
1

Outline

•  Petri nets
–  Introduction

–  Examples

–  Properties

–  Analysis techniques

2

Petri Nets (PNs)

•  Model introduced by C.A. Petri in 1962
–  Ph.D. Thesis: “Communication with Automata”

•  Applications: distributed computing, manufacturing, control,
communication networks, transportation…

•  PNs describe explicitly and graphically:
–  sequencing/causality

–  conflict/non-deterministic choice

–  concurrency

•  Basic PN model
–  Asynchronous model (partial ordering)

–  Main drawback: no hierarchy

3

Example:
Synchronization at single track rail segment

•  „Preconditions“

4

Playing the „token game“

5

Conflict for resource „track“

6

Petri Net Graph

•  Bipartite weighted directed graph:
–  Places: circles
–  Transitions: bars or boxes
–  Arcs: arrows labeled with weights

•  Tokens: black dots

t1 p1

p2
t2

p4

t3
p3

2

3

7

Petri Net
•  A PN (N,M0) is a Petri Net Graph N

–  places: represent distributed state by holding tokens

–  marking (state) M is an n-vector (m1,m2,m3…), where mi is the non-negative
number of tokens in place pi.

–  initial marking (M0) is initial state

–  transitions: represent actions/events

–  enabled transition: enough tokens in predecessors

–  firing transition: modifies marking

•  …and an initial marking M0.
t1 p1

p2
t2

p4

t3
p3

2

3
Places/Transitions: conditions/events

8

Transition firing rule
•  A marking is changed according to the following rules:

–  A transition is enabled if there are enough tokens in each input place

–  An enabled transition may or may not fire

–  The firing of a transition modifies marking by consuming tokens from the
input places and producing tokens in the output places

2
2

3

2 2

3

9

Concurrency, causality, choice

t1

t2

t3 t4

t5

t6

10

Concurrency, causality, choice

Concurrency

t1

t2

t3 t4

t5

t6

11

Concurrency, causality, choice

Causality, sequencing

t1

t2

t3 t4

t5

t6

12

Concurrency, causality, choice

Choice,
conflict

t1

t2

t3 t4

t5

t6

13

Concurrency, causality, choice

Choice,
conflict

t1

t2

t3 t4

t5

t6

14

Communication Protocol

P1

Send msg

Receive Ack

Send Ack

Receive msg

P2

15

Communication Protocol

P1

Send msg

Receive Ack

Send Ack

Receive msg

P2

16

Communication Protocol

P1

Send msg

Receive Ack

Send Ack

Receive msg

P2

17

Communication Protocol

P1

Send msg

Receive Ack

Send Ack

Receive msg

P2

18

Communication Protocol

P1

Send msg

Receive Ack

Send Ack

Receive msg

P2

19

Communication Protocol

P1

Send msg

Receive Ack

Send Ack

Receive msg

P2

20

Producer-Consumer Problem

Produce

Consume

Buffer

21

Producer-Consumer Problem

Produce

Consume

Buffer

22

Producer-Consumer Problem

Produce

Consume

Buffer

23

Producer-Consumer Problem

Produce

Consume

Buffer

24

Producer-Consumer Problem

Produce

Consume

Buffer

25

Producer-Consumer Problem

Produce

Consume

Buffer

26

Producer-Consumer Problem

Produce

Consume

Buffer

27

Producer-Consumer Problem

Produce

Consume

Buffer

28

Producer-Consumer Problem

Produce

Consume

Buffer

29

Producer-Consumer Problem

Produce

Consume

Buffer

30

Producer-Consumer Problem

Produce

Consume

Buffer

31

Producer-Consumer Problem

Produce

Consume

Buffer

32

Producer-Consumer Problem

Produce

Consume

Buffer

33

Producer-Consumer Problem

Produce

Consume

Buffer

34

Producer-Consumer with priority

Consumer B can
consume only if
buffer A is empty

Inhibitor arcs

A

B

35

PN properties

•  Behavioral: depend on the initial marking (most interesting)
–  Reachability

–  Boundedness

–  Schedulability

–  Liveness

–  Conservation

•  Structural: do not depend on the initial marking (often too restrictive)
–  Consistency

–  Structural boundedness

36

Reachability

•  Marking M is reachable from marking M0 if there exists a sequence of
firings σ = M0 t1 M1 t2 M2… M that transforms M0 to M.

•  The reachability problem is decidable.

t1 p1

p2
t2

p4

t3
p3

Μ0 = (1,0,1,0)
M = (1,1,0,0)

Μ0 = (1,0,1,0)
 t3

M1 = (1,0,0,1)
 t2

M = (1,1,0,0)

37

•  Liveness: from any marking any transition can become fireable
–  Liveness implies deadlock freedom, not viceversa

Liveness

Not live

38

•  Liveness: from any marking any transition can become fireable
–  Liveness implies deadlock freedom, not viceversa

Liveness

Not live

39

•  Liveness: from any marking any transition can become fireable
–  Liveness implies deadlock freedom, not viceversa

Liveness

Deadlock-free

40

•  Liveness: from any marking any transition can become fireable
–  Liveness implies deadlock freedom, not viceversa

Liveness

Deadlock-free

41

•  Boundedness: the number of tokens in any place cannot grow
indefinitely

–  (1-bounded also called safe)

–  Application: places represent buffers and registers (check there is no
overflow)

