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Outline 

• Platforms: a historical perspective 

• Platform-based Design 

• Three examples 

– Pico-radio network 

– Unmanned Helicopter controller 

– Engine Controller 
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Platform-Based Design Definitions: 
Three Perspectives 
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System Definition 

Ericsson's Internet Services Platform is a new tool for helping 
CDMA operators and service providers deploy Mobile Internet 

applications rapidly, efficiently and cost-effectively 
Source: Ericsson press release 
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Platform Architectures: Philips Nexperia 
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Platform Types 

“Communication Centric Platform” 
–  SONIC, Palmchip, Arteris, ARM 

–  Concentrates on communication 
–  Delivers communication framework plus peripherals 

–  Limits the modeling efforts 

SiliconBackplane™ 

(patented) {
SiliconBackplane 
Agent™ 

Open Core 
Protocol™ 

MultiChip 
Backplane™ 

DSP MPEG CPU DMA 

C MEM I O 

SONICs Architecture 

Source: G. Martin 
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Platform-types: 

IBM 
PowerPC 

7/00 Mindspeed 
SkyRail 

gigabit serial I/O 
9/00 

RocketChips 
mixed-signal IP 

acquisition 
10/00 

Wind River 
O/S 
3/01 

Virtex-II Pro 
production 

3/02 

“Highly-Programmable Platform (Virtex-II Pro)” 

Xilinx 
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Quote from Tully of Dataquest 2002 

“This scenario places a premium on the flexibility and 
extensibility of the hardware platform. And it discourages 
system architects from locking differential advantages 
into hardware. Hence, the industry will gradually swing 
away from its tradition of starting a new SoC design for 
each new application, instead adapting platform chips to 
cover new opportunities.” 
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Outline 

• Platforms: a historical perspective 

• Platform-based Design 

• Three examples 

– Pico-radio network 

– Unmanned Helicopter controller 

– Engine Controller 
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Designing Platforms: the IC Company View 
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Using Platforms: the System Company View 

11 

Architectural Space 

Ideal Application Platform 

Application Space 
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Principles of Platform methodology: 
Meet-in-the-Middle 

•  Top-Down: 
– Define a set of abstraction layers 

–  From specifications at a given level, select a solution 
(controls, components) in terms of components (Platforms) of 
the following layer and propagate constraints 

•  Bottom-Up: 
–  Platform components (e.g., micro-controller, RTOS, 

communication primitives) at a given level are abstracted to a 
higher level by their functionality and a set of parameters that 
help guiding the solution selection process. The selection 
process is equivalent to a covering problem if a common 
semantic domain is used. 
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The Platform Concept  

• Meet-in-the-Middle 
Structured methodology  
that  limits the space of 
exploration, yet achieves 
good results in limited time 

• A formal mechanism for 
identifying the most critical 
hand-off  points in the  
design chain 

• A method for design re-use 
at all abstraction levels 

• An intellectual framework for 
the complete electronic 
design process! 

Texas Instruments 
OMAP 
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Definitions 

• A platform is defined to be a library of components that 
can be assembled to generate a design at that level of 
abstraction. 

• Each element of the library has a characterization in 
terms of performance parameters together with the 
functionality it can support. (Quantities) 
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Observation 

• The platform is a parametrization of the space of possible 
solutions.  

• Not all elements in the library are pre-existing 
components. Some may be “place holders" to indicate 
the flexibility of “customizing" a part of the design that is 
offered to the designer. For this part, we do not have a 
complete characterization of the element since its 
performance parameters depend upon a lower level of 
abstraction. 

15 
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Platform Instance 

• A platform instance is a set of components that are 
selected from the library (the platform) and whose 
parameters are set. In the case of a virtual component, 
the parameters are set by the requirements rather than by 
the implementation. In this case, they have to be 
considered as constraints for the next level of refinement. 

16 
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Integrated Solutions Based On The EXREAL PlatformTM



   We provide integrated solutions based on LSI development 
platform, application platform and partnerships


Integrated Solution Platform 
Integrated solutions including applied application (including 
collaboration with users) 

Deployment to platform for each application 
Application Platform 

Flexible  
Scalability High Portability Heterogeneous 

Structure 
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Platform-Based Design 

•  Platform: library of resources defining an abstraction layer 
–  Resources do contain virtual components i.e., place holders that will 

be customized in the implementation phase to meet constraints 

–  Very important resources are interconnections and communication 
protocols 
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Application Instance 
Platform Instance 
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Fractal Nature of Design 
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Platform-Based Implementation 
• Platforms eliminate large loop iterations for affordable design 

• Restrict design space via new forms of regularity and structure that 
surrender some design potential for lower cost and first-pass success 

• The number and location of intermediate platforms is the essence of 
platform-based design 

