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Petri Nets (PNs) 

•  Model introduced by C.A. Petri in 1962 
–  Ph.D. Thesis: “Communication with Automata” 

•  Applications: distributed computing, manufacturing, control, 
communication networks, transportation…  

•  PNs describe explicitly and graphically: 
–  sequencing/causality 

–  conflict/non-deterministic choice 

–  concurrency 

•  Basic PN model 
–  Asynchronous model (partial ordering) 

–  Main drawback: no hierarchy 
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Example:  
Synchronization at single track rail segment 

•  „Preconditions“ 



4 

Playing the „token game“ 
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Conflict for resource „track“ 
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Petri Net Graph 

•  Bipartite weighted directed graph: 
–  Places: circles 
–  Transitions: bars or boxes 
–  Arcs: arrows labeled with weights 

•  Tokens: black dots 
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Petri Net 
•  A PN (N,M0) is a Petri Net Graph N 

–  places: represent distributed state by holding tokens 

–  marking (state) M is an n-vector (m1,m2,m3…), where mi is the non-negative 
number of tokens in place pi. 

–  initial marking (M0) is initial state 

–  transitions: represent actions/events 

–  enabled transition: enough tokens in predecessors 

–  firing transition: modifies marking 

•  …and an initial marking M0. 
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Places/Transitions: conditions/events 
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Transition firing rule 
•  A marking is changed according to the following rules: 

–  A transition is enabled if there are enough tokens in each input place 

–  An enabled transition may or may not fire 

–  The firing of a transition modifies marking by consuming tokens from the 
input places and producing tokens in the output places 
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Concurrency, causality, choice 
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Concurrency, causality, choice 
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Concurrency, causality, choice 
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Communication Protocol 
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Producer-Consumer Problem 
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Producer-Consumer Problem 
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Producer-Consumer with priority 

Consumer B can  
consume only if  
buffer A is empty 

Inhibitor arcs 

A 

B 
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PN properties 

•  Behavioral: depend on the initial marking (most interesting) 
–  Reachability 

–  Boundedness 

–  Schedulability 

–  Liveness 

–  Conservation 

•  Structural: do not depend on the initial marking   (often too restrictive) 
–  Consistency 

–  Structural boundedness 
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Reachability 

•  Marking M is reachable from marking M0 if there exists a sequence of 
firings σ = M0 t1 M1 t2 M2… M that transforms M0 to M. 

•  The reachability problem is decidable. 

t1 p1 

p2 
t2 

p4 

t3 
p3 

Μ0 = (1,0,1,0) 
M = (1,1,0,0) 

Μ0 = (1,0,1,0) 
             t3 

M1 = (1,0,0,1) 
             t2 

M = (1,1,0,0) 
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•  Liveness: from any marking any transition can become fireable 
–  Liveness implies deadlock freedom, not viceversa 

Liveness 

Not live 
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•  Boundedness: the number of tokens in any place cannot grow 
indefinitely 

–  (1-bounded also called safe) 

–  Application: places represent buffers and registers (check there is no 
overflow) 

Boundedness 

Unbounded 
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Conservation 

•  Conservation: the total number of tokens in the net is 
constant 
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Conservation 

•  Conservation: the total number of tokens in the net is 
constant 

Conservative 

2 

2 
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Analysis techniques 

•  Structural analysis techniques 
–  Incidence matrix 

–  T- and S- Invariants 

•  State Space Analysis techniques 
–  Coverability Tree 

–  Reachability Graph 
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Incidence Matrix 

•  Necessary condition for marking M to be reachable from initial 
marking M0: 

 there exists firing vector v s.t.: 

  M = M0 + A v 

p1 p2 p3 t1 
t2 

t3 

t1 t2 t3 

p1 

p2 

p3 
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State equations 

p1 p2 p3 t1 

t3 

•  E.g. reachability of M = |0 0 1|T from M0 = |1 0  0|T  

but also v2 = | 1 1 2 |T or any vk = | 1 (k) (k+1) |T 

t2 
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Necessary Condition only 

2 2 

Firing vector: (1,2,2) 

t1 

t2 

t3 

Deadlock!! 
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State equations and invariants 

•  Solutions of Ax = 0 (in M = M0 + Ax, M = M0) 

 T-invariants 

–  sequences of transitions that (if fireable) bring back to original marking  

–  periodic schedule in SDF 

–  e.g. x =| 0 1 1 |T 

p1 p2 p3 t1 

t3 

t2 
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Application of T-invariants 

•  Scheduling 
–  Cyclic schedules: need to return to the initial state 

i *k2 + 

*k1 

Schedule: i *k2 *k1 + o 
T-invariant: (1,1,1,1,1) 

o 
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State equations and invariants 

•  Solutions of yA = 0 

 S-invariants 

–  sets of places whose weighted total token count does not change after 
the firing of any transition (y M = y M’) 

–  e.g.  y =| 1 1 1 |T 

p1 p2 p3 t1 

t3 

t2 
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Application of S-invariants 

•  Structural Boundedness: bounded for any finite initial marking 
M0 

•  Existence of  a positive S-invariant is CS for structural 
boundedness  
–  initial marking is finite 

–  weighted token count does not change 
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Summary of algebraic methods 

•  Extremely efficient  
(polynomial in the size of the net) 

•  Generally provide only necessary or sufficient information 

•  Excellent for ruling out some deadlocks or otherwise 
dangerous conditions 

•  Can be used to infer structural boundedness 
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Coverability Tree 

•  Build a (finite) tree representation of the markings 

 Karp-Miller algorithm 
•  Label initial marking M0 as the root of the tree and tag it as new 

•  While new markings exist do: 
–  select a new marking M 

–  if M is identical to a marking on the path from the root to M, then tag M as old and go to 
another new marking 

