
Verification of Quantitative
Properties of Embedded
Systems:
Execution Time Analysis

Sanjit A. Seshia
UC Berkeley

EECS 249

Fall 2009

EECS 249, UC Berkeley: 2

Source

Material in this lecture is drawn from the following
sources:

� “The Worst-Case Execution Time Problem – Overview
of Methods and Survey of Tools”, R. Wilhelm et al., ACM
Transactions on Embedded Computing Systems, 2007.

� Chapter 9 of “Computer Systems: A Programmer's
Perspective”, R. E. Bryant and D. R. O’Hallaron,
Prentice-Hall, 2002.

� “Performance Analysis of Real-Time Embedded
Software,” Y-T. Li and S. Malik, Kluwer Academic Pub.,
1999.

�“Game-Theoretic Timing Analysis”, S. A. Seshia and A.
Rakhlin, ICCAD 2008

• Extended version is Technical Report EECS-2009-130

EECS 249, UC Berkeley: 3

Worst-Case Execution Time (WCET) of a Task

The longest time taken by a software task to execute

� Function of input data and environment conditions

BCET = Best-Case Execution Time

(shortest time taken by the task to execute)

EECS 249, UC Berkeley: 4

Worst-Case Execution Time (WCET) & BCET

Figure from R.Wilhelm et al., ACM Trans. Embed. Comput. Sys, 2007.

EECS 249, UC Berkeley: 5

The WCET Problem

Given

� the code for a software task

� the platform (OS + hardware) that it will run on

Determine the WCET of the task.

Why is this problem important?

Can the WCET always be found?

The WCET is central in the design of RT Systems:

Needed for Correctness (does the task finish in time?) and

Performance (find optimal schedule for tasks)

In general, no, because the problem is undecidable.

EECS 249, UC Berkeley: 6

Typical WCET Problem Setting

Task executes within an infinite loop

while(1) {

read_sensors();

compute();

write_to_actuators();

}

This code typically has:

� loops with finite bounds

� no recursion

Additional assumptions:

� runs uninterrupted

� single-threaded

EECS 249, UC Berkeley: 7

Outline of the Lecture

� How to measure execution time

� Current Approaches to Execution Time Analysis

� Limitations

� The GameTime approach

� Demo of some tools

EECS 249, UC Berkeley: 8

How to Measure Run-Time

Several techniques, with varying accuracy:

� Instrument code to sample CPU cycle counter

� relatively easy to do, read processor documentation for
assembly instruction

� Use cycle-accurate simulator for processor

� useful when hardware is not available/ready

� Use Logic Analyzer

� non-intrusive measurement, more accurate

� …

EECS 249, UC Berkeley: 9

Cycle Counters

Most modern systems have built in registers that are
incremented every clock cycle

Special assembly code instruction to access

On Intel 32-bit x86 machines:

� 64 bit counter

� RDTSC instruction sets %edx to high order 32-bits, %eax

to low order 32-bits

Wrap-around time for 2 GHz machine

� Low order 32-bits every 2.1 seconds

� High order 64 bits every 293 years

[slide due to R. E. Bryant and D. R. O’Hallaron]

EECS 249, UC Berkeley: 10

Measuring with Cycle Counter

Idea

� Get current value of cycle counter

• store as pair of unsigned’s cyc_hi and cyc_lo

� Compute something

� Get new value of cycle counter

� Perform double precision subtraction to get elapsed cycles

/* Keep track of most recent reading of cycle counter */

static unsigned cyc_hi = 0;

static unsigned cyc_lo = 0;

void start_counter()

{

/* Get current value of cycle counter */

access_counter(&cyc_hi, &cyc_lo);

}

[slide due to R. E. Bryant and D. R. O’Hallaron]

EECS 249, UC Berkeley: 11

Accessing the Cycle Counter

� GCC allows inline assembly code with mechanism for
matching registers with program variables