Silicon Implementation 

Application 

Silicon Implementation 

Application 
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Platform-Based Design Process 
• Different situations will employ different intermediate platforms, hence 

different layers of regularity and design-space constraints 

• Critical step is defining intermediate platforms to support:   

–  Predictability: abstraction to facilitate higher-level optimization 

–  Verifiability: ability to ensure correctness 

Architecture 

Logic Regularity 

Component Regularity and Reuse 

Regular Fabrics 

Geometrical Regularity               Silicon Implementation 
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Implementation Process 
• Skipping platforms can potentially produce a superior design by enlarging 

design space – if design-time and product volume ($) permits 

• However, even for a large-step-across-platform flow there is a benefit to 
having a lower-bound on what is achievable from predictable flow 

Geometrical Regularity               Silicon Implementation 

Architecture 

Logic Regularity 

Component Regularity and Reuse 

Regular Fabrics 
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Tight Lower Bounds 

• The larger the step across platforms, the more difficult to: predict 
performance, optimize at system level, and provide a tight lower 
bound  

• Design space may actually be smaller than with smaller steps since it 
is more difficult to explore and restriction on search impedes complete 
design space exploration 

• The predictions/abstractions may be so wrong that design 
optimizations are misguided and the lower bounds are incorrect! 
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Design Flow 

• Theory: 

–  Initial intent captured with declarative notation 

– Map into a set of interconnected component: 

–  Each component can be declarative or operational 

–  Interconnect is operational: describes how components interact 

–  Repeat on each component until implementation is reached 

– Choice of model of computations for component and interaction is 
already a design step! 

– Meta-model in Metropolis (operational) and Trace Algebras 
(denotational) are used to capture this process and make it rigorous 
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Consequences 
•  There is no difference between HW and SW. Decision comes later. 

•  HW/SW implementation depend on choice of component at the 
architecture platform level. 

•  Function/Architecture co-design happens at all levels of 
abstractions  

–  Each platform is an “architecture” since it is a library of usable 
components and interconnects. It can be designed independently of a 
particular behavior. 

–  Usable components can be considered as “containers”, i.e., they can 
support a set of behaviors. 

–   Mapping chooses one such behavior. A Platform Instance is a mapped 
behavior onto a platform. 

–  A fixed architecture with a programmable processor is a platform in this 
sense. A processor is indeed a collection of possible bahaviours. 

–  A SW implementation on a fixed architecture is a platform instance. 
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A discipline for Platform-based Design 
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Outline 

• Platforms: a historical perspective 

• Platform-based Design 

• Three examples 

– Pico-radio network 

– Unmanned Helicopter controller 

– Engine Controller 
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A Hierarchical Application of the Paradigm: 
The Fractal Nature of Design! 
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Source: Jan Rabaey 
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Network Platforms  

•  Network Platform Instance: set of resources (links and protocols) 
that provide Communication Services 

•  Network Platform API: set of Communication Services 
•  Communication Service: transfer of messages between ports 

•  Event trace defines order of send/receive methods 
•  Quality of service 

node 

link 

port 

NPI I/O port 

NP components: 
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Network Platforms 

node 

link 

port 

NPI I/O port 

NP components: 

Network Platform Instance 

Communication 
Services: 
-  CS1:  
   Lossy Broadcast 
   Error rate: 33% 
   Max Delay: 30 ms 
-  CS2:  
   … 

Network Platform API 

Performance 
Estimates 

Constraints 
Budgeting 
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Network Platforms API 

es1, es2, es3 er11, er12 

er21, er22, er23 

event trace: 

•  NP API: set of Communication Services (CS) 

•  CS: message transfer defined by ports, messages, events 
(modeling send/receive methods), event trace 

•  Example 
•  CS: lossy broadcast transfer of messages m1, m2, m3 
•  Quality of Service (platform parameters): 

•   Losses: 1 ( m3) 
•   Error rate: 33%   
•  In-order delivery  

•   D(m3) = t(er23) – t (es3) = 30 ms 
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Picoradio Network Platforms 
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Synchronous 
Platform Based 
UAV Design 

Platform-
Based Design 

I 

UAV System 

II 

Synchronous 
Embedded 
Control 

III 

Platform-Based Design of Unmanned 
Aerial Vehicles 
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INS 

R-50 Hovering 

•  Goal: basic autonomous flight 
•  Need: UAV with allowable payload 
•  Need: combination of GPS and 

Inertial Navigation System (INS) 
•  GPS (senses using triangulation) 