–  if no transitions are enabled at M, tag M dead-end 

–  while there exist enabled transitions at M do: 
–  obtain the marking M’ that results from firing t at M 

–  on the path from the root to M if there exists a marking M’’ such that M’(p)>=M’’(p) for each place 
p and M’ is different from M’’, then replace M’(p) by ω for each p such that M’(p) >M’’(p) 

–  introduce M’ as a node, draw an arc with label t from M to M’ and tag M’ as new. 
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Coverability Tree 

•  Boundedness is decidable with coverability tree 
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Coverability Tree 

•  Boundedness is decidable 
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Coverability Tree 

•  Boundedness is decidable 

 with coverability tree 
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Coverability Tree 

•  Is (1) reachable from (0)? 

t1 p1 t2 

t1 p1 t2 2 2 
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Coverability Tree 

•  Is (1) reachable from (0)? 
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Coverability Tree 

•  Is (1) reachable from (0)? 

t1 p1 t2 

t1 

0 
t1 

ω 

0 
t1 

ω 

p1 t2 2 2 

(0)      (1)       (2)… 

(0)      (2)       (0)… 



67 

Coverability Tree 

•  Cannot solve the reachability problem 
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(0)      (2)       (0)… 

•  Is (1) reachable from (0)? 
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Reachability graph 

p1 p2 p3 t1 
t2 

t3 

100 

•  For bounded nets the Coverability Tree is called Reachability 
Tree since it contains all possible reachable markings 
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Reachability graph 
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Reachability graph 
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•  For bounded nets the Coverability Tree is called Reachability 
Tree since it contains all possible reachable markings 
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Subclasses of Petri nets 

•  Reachability analysis is too expensive 

•  State equations give only partial information  

•  Some properties are preserved by reduction rules 
e.g. for liveness and safeness 

•  Even reduction rules only work in some cases 

•  Must restrict class in order to prove stronger results 



73 

Marked Graphs 

•  Every place has at most 1 predecessor and 1 successor transition 

•  Models only causality and concurrency (no conflict) 

NO 

YES 
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State Machines 

•  Every transition has at most 1 predecessor and 1 successor place 

•  Models only causality and conflict  
–  (no concurrency, no synchronization of parallel activities) 

YES NO 
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Free-Choice Petri Nets (FCPN) 

Free-Choice (FC) 

Extended Free-Choice  Confusion (not-Free-Choice) 

t1 

t2 

Free-Choice: the outcome of a choice depends on the 
value of a token  (abstracted non-deterministically) 
rather than on its arrival time.    

every transition after choice  
has exactly 1 predecessor place 
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Free-Choice nets 

•  Introduced by Hack (‘72) 
•  Extensively studied by Best (‘86) and Desel and Esparza (‘95) 
•  Can express concurrency, causality and choice without confusion 
•  Very strong structural theory 

–  necessary and sufficient conditions for liveness and safeness, based on 
decomposition 

–  exploits duality between MG and SM 
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MG (& SM) decomposition 

•  An Allocation is a control function that chooses which transition fires 
among several conflicting ones ( A: P     T). 

•  Eliminate the subnet that would be inactive if we were to use the 
allocation... 

•  Reduction Algorithm 
–  Delete all unallocated transitions 

–  Delete all places that have all input transitions already deleted 

–  Delete all transitions that have at least one input place already deleted 

•  Obtain a Reduction (one for each allocation) that is a conflict free subnet 
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•  Choose one successor for each conflicting place: 

MG reduction and cover 



79 

•  Choose one successor for each conflicting place: 

MG reduction and cover 



80 

•  Choose one successor for each conflicting place: 

MG reduction and cover 



81 

•  Choose one successor for each conflicting place: 

MG reduction and cover 



82 

•  Choose one successor for each conflicting place: 

MG reduction and cover 



83 

MG reductions 

•  The set of all reductions yields a cover of MG components (T-
invariants) 
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MG reductions 

•  The set of all reductions yields a cover of MG components (T-
invariants) 
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Hack’s theorem (‘72) 

•  Let N be a Free-Choice PN: 
–  N has a live and safe initial marking (well-formed)                    

if and only if 
–  every MG reduction is strongly connected and not empty, and 

 the set of all reductions covers the net 

–  every SM reduction is strongly connected and not empty, and 

 the set of all reductions covers the net 
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Hack’s theorem 

•  Example of non-live (but safe) FCN 
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Hack’s theorem 

•  Example of non-live (but safe) FCN 

Deadlock 
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Summary of LSFC nets 

•  Largest class for which structural theory really helps 

•  Structural component analysis may be expensive  
(exponential number of MG and SM components in the worst case) 

•  But…  
–  number of MG components is generally small 

–  FC restriction simplifies characterization of behavior 
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Petri Net extensions 

•  Add interpretation to tokens and transitions 
–  Colored nets (tokens have value) 

•  Add time 
–  Time/timed Petri Nets (deterministic delay) 

–  type (duration, delay) 
–  where (place, transition) 

–  Stochastic PNs (probabilistic delay) 
–  Generalized Stochastic PNs (timed and immediate transitions) 

•  Add hierarchy 
–  Place Charts Nets 



105 

PNs Summary 

•  PN Graph: places (buffers), transitions (actions), tokens (data) 

•  Firing rule: transition enabled if there are enough tokens in each input 
place  

•  Properties 

–  Structural (consistency, structural boundedness…) 

–  Behavioral (reachability, boundedness, liveness…) 

•  Analysis techniques 

–  Structural (only CN or CS): State equations, Invariants 

–  Behavioral: coverability tree 

•  Reachability  

•  Subclasses: Marked Graphs, State Machines, Free-Choice PNs 

2 
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