
EE249Fall08
1

Part2: Platform-based Design

P
Platform

Design-Space
Export

Platform
Mapping

Architectural Space

Application Space
Application Instance

Platform Instance

System (Software + Hardware)
Platform

EE249Fall08
2

Outline

• Platforms: a historical perspective

• Platform-based Design

• Three examples

– Pico-radio network

– Unmanned Helicopter controller

– Engine Controller

EE249Fall08
3

Platform-Based Design Definitions:
Three Perspectives

System
Designers

Semiconductor

Academic
(ASV)

EE249Fall08
4

System Definition

Ericsson's Internet Services Platform is a new tool for helping
CDMA operators and service providers deploy Mobile Internet

applications rapidly, efficiently and cost-effectively
Source: Ericsson press release

EE249Fall08
5

Platform Architectures: Philips Nexperia

Middleware
JavaTV, TVPAK, OpenTV,
MHP/Java, proprietary ...

Applications

Nexperia Hardware

Streaming and
 Platform Software K

er
ne

l:
pS

O
S

, V
xW

or
ks

, W
in

-C
E

TM-xxxx
D$
I$

TriMedia CPU

DEVICE IP BLOCK

DEVICE IP BLOCK

DEVICE IP BLOCK

.

.

.

DVP SYSTEM SILICON

DEVICE IP BLOCK

PRxxxx
D$
I$

MIPS CPU

DEVICE IP BLOCK

DEVICE IP BLOCK

PI
 B

U
S

SDRAM

MMI

D
VP

 M
EM

O
RY

 B
U

S

PI
 B

U
S

TriMedia™ MIPS™

Source: Philips

Hardware Software

EE249Fall08
6

Platform Types

“Communication Centric Platform”
–  SONIC, Palmchip, Arteris, ARM

–  Concentrates on communication
–  Delivers communication framework plus peripherals

–  Limits the modeling efforts

SiliconBackplane™

(patented) {
SiliconBackplane
Agent™

Open Core
Protocol™

MultiChip
Backplane™

DSP MPEG CPU DMA

C MEM I O

SONICs Architecture

Source: G. Martin

EE249Fall08
7

Platform-types:

IBM
PowerPC

7/00 Mindspeed
SkyRail

gigabit serial I/O
9/00

RocketChips
mixed-signal IP

acquisition
10/00

Wind River
O/S
3/01

Virtex-II Pro
production

3/02

“Highly-Programmable Platform (Virtex-II Pro)”

Xilinx

EE249Fall08
8

Quote from Tully of Dataquest 2002

“This scenario places a premium on the flexibility and
extensibility of the hardware platform. And it discourages
system architects from locking differential advantages
into hardware. Hence, the industry will gradually swing
away from its tradition of starting a new SoC design for
each new application, instead adapting platform chips to
cover new opportunities.”

EE249Fall08
9

Outline

• Platforms: a historical perspective

• Platform-based Design

• Three examples

– Pico-radio network

– Unmanned Helicopter controller

– Engine Controller

Copyright: A. Sangiovanni-Vincentelli

Designing Platforms: the IC Company View

10

Application Space

e

Ideal Architectural Platform

Copyright: A. Sangiovanni-Vincentelli

Using Platforms: the System Company View

11

Architectural Space

Ideal Application Platform

Application Space

EE249Fall08
12

Principles of Platform methodology:
Meet-in-the-Middle

•  Top-Down:
– Define a set of abstraction layers

–  From specifications at a given level, select a solution
(controls, components) in terms of components (Platforms) of
the following layer and propagate constraints

•  Bottom-Up:
–  Platform components (e.g., micro-controller, RTOS,

communication primitives) at a given level are abstracted to a
higher level by their functionality and a set of parameters that
help guiding the solution selection process. The selection
process is equivalent to a covering problem if a common
semantic domain is used.

Copyright: A. Sangiovanni-Vincentelli

13

The Platform Concept

• Meet-in-the-Middle
Structured methodology
that limits the space of
exploration, yet achieves
good results in limited time

• A formal mechanism for
identifying the most critical
hand-off points in the
design chain

• A method for design re-use
at all abstraction levels

• An intellectual framework for
the complete electronic
design process!

