Discussion on:

“Quo Vadis, SLD?
Reasoning About the
Trends and Challenges of

System Level Design”

by Alberto Sangiovanni-Vincentelli

By Alberto Puggelli




P — %

Outline

SLD challenges
Platform Based Design (PBD)

e Case study: Wireless Sensor Network
Leveraging state-of-the-art CAD

Metropolis
e Case study: JPEG Encoder



y

SLD Challenge

Establish a further layer of abstraction

e Behavioral layer (mathematical background)
Expand the market towards different domains

e Heterogeneity: Mechanical, Health Care, Chemical
New design methodology

e Orthogonalization of concerns

e Formal design process

e Plug and play among different design methods

e Synthesis



/ : —

-

Behavioral Layer

Functionality and time-to-market
e Explore the design space = Partitioning
e Cost = yield, power consumption, etc.
e Formal Verification - Certification
e Reusability

Smoothness among players
e Mobile

» Automotive (possible shift of added value - instability)
OEM, Tier1, Tier2



_ —— —
New Markets

Increase of benefits might drive the methodology shift
(EDA companies)

Embedded system are the added value (OEMs)



/

/ vt e —

Why a new design methodology?

SW & HW kept separately
SW

e Millions of customized lines of codes
e Verification is extremely difficult
e Certification of the process, not of the functionality!

HW

e Various design methodology
e Various semantics

Extremely slow and costly process with no chance of
reusability



P /
Platform based design: PBD

* Orthogonalize functionality and platform

T

Function Space

Platform

Platform
Design-Space
Export

Architectural) Space
representations




Wi

Platform

Library of components
e Computational
e Communication
Each component has performance metrics +
supported functionality
Possibility of having place holders

Platform instance: specific selection of components in
a library to get a given functionality (set the
parameters of components)



p

o

Wireless Sensor Network
Functional Model: SNSP

e Formally describes the interaction between controllers,
actuators and sensors.

Protocol Platform: SNAPP
Sensor Platform: SNIP

Step 1: check for functional support + derivation of
constraints

Step 2: select sensors and a protocol that are able to
implement the functional description



y

Related strategies
Model Driven Development (MDD)

e Orthogonalization of concerns
e Mapping functionalities

Domain Specific Languages (DSL)
e Use of a metamodels

MILAN framework

e Orthogonalize computation and communication

Already implemented in HW and SW

Need for a common semantic and a mathematical
description of the interactions for embedded systems.



P

Wrap up

PBD represents a set of contracts among different
players along the supply chain

e Supplier defines performance metrics to be used by the
client

e The client may ask the supplier for specific performance
metrics

More degrees of freedom = design space exploration

Open issue: finding the right layers



_
Leveraging state-of-the-art CAD

Functional
e HW

» SystemC different semantics to account for hardware
concurrency and execution time. It allows verification but it
has to be manipulate to be synthesized

- HDL abstraction of RTL = synthesis is possible
e Embedded SW

« Need for concurrency, multiprocessing, multithreading
« Verification by construction = synchronous languages

« Computation and communication don’t overlap (“critical
path” is defined)



/ : ————

-

Leveraging state-of-the-art CAD (2)
Models of Computation (MoC)

e Need for orthogonalization from architecture
» Trade expressivity with ease of synthesis (DE, FSM)

* Need for mixing different MoC (heterogeneous
systems)

« Interface automata: shift the problem to interface and see
whether 2 interfaces can communicate

« Behavioral description: formal sets of behaviors for each
subsystems that can be intersected to get the system
description.

e Ptolemy II: more MoC are supported

« Each subsystem is a thread that can communicate with other
systems by sending messages.



Leveraging state-of-the-art CAD (3)

Architecture
e Netlist of connections among components
e Capabilities of each component

e Cost: performance metrics of each component and
communication medium

o SW
- UML, ADL, ECLIPSE



Leveraging state-of-the-art CAD

Architecture (2)

e HW
- TLM

« Simulation Engine (SystemC): need for a library of models
and of interconnect, each with cost metrics

« Communication-based-design: NoC to verify whether the
behavior of two components is preserved when connected
together = assume-guarantee approach



Leveraging state-of-the-art CAD

Mapping
e Scheduling
e Giotto: enforce common semantic language

e Automatic Optimization

« Common mathematical description between functionality
and platform (boolean algebra)

 Look for primitives (NAND2)

« Covering problem



P — %

Metropolis

Support different MoC > Metamodel (MMM)
Support different layers of abstraction = PBD

e Functional model

e Library
Evaluation of the cost of a mapped design
Functionality + Constraint driven mapping



e

_ p—
Metropolis Meta Model (MMM)

Support different MoC ->more language for different
applications
Functionality description

e Processes, communication media, netlists (refinement)

e Constraint specification

* Set of executions, each consisting of events (call for services)

Architectural model

e Scheduled Netlist: computational and communication
components

e Scheduling Netlist: performance metrics (quantity
managers)



P — s
MMM (cont.)
Mapping

e Synchronize components to coordinate their interfaces

e The system does what is modeled in the functional
model according to the constraints given by the
architectural model.

Costraints

e Define quantities that are not explicit in the MoC
semantic (e.g. time)

e Propagation

 Specify constraints or check for validity in a specific
implementation (LOC)



y

Tools

Parser
e Check the MMM and creates an abstract syntax tree
Simulator

» Enforce LTL and LOC (prevent or check illegal
behaviors)

Refinement verification tool
e Check whether model B is a refinement of model A



/ T o AR A

Methodology

Design flow

e Specifty behaviors

* Execute abstractions by using constraints

e Use best synthesis algorithm for a given domain
Common semantic background

e Plug-in different subsystems

e Incorporate external tools



P — %

JPEG Encoder

Map the encoding algorithm on Intel MXP5800
architecture
Step 1:
e Behavioral Model of the algorithm with a specific
semantic

e Describe the architecture in terms of processes, media
and quantity managers

« running time is the main concern = global time manager



P
JPEG Encoder (cont.)

Step 2: Mapping
e Synchronization constraints among read, write and
execution + memory allocation and register location

e Execution order between different tasks



