
EE249Fall07
1

Part 3: Models of Computation

• FSMs

• Discrete Event Systems

• CFSMs

• Data Flow Models

• Petri Nets

• The Tagged Signal Model

• Synchronous Languages and De-synchronization

• Heterogeneous Composition: Hybrid Systems and Languages

•  Interface Synthesis and Verification

• Trace Algebra, Trace Structure Algebra and Agent Algebra

EE249Fall07
2

Design

• From an idea…

• … build something that performs a certain function

• Never done directly:

–  some aspects are not considered at the beginning of the
development

–  the designer wants to explore different possible implementations in
order to maximize (or minimize) a cost function

• Models can be used to reason about the properties of an object

EE249Fall07
3

Formalization

• Model of a design with precise unambiguous semantics:

–  Implicit or explicit relations: inputs, outputs and (possibly) state
variables

– Properties

–  “Cost” functions

– Constraints

Formalization of Design + Environment =
closed system of equations and inequalities over some algebra.

EE249Fall07
4

Models of Computation: And There are
More...

•  Continuous time (ODEs)

•  Spatial/temporal (PDEs)

•  Discrete time

•  Rendezvous

•  Synchronous/Reactive

•  Dataflow

•  ...

Tower of Babel, Bruegel, 1563

Each of these
provides a formal
framework for
reasoning about
certain aspects of
embedded systems.

EE249Fall07
5

Model Of Computation

Definition: A mathematical description that has a syntax and rules for
computation of the behavior described by the syntax (semantics). Used
to specify the semantics of computation and concurrency.

Examples: Finite State Machine, Turing Machine, differential equation

An MoC allows:

–  To capture unambiguously the required functionality

–  To verify correctness of the functional specification wrt properties

–  To synthesize part of the specification

–  To use different tools (all must “understand” the model)

–  MOC needs to

–  be powerful enough for application domain

–  have appropriate synthesis and validation algorithms

EE249Fall07
6

Usefulness of a Model of Computation

•  Expressiveness

•  Generality

•  Simplicity

•  Compilability/ Synthesizability

•  Verifiability

The Conclusion

One way to get all of these is to mix diverse, simple models of
computation, while keeping compilation, synthesis, and verification
separate for each MoC. To do that, we need to understand these
MoCs relative to one another, and understand their interaction when
combined in a single system design.

EE249Fall07
7

Common Models of Computation

• Finite State Machines

–  finite state

–  no concurrency nor time

• Data-Flow

–  Partial Order

–  Concurrent and Determinate

–  Stream of computation

• Discrete-Event

–  Global Order (embedded in time)

• Continuous Time

The behavior of a design in general is described by a composition

EE249Fall07
8

Control versus Data Flow

•  Fuzzy distinction, yet useful for:

–  specification (language, model, ...)

–  synthesis (scheduling, optimization, ...)

–  validation (simulation, formal verification, ...)

•  Rough classification:

–  control:

–  don’t know when data arrive (quick reaction)

–  time of arrival often matters more than value

–  data:

–  data arrive in regular streams (samples)

–  value matters most

EE249Fall07
9

Control versus Data Flow

•  Specification, synthesis and validation methods emphasize:

–  for control:

–  event/reaction relation

–  response time

 (Real Time scheduling for deadline satisfaction)

–  priority among events and processes

–  for data:

–  functional dependency between input and output

–  memory/time efficiency

 (Dataflow scheduling for efficient pipelining)

–  all events and processes are equal

EE249Fall07

Reactive Real-time Systems

• Reactive Real-Time Systems

–  “React” to external environment

– Maintain permanent interaction

–  Ideally never terminate

–  timing constraints (real-time)

• As opposed to

–  transformational systems

–  interactive systems

EE249Fall07
11

Models Of Computation for reactive systems

• We need to consider essential aspects of reactive systems:
–  time/synchronization

–  concurrency

–  heterogeneity

• Classify models based on:
–  how specify behavior

–  how specify communication

–  implementability

–  composability

–  availability of tools for validation and synthesis