Texas Instruments
OMAP

Copyright: A. Sangiovanni-Vincentelli

Definitions

• A platform is defined to be a library of components that
can be assembled to generate a design at that level of
abstraction.

• Each element of the library has a characterization in
terms of performance parameters together with the
functionality it can support. (Quantities)

Copyright: A. Sangiovanni-Vincentelli

Observation

• The platform is a parametrization of the space of possible
solutions.

• Not all elements in the library are pre-existing
components. Some may be “place holders" to indicate
the flexibility of “customizing" a part of the design that is
offered to the designer. For this part, we do not have a
complete characterization of the element since its
performance parameters depend upon a lower level of
abstraction.

15

Copyright: A. Sangiovanni-Vincentelli

Platform Instance

• A platform instance is a set of components that are
selected from the library (the platform) and whose
parameters are set. In the case of a virtual component,
the parameters are set by the requirements rather than by
the implementation. In this case, they have to be
considered as constraints for the next level of refinement.

16

17

Integrated Solutions Based On The EXREAL PlatformTM

   We provide integrated solutions based on LSI development
platform, application platform and partnerships

Integrated Solution Platform
Integrated solutions including applied application (including
collaboration with users)

Deployment to platform for each application
Application Platform

Flexible
Scalability High Portability Heterogeneous

Structure

Copyright: A. Sangiovanni-Vincentelli

Specification

Analysis

 D
ev

el
op

m
en

t P
ro

ce
ss

Buses Buses
Matlab

CPUs Buses Operating
Systems

Behavior Components Virtual Architectural Components

C-Code
 IPs

Dymola

Behavior Platform

Mapping

Performance
Analysis

Refinement

Evaluation of
Architectural

and
Partitioning
Alternatives

Implementation

Separation of Concerns (ca. 1990!)

Copyright: A. Sangiovanni-Vincentelli

19

Platform-Based Design

•  Platform: library of resources defining an abstraction layer
–  Resources do contain virtual components i.e., place holders that will

be customized in the implementation phase to meet constraints

–  Very important resources are interconnections and communication
protocols

Platform
Design-Space

Export
Platform
Mapping

Architectural Space
Application Space

Application Instance
Platform Instance

Copyright: A. Sangiovanni-Vincentelli

20

Fractal Nature of Design

Platform
Instance

Platform Design-
Space Export

Platform
(Architectural) Space

Platform
Instance

Function
Instance

Function
Space Mapped

Platform
(Architectural) Space

Function
Space

Platform
Instance

Function
Instance

Mapped

EE249Fall08
21

Platform-Based Implementation
• Platforms eliminate large loop iterations for affordable design

• Restrict design space via new forms of regularity and structure that
surrender some design potential for lower cost and first-pass success

• The number and location of intermediate platforms is the essence of
platform-based design

Silicon Implementation

Application

Silicon Implementation

Application

EE249Fall08
22

Platform-Based Design Process
• Different situations will employ different intermediate platforms, hence

different layers of regularity and design-space constraints

• Critical step is defining intermediate platforms to support:

–  Predictability: abstraction to facilitate higher-level optimization

–  Verifiability: ability to ensure correctness

Architecture

Logic Regularity

Component Regularity and Reuse

Regular Fabrics

Geometrical Regularity Silicon Implementation

EE249Fall08
23

Implementation Process
• Skipping platforms can potentially produce a superior design by enlarging

design space – if design-time and product volume ($) permits

• However, even for a large-step-across-platform flow there is a benefit to
having a lower-bound on what is achievable from predictable flow

Geometrical Regularity Silicon Implementation

Architecture

Logic Regularity

Component Regularity and Reuse

Regular Fabrics

EE249Fall08
24

Tight Lower Bounds

• The larger the step across platforms, the more difficult to: predict
performance, optimize at system level, and provide a tight lower
bound

• Design space may actually be smaller than with smaller steps since it
is more difficult to explore and restriction on search impedes complete
design space exploration

• The predictions/abstractions may be so wrong that design
optimizations are misguided and the lower bounds are incorrect!