•  Outputs accurate position data 
•  Available at low rate & has jamming 

•  INS (senses using accelerometer and 
rotation sensor) 
•  Outputs estimated position with 

unbounded drift over time 
•  Available at high rate 

•  Fusion of GPS & INS provides needed 
high rate and accuracy 

GPS Card 

GPS Antenna 

II. UAV System: Sensor Overview 
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d d 
GPS INS 

Software Request Software 

GPS INS 

Pull Configuration 

Shared 
memory 

Push Configuration 

•  Sensors may differ in: 
•  Data formats, initialization schemes (usually requiring 

some bit level coding), rates, accuracies, data 
communication schemes, and even data types 

•  Differing Communication schemes requires the most 
custom written code per sensor  

 II. UAV System: Sensor Configurations 
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III.  Synchronous Control 

•  Advantages of time-triggered framework:  
–  Allows for composability and validation 

–  These are important properties for safety critical systems like the 
UAV controller 

–  Timing guarantees ensure no jitter 

•  Disadvantages: 
–  Bounded delay is introduced  

–  Stale data will be used by the controller 

–  Implementation and system integration become more difficult 

•  Platform design allows for time-triggered framework for the UAV 
controller 
–  Use Giotto as a middleware to ease implementation: 

–  provides real-time guarantees for control blocks 

–  handles all processing resources  

–  Handles all I/O procedures  
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Platform Based Design for UAVs 

Sensors: INS, GPS 
Actuators: Servo Interface 
Vehicles: Yamaha R-50/R-

Max 

Control Applications 
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•  Goal 

–  Abstract details of 
sensors, actuators, and 
vehicle hardware from 
control applications 
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•   How? 
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Platform 



EE249Fall08 
39 

Platform Based Design for UAVs 
•  Device Platform 

–  Isolates details of sensor/
actuators from embedded 
control programs 

–  Communicates with each 
sensor/actuator according to 
its own data format, context, 
and timing requirements 

–  Presents an API to embedded 
control programs for 
accessing sensors/actuators 

•  Language Platform 
–  Provides an environment in 

which synchronous control 
programs can be scheduled 
and run 

–  Assumes the use of generic 
data formats for sensors/
actuators made possible by 
the Device Platform 

Sensors: INS, GPS 
Actuators: Servo Interface 
Vehicles: Yamaha R-50/R-

Max 

Synchronous 
Embedded 

Programming 
(Giotto) 

Control Applications 
(Matlab) 

Application Space 
Architectural 

Space 

Virtual Avionics 
Platform 

Device 
Platform 

Language Platform 



EE249Fall08 
40 

Power Train Design 
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The Design Problem 

Given a set of specifications from a car manufacturer,  

–  Find a set of algorithm to control the power train 

–  Implement the algorithms on a mixed mechanical-electrical 
architecture (microprocessors, DSPs, ASICs, various sensors and 
actuators) 
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Power-train control system design 

•   Specifications given at a high level of abstraction 

•   Control algorithms design 

•   Mapping to different architectures using performance 
estimation techniques and automatic code generation from 
models 

•   Mechanical/Electronic architecture selected among a set of 
candidates 
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HW/SW implementation architecture 

•  a set of possible hw/sw implementations is given 
by 
–   M different hw/sw implementation architectures 
–  for each hw/sw implementation architecture m ∈{1,...,M}, 

•  a set of hw/sw implementation parameters z 
–  e.g. CPU clock, task priorities, hardware frequency, etc. 

•  an admissible set XZ of values for z 
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The classical and the ideal design approach 

•  Classical approach (decoupled design) 

–   controller structure and parameters (r ∈ R, c ∈ XC)  

–  are selected in order to satisfy system specifications 

–   implementation architecture and parameters (m ∈ M, z ∈ XZ) 

–  are selected in order to minimize implementation cost 

–  if system specifications are not met, the design cycle is repeated 

•  Ideal approach 

–   both controller and architecture options (r, c, m, z) are selected at the same 
time to  

–  minimize implementation cost 

–  satisfy system specifications 

–  too complex!! 
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Implementation abstraction layer 
•  we introduce an implementation abstraction layer 

–  which exposes ONLY the implementation non-idealities that affect the 
performance of the controlled plant, e.g. 

–  control loop delay 

–  quantization error 

–  sample and hold error 

–  computation imprecision 

•  at the implementation abstraction layer, platform instances are 
described by 

–   S different implementation architectures 

–  for each implementation architecture s ∈{1,...,S}, 

–  a set of implementation parameters p 
–  e.g. latency, quantization interval, computation errors, etc. 

–  an admissible set XP of values for p 
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Effects of controller implementation in the 
controlled plant performance 

d 
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•  modeling of implementation non-idealities: 

–   Δu, Δr, Δw : time-domain perturbations 

–  control loop delays, sample & hold , etc. 

–   nu , nr , nw :value-domain perturbations 

–  quantization error, computation imprecision, etc. 
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Application effort 

First Application: 10 months 

Successive Application: 4 months 