� Code only works on x86 machine compiling with GCC

�Emit assembly with rdtsc and two movl instructions

void access_counter(unsigned *hi, unsigned *lo)

{

/* Get cycle counter */

asm("rdtsc; movl %%edx,%0; movl %%eax,%1"

: "=r" (*hi), "=r" (*lo)

: /* No input */

: "%edx", "%eax");

}

[slide due to R. E. Bryant and D. R. O’Hallaron]

EECS 249, UC Berkeley: 12

Completing Measurement

� Get new value of cycle counter

� Perform double precision subtraction to get elapsed
cycles

� Express as double to avoid overflow problems

double get_counter()

{

unsigned ncyc_hi, ncyc_lo

unsigned hi, lo, borrow;

/* Get cycle counter */

access_counter(&ncyc_hi, &ncyc_lo);

/* Do double precision subtraction */

lo = ncyc_lo - cyc_lo;

borrow = lo > ncyc_lo;

hi = ncyc_hi - cyc_hi - borrow;

return (double) hi * (1 << 30) * 4 + lo;

}

[slide due to R. E. Bryant and D. R. O’Hallaron]

EECS 249, UC Berkeley: 13

Timing With Cycle Counter

Time Function P

� First attempt: Simply count cycles for one execution of P

� What can go wrong here?

double tcycles;

start_counter();

P();

tcycles = get_counter();

[slide due to R. E. Bryant and D. R. O’Hallaron]

EECS 249, UC Berkeley: 14

Measurement Pitfalls

� Instrumentation incurs small overhead

� measure long enough code sequence to compensate

� Cache effects can skew measurements

� “warm up” the cache before making measurement

� Multi-tasking effects: counter keeps going even when the
task of interest is inactive

� take multiple measurements and pick “k best” (cluster)

� Multicores/hyperthreading

� Need to ensure that task is ‘locked’ to a single core

� Power management effects

� CPU speed might change, timer could get reset during
hibernation

EECS 249, UC Berkeley: 15

Outline of the Lecture

� How to measure execution time

� Current Approaches to Execution Time Analysis

� Limitations

� The GameTime approach

� Demo of some tools

EECS 249, UC Berkeley: 16

Components of Execution Time Analysis

� Program path (Control flow) analysis

�Want to find longest path through the program

�Identify feasible paths through the program

� Find loop bounds

� Identify dependencies amongst different code fragments

� Processor behavior analysis

� For small code fragments (basic blocks), generate
bounds on run-times on the platform

� Model details of architecture, including cache behavior,
pipeline stalls, branch prediction, etc.

� Outputs of both analyses feed into each other

EECS 249, UC Berkeley: 17

Program Path Analysis: Path Explosion

for (Outer = 0; Outer < MAXSIZE; Outer++) {

/* MAXSIZE = 100 */

for (Inner = 0; Inner < MAXSIZE; Inner++) {

if (Array[Outer][Inner] >= 0) {

Ptotal += Array[Outer][Inner];

Pcnt++;

} else {

Ntotal += Array[Outer][Inner];

Ncnt++;

}

Postotal = Ptotal;

Poscnt = Pcnt;

Negtotal = Ntotal;

Negcnt = Ncnt;

}

Example cnt.c from WCET benchmarks, Mälardalen Univ.

EECS 249, UC Berkeley: 18

Program Path Analysis: Overall Approach

� Construct Control-Flow Graph (CFG) for the task

� Nodes represent Basic Blocks of the task

� Edges represent flow of control (jumps, branches, calls,
…)

� The problem is to identify the longest path in the CFG

� Note: CFG can have loops, so need to infer loop bounds
and unroll them

� This gives us a directed acyclic graph (DAG). How do
we find the longest path in this DAG?