EE249Fall08
25

Design Flow

• Theory:

–  Initial intent captured with declarative notation

– Map into a set of interconnected component:

–  Each component can be declarative or operational

–  Interconnect is operational: describes how components interact

–  Repeat on each component until implementation is reached

– Choice of model of computations for component and interaction is
already a design step!

– Meta-model in Metropolis (operational) and Trace Algebras
(denotational) are used to capture this process and make it rigorous

EE249Fall08
26

Consequences
•  There is no difference between HW and SW. Decision comes later.

•  HW/SW implementation depend on choice of component at the
architecture platform level.

•  Function/Architecture co-design happens at all levels of
abstractions

–  Each platform is an “architecture” since it is a library of usable
components and interconnects. It can be designed independently of a
particular behavior.

–  Usable components can be considered as “containers”, i.e., they can
support a set of behaviors.

–  Mapping chooses one such behavior. A Platform Instance is a mapped
behavior onto a platform.

–  A fixed architecture with a programmable processor is a platform in this
sense. A processor is indeed a collection of possible bahaviours.

–  A SW implementation on a fixed architecture is a platform instance.

EE249Fall08
27

A discipline for Platform-based Design

Silicon Implementation Platform

Architectural Platform

Manufacturing Interface

Silicon Implementation

Basic device &
interconnect structures

Delay, variation,
SPICE models

Microarchitecture(s)

Circuit Fabric(s)

S S V V S G

S G
S

S

V

V

Application

Architecture(s)

Kernels/Benchmarks Programming Model:
Models/Estimators

Functional Blocks,
Interconnect

Cycle-speed,
power, area

EE249Fall08
28

Outline

• Platforms: a historical perspective

• Platform-based Design

• Three examples

– Pico-radio network

– Unmanned Helicopter controller

– Engine Controller

EE249Fall08
29

A Hierarchical Application of the Paradigm:
The Fractal Nature of Design!

Functional & Performance
 Requirements

Network Architecture

Performance analysis

Network
Level

Radio Node
Level

Functional & Performance
 Requirements

Node Architecture

Performance analysis

Functional & Performance
 Requirements

Network Architecture

Performance analysis

Module
Level

Constraints

Constraints

Source: Jan Rabaey

EE249Fall08
30

Network Platforms

•  Network Platform Instance: set of resources (links and protocols)
that provide Communication Services

•  Network Platform API: set of Communication Services
•  Communication Service: transfer of messages between ports

•  Event trace defines order of send/receive methods
•  Quality of service

node

link

port

NPI I/O port

NP components:

EE249Fall08
31

Network Platforms

node

link

port

NPI I/O port

NP components:

Network Platform Instance

Communication
Services:
-  CS1:
 Lossy Broadcast
 Error rate: 33%
 Max Delay: 30 ms
-  CS2:
 …

Network Platform API

Performance
Estimates

Constraints
Budgeting

EE249Fall08
32

Network Platforms API

es1, es2, es3 er11, er12

er21, er22, er23

event trace:

•  NP API: set of Communication Services (CS)

•  CS: message transfer defined by ports, messages, events
(modeling send/receive methods), event trace

•  Example
•  CS: lossy broadcast transfer of messages m1, m2, m3
•  Quality of Service (platform parameters):

•  Losses: 1 (m3)
•  Error rate: 33%
•  In-order delivery

•  D(m3) = t(er23) – t (es3) = 30 ms

EE249Fall08
33

Picoradio Network Platforms

C
S S

C
S S

Pull Push

Application Layer

Power < 100 uW, BER ~ 0

S
S C

C S
S

Multi-hop message delivery

Network Layer

=
C S

S C

EE249Fall08
34

Synchronous
Platform Based
UAV Design

Platform-
Based Design

I

UAV System

II

Synchronous
Embedded
Control

III

Platform-Based Design of Unmanned
Aerial Vehicles

EE249Fall08
35

INS

R-50 Hovering

•  Goal: basic autonomous flight
•  Need: UAV with allowable payload
•  Need: combination of GPS and

