The STATEMATE Semantics of Statecharts • 325

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

16. Priorities for Transition Execution. This feature provides a way for
the model to determine which transition from among a set of conflicting
transitions that exhibits nondeterminism is to be executed.

In the current versions of STATEMATE, priorities of transitions are
determined by the scope of the transition. The priority scheme that will be
implemented in future versions of STATEMATE is based on the transition’s
source and is described in Appendix C.

17. Preemptive versus Nonpreemptive Interrupt. A preemptive interrupt
is a high-level transition that prevents taking transitions on lower, encap-
sulated levels.

STATEMATE supports preemptive interrupts with priorities given to
higher-level transitions. (The priority concept relevant to this issue is
insensitive to the difference between the new and old versions of priorities
in STATEMATE that are discussed in Appendix C.)

18. Distinguishing Internal from External Events. This concerns the
question of whether there is a difference in sensing internal versus exter-
nal events in the microsteps that make up a macrostep, with relevance to
the possibility of satisfying the synchrony hypothesis.

In our semantics, internal events are indeed sensed within a superstep,
but externally generated ones are not.

19. Time Specification, Timeout Event, Timed Transition. These con-
cern the issue of when time actually progresses and whether there is
support for timeout events and timed transitions (the latter are transitions
bounded in time from below and/or from above).

In our semantics, time can advance only when the system is in a stable
status, meaning that no transitions can execute without an occurrence of
an external event. Our statecharts support timeout events but not timed
transitions.

If there were a column for our semantics in the table given in von der
Beek [1994, p. 145], it would read as follows:

g, !, !, *, !, !, !, !, !, !, !, *, !, *, t, d, !, !, *, !, !, *, !, !, *, d

B. COMBINATIONAL ASSIGNMENTS

Combinational assignments (CAs) are supported by both the software
and hardware versions of STATEMATE. They are not associated with
states, transitions, or activities, but with an entire chart. They can be
viewed as a continuous implementation of a function, i.e., a function that is
computed automatically immediately after a change in any one of its
parameters. The syntax of a CA is similar to that of a regular kind of
assignment and may also contain when-else clauses.

This appendix concentrates on specifying when and how CAs are exe-
cuted. A CA is executed immediately following a change in one of the
operands of its assigned expression (i.e., the right-hand side of the assign-

326 • David Harel and Amnon Naamad

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

ment). Put another way, during any step in which an operand is changed,
either externally or internally, all the relevant CAs are executed. For
models that contain CAs, the step algorithm of Section 8 is modified so that
following stage 3 a new stage is carried out in which the CAs are executed.
This is done in phases, so that in each phase, all the CAs whose operands
have changed are executed. First, the right-hand-side expressions of all the
participating CAs are evaluated, and then the assignments are carried out
simultaneously, in such a way that if an element X is changed by some CA
in phase n, but X is an operand of some other CA, then the new value of X
is available only in phase n ! 1.

Loops in the definition of CAs are legal, which implies the possibility of
infinite loops. For example, consider the following two CAs:

A !" 5 when B " 3 else 10

B !" 3 when A $ 5 else 4

Here A and B will never stabilize. This is an error in the specification,
and STATEMATE’s analysis tools will detect the infinite loop at run time.

If an element X changes its value several times within one step, but ends
up with the original value after all the phases of executing the CAs are
over, it is as though its value never changed, and in particular, the event
changed(X) (abbreviated ch(X)) is not generated. For example, consider
the following two CAs:

X !" A ! B

A !" A1

Suppose that at the beginning of the step the values were A1 " 5, A "
5, B " 5, X " 10. Now suppose that during the execution of a transition,
A1 changed to 3, and B changed to 7. The values of the elements will be
modified as follows: in phase 1, X becomes 12, and A becomes 3; and in
phase 2, X returns to its old value of 10. The event ch(X) will not be
generated.

This semantics is implemented in all STATEMATE tools, with one
exception. When generating code for hardware (in VHDL or Verilog) we
have decided to implement the STATEMATE CAs as CAs in the target
hardware language. When generating hardware code, the user has a choice
of generating behavioral-style code or RTL-style (register transfer level)
code. For our purposes, behavioral style is asynchronous, and RTL style is
synchronous. Here is the difference: each phase in the execution of CAs
takes some “delta,” which in hardware description languages is like a step
that takes no time. In RTL style, several deltas can be added after the
execution of the “real” step (before the next clock signal arrives) so that
indeed all phases of the CAs are executed as part of the step. On the other
hand, in the behavioral style, transitions can execute the moment they are

The STATEMATE Semantics of Statecharts • 327

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

enabled. Since we could not find an elegant way to postpone transition
execution until all the CAs have completed, in the behavioral style CAs can
be carried out in the same step as the transitions that follow the step that
changed their operands. Thus, if we have a transition that changes the
value of X, and a CA of the form Y !" X, then if X changes value in step n,
then Y will change value in step n ! 1, when some other transition might
be taken.