EECS 249, UC Berkeley: 19

Example

N = 10;

q = 0;

while(q < N)

q++;

q = r;

B1:

N = 10;

q = 0;

B2:

while(q<N)

B4:

q = r;

B3:

q++;

x1

x2

x4 x3

d1

d2

d3

d4

d5

d6

xi � # times Bi is executed

dj � # times edge is executed

Example due to Y.T. Li and S. Malik

EECS 249, UC Berkeley: 20

Program Path Analysis: Dependencies

#define CLIMB_MAX 1.0

...

void altitude_pid_run(void) {

float err = estimator_z - desired_altitude;

desired_climb = pre_climb + altitude_pgain * err;

if (desired_climb < -CLIMB_MAX)

desired_climb = -CLIMB_MAX;

if (desired_climb > CLIMB_MAX)

desired_climb = CLIMB_MAX;

}

Example from “PapaBench” UAV autopilot code, IRIT, France

Only one of these statements is executed

EECS 249, UC Berkeley: 21

Example, Revisited

B1:

N = 10;

q = 0;

B2:

while(q<N)

B4:

q = r;

B3:

q++;

x1

x2

x4 x3

d1

d2

d3

d4

d5

d6

xi � # times Bi is executed

dj � # times edge is executed

Ci � measured time taken by Bi

Want to

maximize ∑i Ci xi

subject to constraints

x1 = d1 = d2

x2 = d2+d4 = d3+d5

x3 = d3 = d4 = 10

x4 = d5 = d6

Example due to Y.T. Li and S. Malik

EECS 249, UC Berkeley: 22

Timing Analysis and Compositionality

Consider a task T with two parts A and B composed in
sequence: T = A; B

Is WCET(T) = WCET(A) + WCET(B) ?

NO!

WCETs cannot simply be composed �

� Due to dependencies “through environment”

EECS 249, UC Berkeley: 23

Timing Anomalies

[from R.Wilhelm et al., ACM Trans. Embed. Comput. Sys, 2007.]

Scenario 1: Instr A hits in I-cache, triggers branch
speculation, and prefetch of instructions, then predicted
branch is wrong, so Instr B must execute, but it’s been
evicted from I-cache, execution of B delayed.

Scenario 2: Instr A misses in I-cache, no branch prediction,
then B hits in I-cache, B completes.

I-Cache Hit

I-Cache Miss

A B (I$ miss due to pre-fetch)

BA (miss in I$)

pre-fetch A

B

Branch evaluated

EECS 249, UC Berkeley: 24

Outline of the Lecture

� How to measure execution time

� Current Approaches to Execution Time Analysis

� Limitations

� The GameTime approach

� Demo of some tools

– 25 –

Current WCET Methods: LimitationsCurrent WCET Methods: Limitations

�� Big Limitation:Big Limitation: Environment (Platform) ModelingEnvironment (Platform) Modeling

–– WhereWhere’’s my platform? Tools only work for selected s my platform? Tools only work for selected
processors/compilers for which detailed models are processors/compilers for which detailed models are
handhand--constructed constructed

–– Inaccurate & Tedious: platforms are becoming more Inaccurate & Tedious: platforms are becoming more
complex, modeling takes months of human effortcomplex, modeling takes months of human effort

–– Brittle, Brittle, notnot portable: small changes to the platform portable: small changes to the platform
can require completely recan require completely re--doing the analysisdoing the analysis

–– See e.g., [E. A. Lee, TRSee e.g., [E. A. Lee, TR’’07], [07], [KirnerKirner and and PuschnerPuschner, , ISORCISORC 2008]2008]

– 26 –

Beyond WCET:
Other Execution Time Problems
Beyond WCET:
Other Execution Time Problems

�� AverageAverage--case analysiscase analysis

–– Given any program path (input), can we predict Given any program path (input), can we predict
how long the program will take to execute, on how long the program will take to execute, on
average?average?

