
Section 8. The Basic Step Algorithm

  Inputs
  The status of the system
  The current time
 A list of external changes presented by the environment

since the last step
Comments
  Scheduled action appears in the list as (a, next-a)

  a, appeared in an action expression of the form sc(a,d) that has
already been carried out

  next-a, is the time at which the scheduled a is to be executed
  Timeout event E of the form tm(e,d) appears as (E, next-E)

  Outputs
 A new system status

Inputs

  A list of states in which the system currently resides
  A list of activities that are currently active
  Current values of conditions and data-items
  A list of events that were generated internally in the

previous step
  A list of schedules actions and their time for

execution
  A list of timeout events and their time for occurrence
  Relevant information on the history of states

The Algorithm

  Stage 1: Step Preparation
a.  Add the external events to the list of internally generated

events
b.  Execute all action implied by external changes
c.  For each pair (a, next-a) do the following:

  Then carry out a and remove (a, next-a) from the list

d.  For each pair (E, next-E) in the timeout even list, with
E = tm(e,d) do the following:

The Algorithm – cont’d

  Stage 2: Compute the Contents of the Step
a.  Compute the set of enabled CTs
b.  Remove from this set all the CTs that are in conflict with an

enabled CT of higher priority
c.  Split the set of enabled CTs into maximal non-conflicting

sets
d.  For each set of CTs, compute the set of enabled SRs

defined in states that are currently active and are not
being exited by any of hte CTs in the set

e.  If there are no enabled CTs or SRs, then the step is empty.
  Else if state (c) above resulted in a single set then the set

constitutes the step.
  Else state (c) produced more than one set and we have

nondeterminism

Example of Non-conflicting Set

  Various sr denote static reactions associated with
the corresponding states

  t3 has higher priority than t1 and t2; t4 and t6
have higher priority than t5; and the three
transitions in the right-hand component have the
same priority.

The Algorithm – cont’d

  Stage 3: Execute the CTs and SRs . Let EN be the set of
enabled CTs and SRs computing in 2
a.  For each SR X in EN, execute the action associated

with X
b.  For each CT X in EN, Let Sx and Sn be the sets of

states exited and entered by X, respectively;
  Notes and comments

  In order to implement the semantics of a step,
assignments are carried out in 2 stages.

  write-write racing, the order of action execution can
affect the results of the step

b.

  Update the history of all the parents of states in Sx;
  Delete the states in Sx from the list of states in which the

system resides
  Execute the actions associated with exiting the states in

Sx
  Execute the action in X
  Execute the actions associated with entering the states in

Sn
  Add to the list of states in which the system resides all

states in Sn

Section 9. Two Models of Time

  when is the internal clock advanced relative to the
execution of steps, and how long do steps take in
terms of the clock?

  STATEMATE Supports:
 Synchronous time model
 Asynchronous time model

 Superstep: several steps that take place within a single point
in time under asynchronous time model

 Execution of a step may be viewed as taking zero time
as far as the environment is concerned (no external
changes have effect during execution of step)

Section 9. Two Models of Time: cont’d

  synchronous fits models that are highly synchronous assuming
that the previous step was executed at time t, issuing a GO
command during a STATEMATE simulation works as follows:

  Asynchronous time model
  The simulator’s operator or environment must advance time explicitly.

Several GO commands for this. For example GO-Repeat:

GO-REPEAT

* Assume C1, C2 and C3
are false and event e is
generated

Go Commands

  GO-REPEAT
  GO-ADVANCE

  Designed to be used in conjunction with GO-REPEAT, to advance
the clock

  GO-STEP
  Executes one step without advancing time. This commands enables

easier debugging of the model
  GO-NEXT

  Advances the clock to the time of the next timeout event or
scheduled action without carrying out a step. Before the time is
actually advanced, all the steps that can be executed are
executed

  GO-EXTENDED
  A combination of GO-NEXT and GO-REPEAT, which is intended to

execute the next superstep that really does something

  STATEMATE’s code generator lets user choose
between:
 RTL code style, generation of VHDL or Verilog code

(synchronous)
 behavioral code, HDL code generated (asynchronous)

  Code generators generate one style of code (CPU
clock and simulated clock).

Section 10. Racing Conditions

  Arise when the value of an element is modified
more than once or is both modified and used at a
single point in time.

Section 11. The Multiple Statecharts

  Multiple active statecharts are treated basically as
orthogonal components at the highest level of a single
statechart, except when one of the statecharts becomes
nonactive

Appendix

  A. Comparison with Other Works
 RSML Language of Leveson et al. [1995]

 Does not support history connector
 Directed comm. Over broadcast comm
 Allows AND/OR tables for entering condition expressions
 Does not support disjunctions of trigger events
 Different terminology

 Von der Beek [1994]
  Lists 19 issues relevant to proposals for the semantics of

statecharts (see paper)

  Perfect-Synchrony Hypothesis
  Self-Triggering, Causality
  Negated Trigger Event
  Effect of Transition Executing is Contradictory to Its Cause
  Interlevel Transition
  State Reference
  Compositional Semantics, Self-Termination
  Operational versus Denotational Semantics
  Durability of Events
  Parallel Execution of Transitions
  Transition Refinement
  Multiple Entering or Exiting of an Instantaneous State
  Infinite Sequence of Transition Executions at an Instant of Time
  Determinism

Appendix

  B. Combinational Assignments
 Supported by both HW and SW of STATEMATE
 Associated with an entire chart
 Viewed as continuous implementation of a function
 When and how CAs are executed:

 When? During any step in which an operand is changed,
either externally or internally, all the relevant CAs are
executed

 Modified Section 8 to include stage 4 to execute all CAs

Appendix

  Priority of Transitions
 Structural Priority (SP): Main criterion for determining

the overall priority of a transition. SP is defined for
initial CTs only. The determinant of an initial CT tr is
defined by its scope

Appendix

  Transitions whose determinants are neither identical
nor mutually ancestoral are never in conflict. Higher
determinant of a CT in the state hierarchy, the
higher its SP.

  Priority number (PN), is an integer one can affix to
transition segments. The priority of a transition
segment is compared with the priorities of other
segments with the same source or the same priority
determinant.

Appendix

  Joint or Fork connectors: view each combination of segments
incident to the connector as a single virtual segment
  Definition is carried out recursively, until all the fork and joint

connectors have been removed