C. PRIORITY OF TRANSITIONS

Two aspects are relevant to the determination of the priority of transitions
in STATEMATE. The structural priority (SP) of a compound transition
and the priority numbers (PN) associated with transition segments.

Structural priority is the main criterion for determining the overall
priority of a transition. If transition t1 has higher SP than t2 then t1 has
an overall priority higher than t2. SP is defined for initial CTs only. It is
determined by a particular state associated with the CT, which we call its
structural priority determinant. The higher the determinant of a CT in
the hierarchy of states, the higher its SP. The determinant of a CT is
determined by its sources and targets. In the current versions of STATE-
MATE, the determinant of an initial CT tr is defined to be its scope. (Recall
that the scope of tr is the lowest OR-state in the hierarchy of states that is
a proper ancestor of all the sources and targets of tr.) In future versions of
STATEMATE, the determinant will be based primarily on the explicit
source(s) of tr. Let the source set of tr be denoted by R and its scope by S.
The structural priority determinant of tr is defined as follows:

let st be a state in R (st must be a proper descendant of S);
let L be the set of all states that are both proper ancestors of st and proper

descendants of S (L may be empty);
if there are no AND-states in L

then (R must be a singleton) the determinant of tr is st
else the determinant of tr is the highest-level AND-state in L

Consider, for example, Figure 28. The current versions of STATEMATE

Figure 28.

328 • David Harel and Amnon Naamad

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

give t1 and t3 the same priority, higher than that of t2, whereas the future
versions will give t1 and t2 the same priority, lower than that of t3. In
Figure 29, the determinant of t1 is A—the highest-level AND-state that is
exited by t1—and the determinant of t2 is C. Thus, although t1 and t2
have the same source, t1 will have higher priority than t2 in the future
versions too.

The reason the determinant of t1 is A is the following: t1 and t3 are in
conflict and therefore cannot be executed in the same step. If we were to
leave the determinant of t1 to be C, there would be no way to specify which
of t1 or t3 has higher priority. In addition, the orthogonal components of an
AND-state would no longer be truly orthogonal, since each one has to
examine what is happening inside the other one. And most importantly, the
generated code would become very inefficient.

Note that this definition suffices, because transitions whose determi-
nants are neither identical nor mutually ancestoral are never in conflict, so
that, indeed, the higher the determinant of a CT in the state hierarchy, the
higher its SP.

The main reason for the change being made in the definition of priority is
that the new one is more intuitive; it seems to be preferred among most
STATEMATE users. Also, with the new definition one can endow a transi-
tion with a higher SP without changing its meaning. In Figure 30, for
example, t1 and t2 are equivalent under the current semantics, but the
new semantics gives t1 higher priority than t2, although their behavior is
the same.

The priority number (PN) is an integer one can affix to transition
segments. The priority of a transition segment is compared with the
priorities of other segments with the same source (state or connector) or the
same priority determinant. Let X be a compound transition composed of the
transition segments X1, . . . , Xn in order. Thus, Xi ’s source is X(i * 1)’s

Figure 29.

The STATEMATE Semantics of Statecharts • 329

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

target, for i " 2, . . . , n. Similarly, let Y be a CT composed of Y1, . . . , Ym
in order. Suppose now that the structural priority determinants of X and Y
are the same, so that we have to compare their priorities according to their
PNs. Here is the comparison procedure:

i !" 1
while Xi " Yi do i " i ! 1

(i is now the index of the first different pair of segments)
if PN(Xi) + PN(Yi)

then return “X has higher priority than Y”
else if PN(Xi) , PN(Yi)

then return “Y has higher priority than X”
else return “X and Y have the same priority”

As an example, consider Figure 31, in which the priority numbers are
parenthesized. The CT leading to state T1 has higher priority than the CTs
leading to T2, T3, and T4 and has the same priority as the CTs leading to
T5 and T6. The table below summarizes the priority relationships between
the CTs (represented by their target states):

T2 T3 T4 T5 T6
T1 $ $ $ " "

T2 $ $ " "

T3 " " "

T4 " "

T5 %

Interestingly, the priority relationship, as we define it, is not transitive.
For example, while the pairs (T5, T1) and (T1, T6) have equal priorities,
that of T6 is greater than that of T5. This does not pose any problem,
however: whenever several transitions with the same determinant are
enabled, those whose priority is not maximal are not candidates for
execution. In other words, if a CT X is enabled, and there is another
enabled CT Y with greater priority than X ’s, then X will not be a candidate

Figure 30.

330 • David Harel and Amnon Naamad

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

for execution. If in Figure 31 all the transitions are enabled, there are
actually two possible steps: those leading to T1 and T6.

When a CT contains segments connected by joint or fork connectors, it is
not always possible to arrange them in linear order, with one’s target being
the next one’s source. In such cases, we view each combination of segments
incident to the connector—some incoming and some outgoing—as a single
virtual segment. The properties of the virtual segment are defined, using
those of its constituent (actual or virtual) segments, as follows:

—its priority is the maximum of those of the constituent segments;
—its source set consists of the sources of those of the constituent segments,

excluding the fork/joint connector;
—its target set consists of the targets of those of the constituent segments,

excluding the fork/joint connector.