�� ProfileProfile

–– Plot histogram of execution times of a programPlot histogram of execution times of a program

–– Find top 10% of longest program pathsFind top 10% of longest program paths

��

– 27 –

Two Dimensions of the
WCET Estimation Problem
Two Dimensions of the
WCET Estimation Problem

Path

State

Worst-case program path
with

Worst-case env. state

Challenge:
Exponentially-many
program paths
(in worst case)

Challenge:
How to find the worst-case state of the platform (environment)?
• Need accurate model of platform
• Need to find worst-case state

– 28 –

Classification of Current ToolsClassification of Current Tools

Static AnalysisStatic Analysis

�� Abstract interpretation Abstract interpretation
generates invariantsgenerates invariants to to
capture capture
–– worstworst--case environment case environment

states at control points states at control points

–– loop boundsloop bounds

�� Find Find time bounds on time bounds on
basic blocksbasic blocks (straight(straight--line line
program fragments) from program fragments) from
worstworst--case statecase state

�� Use Use implicit path implicit path
enumeration (IPET)enumeration (IPET) based based
on integer programming on integer programming
to compute WCETto compute WCET

�� A very effective approach A very effective approach
if an accurate platform if an accurate platform
model is availablemodel is available

MeasurementMeasurement--BasedBased

�� Run testsRun tests

–– Test suite generated Test suite generated
randomly or randomly or
heuristically, e.g., using heuristically, e.g., using
genetic algorithms, or genetic algorithms, or
via systematic methods via systematic methods
such as model checkingsuch as model checking

�� Measure execution timeMeasure execution time

�� Compute maximumCompute maximum over all over all
observed timesobserved times

�� Under certain conditions, Under certain conditions,
this could be done this could be done
compositionally, but in compositionally, but in
general need endgeneral need end--toto--end end
measurementsmeasurements

– 29 –

Some WCET Estimation ToolsSome WCET Estimation Tools

[R.Wilhelm et al., ACM Trans. Embed. Comput. Sys, 2007.]

– 30 –

Issues with Static Methods:
Platform Modeling

Issues with Static Methods:
Platform Modeling

Program

Platform

OS / other programs

Processor

Network

Sensors/
Actuators

Problems:
• Time-consuming: several
months to model a processor
• Inaccurate: may not model
all of the platform

PROCESSOR
MODEL

– 31 –

Issues with Measurement-Based ToolsIssues with Measurement-Based Tools

�� How good is the test suite?How good is the test suite?

–– Good path coverage?Good path coverage?

�� Does the worstDoes the worst--case platform behavior occur?case platform behavior occur?

�� Is the measurement accurate?Is the measurement accurate?

– 32 –

Outline of the LectureOutline of the Lecture

�� How to measure execution timeHow to measure execution time

�� Current Approaches to Execution Time AnalysisCurrent Approaches to Execution Time Analysis

�� LimitationsLimitations

�� The The GameTimeGameTime approach (quick overview)approach (quick overview)

�� Demo of some toolsDemo of some tools

– 33 –

The GameTime Approach: ContributionsThe GameTime Approach: Contributions

�� Model the estimation problem as a GameModel the estimation problem as a Game

–– Tool vs. PlatformTool vs. Platform

–– Robust to changes in the platformRobust to changes in the platform

�� MeasurementMeasurement--basedbased

–– Perform Perform endend--toto--endend measurements of execution time measurements of execution time
of selected (linearly many) paths on target platformof selected (linearly many) paths on target platform

�� Learn Environment ModelLearn Environment Model

–– Learn a (graph) model of platformLearn a (graph) model of platform’’s behaviors behavior

�� Online algorithm: Online algorithm: GameTimeGameTime

–– Theoretical guarantee: can find WCET with arbitrarily Theoretical guarantee: can find WCET with arbitrarily
high probability under some assumptionshigh probability under some assumptions

�� Leverages advances in Leverages advances in ““Verification EnginesVerification Engines””

–– Satisfiability modulo theories (SMT) solversSatisfiability modulo theories (SMT) solvers

[Seshia & Rakhlin, ICCAD ’08]

– 34 –

Intuition for Our ApproachIntuition for Our Approach

Path

State

Worst-case program path
with

Worst-case env. state

Controlled by “us”
(the estimation tool)

Controlled by the environment
(platform)

Game:
Tool
vs.