Inertial Navigation System (INS)
•  GPS (senses using triangulation)

•  Outputs accurate position data
•  Available at low rate & has jamming

•  INS (senses using accelerometer and
rotation sensor)
•  Outputs estimated position with

unbounded drift over time
•  Available at high rate

•  Fusion of GPS & INS provides needed
high rate and accuracy

GPS Card

GPS Antenna

II. UAV System: Sensor Overview

EE249Fall08
36

d d
GPS INS

Software Request Software

GPS INS

Pull Configuration

Shared
memory

Push Configuration

•  Sensors may differ in:
•  Data formats, initialization schemes (usually requiring

some bit level coding), rates, accuracies, data
communication schemes, and even data types

•  Differing Communication schemes requires the most
custom written code per sensor

 II. UAV System: Sensor Configurations

EE249Fall08
37

III. Synchronous Control

•  Advantages of time-triggered framework:
–  Allows for composability and validation

–  These are important properties for safety critical systems like the
UAV controller

–  Timing guarantees ensure no jitter

•  Disadvantages:
–  Bounded delay is introduced

–  Stale data will be used by the controller

–  Implementation and system integration become more difficult

•  Platform design allows for time-triggered framework for the UAV
controller
–  Use Giotto as a middleware to ease implementation:

–  provides real-time guarantees for control blocks

–  handles all processing resources

–  Handles all I/O procedures

EE249Fall08
38

Platform Based Design for UAVs

Sensors: INS, GPS
Actuators: Servo Interface
Vehicles: Yamaha R-50/R-

Max

Control Applications
(Matlab)

•  Goal

–  Abstract details of
sensors, actuators, and
vehicle hardware from
control applications

Application Space
Architectural

Space

Synchronous
Embedded

Programming
(Giotto)

•  How?
-  Synchronous
Embedded Programming
Language (i.e. Giotto)
Platform

EE249Fall08
39

Platform Based Design for UAVs
•  Device Platform

–  Isolates details of sensor/
actuators from embedded
control programs

–  Communicates with each
sensor/actuator according to
its own data format, context,
and timing requirements

–  Presents an API to embedded
control programs for
accessing sensors/actuators

•  Language Platform
–  Provides an environment in

which synchronous control
programs can be scheduled
and run

–  Assumes the use of generic
data formats for sensors/
actuators made possible by
the Device Platform

Sensors: INS, GPS
Actuators: Servo Interface
Vehicles: Yamaha R-50/R-

Max

Synchronous
Embedded

Programming
(Giotto)

Control Applications
(Matlab)

Application Space
Architectural

Space

Virtual Avionics
Platform

Device
Platform

Language Platform

EE249Fall08
40

Power Train Design

EE249Fall08
41

The Design Problem

Given a set of specifications from a car manufacturer,

–  Find a set of algorithm to control the power train

–  Implement the algorithms on a mixed mechanical-electrical
architecture (microprocessors, DSPs, ASICs, various sensors and
actuators)

EE249Fall08
42

Power-train control system design

•  Specifications given at a high level of abstraction

•  Control algorithms design

•  Mapping to different architectures using performance
estimation techniques and automatic code generation from
models

•  Mechanical/Electronic architecture selected among a set of
candidates

EE249Fall08
43

HW/SW implementation architecture

•  a set of possible hw/sw implementations is given
by
–  M different hw/sw implementation architectures
–  for each hw/sw implementation architecture m ∈{1,...,M},

•  a set of hw/sw implementation parameters z
–  e.g. CPU clock, task priorities, hardware frequency, etc.

•  an admissible set XZ of values for z

µControllers Library

OSEK
RTOS

OSEK
COM I/O drivers & handlers

(> 20 configurable modules)

Application Programming Interface

Boot Loader
Sys. Config.

Transport
KWP 2000

CCP

Application
Specific
Software

S
peedom

eter
Tachom

eter
W

ater tem
p.