If necessary, this definition is carried out recursively, until all the fork
and joint connectors have been removed. Only then can the actual and
virtual segments be linearly ordered. The CT depicted in Figure 32, for
example, will be regarded as having three segments: one consisting of t1,
t2, t3, t4, and t5, one consisting of t6, and one consisting of t7, t8, and t9.

ACKNOWLEDGMENTS

The basic concepts of the semantics described here were developed between
1984 and 1986 during lengthy sessions and deliberations by a group of
people that included, besides ourselves, Amir Pnueli, Michal Politi,
Jeanette Schmidt, and Rivi Sherman. This article would not have been
possible without them. We also wish to thank other members of the
STATEMATE development team, who contributed to the updating and
revision of the semantics over the years. These include Moshe Cohen, Eran
Gery, Aharon Shtull-Trauring, and Mark Trakhtenbrot. Special thanks to

Figure 31.

The STATEMATE Semantics of Statecharts • 331

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

Amir Pnueli, Jim Armstrong, Philip Brookes, Nick Cropper, Paul Urban,
and the reviewers, for comments on a previous version.

REFERENCES

BERRY, G. AND GONTHIER, G. 1992. The Esterel synchronous programming language: De-
sign, semantics, implementation. Sci. Comput. Program. 19, 87–152.

HAREL, D. 1987. Statecharts: A visual formalism for complex systems. Sci. Comput. Pro-
gram. 8, 231–274. Preliminary version available as Tech. Rep. CS84-05, The Weizmann
Inst. of Science, Rehovot, Israel. Feb. 1984.

HAREL, D. AND PNUELI, A. 1985. On the development of reactive systems. In Logics and
Models of Concurrent Systems, K.R. Apt, Ed. NATO ASI Series, vol. F-13. Springer-Verlag,
New York, 477–498.

HAREL, D. AND POLITI, M. 1996. Modeling Reactive Systems with Statecharts: The STATE-
MATE Approach. To be published. Preliminary version available as Tech. Rep., i-Logix, Inc.,
Andover, Mass. Titled “The Languages of STATEMATE.”

HAREL, D., LACHOVER, H., NAAMAD, A., PNUELI, A., POLITI, M., SHERMAN, R., SHTULL-TRAURING,
A., AND TRAKHTENBROT, M. 1990. STATEMATE: A working environment for the develop-
ment of complex reactive systems. IEEE Trans. Softw. Eng. 16, 403–414. Preliminary
version appeared in Proceedings of the 10th International Conference on Software Engineer-
ing. IEEE Press, New York, 1988, pp. 396–406.

HAREL, D., PNUELI, A., SCHMIDT, J. P., AND SHERMAN, R. 1987. On the formal semantics of
statecharts. In Proceedings of the 2nd IEEE Symposium on Logic in Computer Science. IEEE
Press, New York, 54–64.

HUIZING, C. AND DE ROEVER, W. P. 1991. Introduction to design choices in the semantics of
statecharts. Inf. Process Lett. 37, 205–313.

HUIZING, C., GERTH, R., AND DE ROEVER, W. P. 1988. Modeling statecharts behavior in a fully
abstract way. In Proceedings of the Colloquium on Trees in Algebra and Programming.
Lecture Notes in Computer Science, vol. 299. Springer-Verlag, New York, 271–294.

KESTEN, Y. AND PNUELI, A. 1992. Timed and hybrid statecharts and their textual represen-
tation. In Formal Techniques in Real-Time and Fault-Tolerant Systems, J. Vytopil, Ed.
Lecture Notes in Computer Science, vol. 571. Springer-Verlag, Berlin, 591–619.

LEVESON, N. G., HEIMDAHL, M. P. E., HILDRETH, H., AND REESE, J. D. 1995. Requirements
specification for process-control systems. IEEE Trans. Softw. Eng. 20, 684–707.

MARANINCHI, F. 1992. Operational and compositional semantics of asynchronous automaton
compositions. In Proceedings of CONCUR ’92. Lecture Notes in Computer Science, vol. 630.
Springer-Verlag, Berlin, 550–564.

Figure 32.

332 • David Harel and Amnon Naamad

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

PNUELI, A. AND SHALEV, M. 1991. What is in a step: On the semantics of statecharts. In
Proceedings of the Symposium on Theoretical Aspects of Computer Software. Lecture Notes
in Computer Science, vol. 526. Springer-Verlag, Berlin, 244–264.

VON DER BEEK, M. 1994. A comparison of statechart variants. In Formal Techniques in
Real-Time and Fault-Tolerant Systems, L. de Roever and J. Vytopil, Eds. Lecture Notes in
Computer Science, vol. 863. Springer-Verlag, New York, 128–148.

Received November 1995; revised February 1996; accepted July 1996

The STATEMATE Semantics of Statecharts • 333

ACM Transactions on Software Engineering and Methodology, Vol. 5, No. 4, October 1996.