Platform

– 35 –

Components of the GameComponents of the Game

�� Strategies (moves) of the Tool Strategies (moves) of the Tool

�� Strategies (moves) of the Platform (environment)Strategies (moves) of the Platform (environment)

�� Winning condition of the GameWinning condition of the Game

– 36 –

Program Model: Unrolled CFGProgram Model: Unrolled CFG

flag==1

flag=1; *x++;

flag==1

flag==1

flag=1; *x++;

CFG for program
containing loop
with bound = 1

CFG unrolled
to a DAG

Model the program by
its Control-Flow Graph
(CFG)
• Unroll loops and
recursive function
calls, inline functions
to get a Directed
Acyclic Graph (DAG)

• Each source-sink
path is a program
execution that the
tool can generate a
test case for

– 37 –

Tool strategy:
Paths in the control flow graph

Tool selects:
Inputs that drive the program
down the chosen path

Tool Strategies = PathsTool Strategies = Paths

– 38 –

A Path is a Vector x ∈∈∈∈ {0,1}mA Path is a Vector x ∈∈∈∈ {0,1}m

1

1

1

1

1

1

(m = #edges)

Insight:
Only need to sample

a Basis
of the space of paths

– 39 –

Platform Model Platform Model

Weights on edges of unrolled CFG
&

Path-specific perturbation

What we want to model:
• Impact of the platform on
program execution time

• Lengths of all program paths

Models path-dependent timing

Models path-independent timing
2

1

1 3

1

1

5 � 1

– 40 –

Platform’s StrategiesPlatform’s Strategies

Weights on edges of unrolled CFG
&

Path-specific perturbation

w ∈∈∈∈ RRRRm

ππππ ∈∈∈∈ RRRRm

– 41 –

The Game & Winning ConditionThe Game & Winning Condition

Played over several rounds Played over several rounds t = 1, 2, 3, t = 1, 2, 3, ……, , ττττττττ

Tool
picks xt

CFG
1

Platform
picks wt

5

7

11

At each round t:

Tool observes lt = xt ···· (wt + ππππt)

Platform picks ππππt

(-1, -1, -1, -1)

(5+7+1+11) - 4 = 20

At round At round ττττττττ : Tool predicts longest path : Tool predicts longest path x*x*
ττττττττ

� Tool wins if its prediction is correct

– 42 –

Summary of Experimental ResultsSummary of Experimental Results

�� GameTimeGameTime is Efficientis Efficient

–– 7 x 107 x 101616 total paths, vs. 183 basis pathstotal paths, vs. 183 basis paths

�� Sampling basis paths tells us about longer paths Sampling basis paths tells us about longer paths
we do not samplewe do not sample

–– Found paths 25% longer than sampled basisFound paths 25% longer than sampled basis

�� GameTimeGameTime can accurately estimate the timing can accurately estimate the timing
profile with few measurementsprofile with few measurements

�� GameTimeGameTime does better than Random Testingdoes better than Random Testing

–– Found estimates twice as largeFound estimates twice as large

�� GameTimeGameTime can even find larger WCET estimatescan even find larger WCET estimates
than conservative WCET estimation toolsthan conservative WCET estimation tools

EECS 249, UC Berkeley: 43

Open Problems

� Architectures are getting much more complex.

� Can we create processor behavior models without the
“agonizing pain”?

� Can we change the architecture to make timing analysis
easier? [See PRET machine project by Prof. Lee and
colleagues]

� Analysis methods are “Brittle” – small changes to code
and/or architecture can require completely re-doing the
WCET computation

�Use robust techniques like GameTime that learn about
processor/platform behavior

�Need to deal with concurrency, e.g., interrupts

� Need more reliable ways to measure execution time