S
peedom

eter
Tachom

eter
O

dom
eter

Application
Libraries

Customer
Libraries

EE249Fall08
44

The classical and the ideal design approach

•  Classical approach (decoupled design)

–  controller structure and parameters (r ∈ R, c ∈ XC)

–  are selected in order to satisfy system specifications

–  implementation architecture and parameters (m ∈ M, z ∈ XZ)

–  are selected in order to minimize implementation cost

–  if system specifications are not met, the design cycle is repeated

•  Ideal approach

–  both controller and architecture options (r, c, m, z) are selected at the same
time to

–  minimize implementation cost

–  satisfy system specifications

–  too complex!!

EE249Fall08
45

 Platform i+1

Platform stack & design refinements

Platform
Design-Space

Export

Platform
Mapping

Refinement

Implementation Space

Application Space

 Platform 4

 Platform 3

 Platform 2

 Platform 1

implementation instance

application instance

plat.3
instance

plat.2
instance

 Platform i platform i instance

platform i+1 instance

EE249Fall08
46

D
E

S
IG

N

Power-train System
Behavior

Power-train System Specifications

Functional
Decomposition Capture System

Architecture

Electronic
System

Mapping

Operations
and Macro Architecture

Performance Back -
Annotation

 HW and SW
Components

Implementation Components Verify Components

Functions

Capture Electronic
Architecture

HW/SW
 partitioning

Design Mechanical
Components

Operation
Refinement

Capture
Electrical / Mechanical

Architecture
Partitioning and

Optimization Functional
Network

Operational
Architecture (ES)

Verify
Performance

A
2

A
3

A
4

A
5

Design Methodology

EE249Fall08
47

Implementation abstraction layer
•  we introduce an implementation abstraction layer

–  which exposes ONLY the implementation non-idealities that affect the
performance of the controlled plant, e.g.

–  control loop delay

–  quantization error

–  sample and hold error

–  computation imprecision

•  at the implementation abstraction layer, platform instances are
described by

–  S different implementation architectures

–  for each implementation architecture s ∈{1,...,S},

–  a set of implementation parameters p
–  e.g. latency, quantization interval, computation errors, etc.

–  an admissible set XP of values for p

EE249Fall08
48

Platform
Design-Space

Export

Platform
Mapping

Platform stack & design refinements

Implementation Space

Application Space

 Platform 2

 Platform 1 platform 1
instance

 Platform n

platform 2
instance

implementation
instances

Refinement

functional layer

implementation abstraction layer

hw/sw implementation layer

implem. struc. & par. (s,p)

control struc. & par. (r,c)

(r,c,s,p)

hw/sw implementation
struc & par. (m,z)

(r,c)

(s,p)

(r,c,s,p)

EE249Fall08
49

Effects of controller implementation in the
controlled plant performance

d

Controller

y
Plant w u

 r
Δw

Δr
Δu +

nu

+

+

nr

nw

•  modeling of implementation non-idealities:

–  Δu, Δr, Δw : time-domain perturbations

–  control loop delays, sample & hold , etc.

–  nu , nr , nw :value-domain perturbations

–  quantization error, computation imprecision, etc.

EE249Fall08
50

Output Devices Input devices Hardware Platform
I O

Hardware

network

DUAL-CORE
RT

O
S

BIOS
Device Drivers

N
et

w
or

k
C

om
m

un
ic

at
io

n

DUAL-CORE

Architectural Space (Performance)

Application Space (Features)

Choosing an Implementation Architecture

Platform Instance

Application Instances

System
Platform
(no ISA)

Platform Design Space
Exploration

Platform
Specification

Platform API

Software Platform

Output Devices Input devices Hardware Platform
I O

Hardware

network
HITACHI

RT
O

S

BIOS
Device Drivers

N
et

w
or

k
C

om
m

un
ic

at
io

n

HITACHI

RT
O

S
BIOS

Device Drivers

N
et

w
or

k
C

om
m

un
ic

at
io

n

Output Devices Input devices Hardware Platform
I O

Hardware

network
ST10

RT
O

S
BIOS

Device Drivers

N
et

w
or

k
C

om
m

un
ic

at
io

n

ST10

Application Software

Application Software

EE249Fall08
51

Application effort

First Application: 10 months

Successive Application: 4 months