Boundedness

Unbounded

42

•  Boundedness: the number of tokens in any place cannot grow
indefinitely

–  (1-bounded also called safe)

–  Application: places represent buffers and registers (check there is no
overflow)

Boundedness

Unbounded

43

•  Boundedness: the number of tokens in any place cannot grow
indefinitely

–  (1-bounded also called safe)

–  Application: places represent buffers and registers (check there is no
overflow)

Boundedness

Unbounded

44

•  Boundedness: the number of tokens in any place cannot grow
indefinitely

–  (1-bounded also called safe)

–  Application: places represent buffers and registers (check there is no
overflow)

Boundedness

Unbounded

45

•  Boundedness: the number of tokens in any place cannot grow
indefinitely

–  (1-bounded also called safe)

–  Application: places represent buffers and registers (check there is no
overflow)

Boundedness

Unbounded

46

Conservation

•  Conservation: the total number of tokens in the net is
constant

Not conservative

47

Conservation

•  Conservation: the total number of tokens in the net is
constant

Not conservative

48

Conservation

•  Conservation: the total number of tokens in the net is
constant

Conservative

2

2

49

Analysis techniques

•  Structural analysis techniques
–  Incidence matrix

–  T- and S- Invariants

•  State Space Analysis techniques
–  Coverability Tree

–  Reachability Graph

50

Incidence Matrix

•  Necessary condition for marking M to be reachable from initial
marking M0:

 there exists firing vector v s.t.:

 M = M0 + A v

p1 p2 p3 t1
t2

t3

t1 t2 t3

p1

p2

p3

51

State equations

p1 p2 p3 t1

t3

•  E.g. reachability of M = |0 0 1|T from M0 = |1 0 0|T

but also v2 = | 1 1 2 |T or any vk = | 1 (k) (k+1) |T

t2

52

Necessary Condition only

2 2

Firing vector: (1,2,2)

t1

t2

t3

Deadlock!!

53

State equations and invariants

•  Solutions of Ax = 0 (in M = M0 + Ax, M = M0)

 T-invariants

–  sequences of transitions that (if fireable) bring back to original marking

–  periodic schedule in SDF

–  e.g. x =| 0 1 1 |T

p1 p2 p3 t1

t3

t2

54

Application of T-invariants

•  Scheduling
–  Cyclic schedules: need to return to the initial state

i *k2 +

*k1

Schedule: i *k2 *k1 + o
T-invariant: (1,1,1,1,1)

o

55

State equations and invariants

•  Solutions of yA = 0

 S-invariants

–  sets of places whose weighted total token count does not change after
the firing of any transition (y M = y M’)

–  e.g. y =| 1 1 1 |T

p1 p2 p3 t1

t3

t2

56

Application of S-invariants

•  Structural Boundedness: bounded for any finite initial marking
M0

•  Existence of a positive S-invariant is CS for structural
boundedness
–  initial marking is finite

–  weighted token count does not change

57

Summary of algebraic methods

•  Extremely efficient
(polynomial in the size of the net)

•  Generally provide only necessary or sufficient information

•  Excellent for ruling out some deadlocks or otherwise
dangerous conditions

•  Can be used to infer structural boundedness

58

Coverability Tree

•  Build a (finite) tree representation of the markings

 Karp-Miller algorithm
•  Label initial marking M0 as the root of the tree and tag it as new

•  While new markings exist do:
–  select a new marking M

–  if M is identical to a marking on the path from the root to M, then tag M as old and go to
another new marking

–  if no transitions are enabled at M, tag M dead-end

–  while there exist enabled transitions at M do:
–  obtain the marking M’ that results from firing t at M

–  on the path from the root to M if there exists a marking M’’ such that M’(p)>=M’’(p) for each place
p and M’ is different from M’’, then replace M’(p) by ω for each p such that M’(p) >M’’(p)

–  introduce M’ as a node, draw an arc with label t from M to M’ and tag M’ as new.

59

Coverability Tree

•  Boundedness is decidable with coverability tree

p1 p2 p3

p4

t1
t2

t3

1000

60

Coverability Tree

•  Boundedness is decidable with coverability tree

p1 p2 p3

p4

t1
t2

t3

1000

0100
t1

61

Coverability Tree

•  Boundedness is decidable

 with coverability tree

p1 p2 p3

p4

t1
t2

t3

1000

0100

0011

t1

t3

62

Coverability Tree

•  Boundedness is decidable

 with coverability tree

p1 p2 p3

p4

t1
t2

t3

1000

0100

0011

t1

t3

0101

t2

63

Coverability Tree

•  Boundedness is decidable

 with coverability tree

p1 p2 p3

p4

t1
t2

t3

1000

0100

0011

t1

t3

t2
010ω

64

Coverability Tree

•  Is (1) reachable from (0)?

t1 p1 t2

t1 p1 t2 2 2

65

Coverability Tree

•  Is (1) reachable from (0)?

t1 p1 t2

t1

0
t1

ω

p1 t2 2 2

(0) (1) (2)…

66

Coverability Tree

•  Is (1) reachable from (0)?

t1 p1 t2

t1

0
t1

ω

0
t1

ω

p1 t2 2 2

(0) (1) (2)…

(0) (2) (0)…

67

Coverability Tree

•  Cannot solve the reachability problem

t1 p1 t2

t1

0
t1

ω

0
t1

ω

p1 t2 2 2

(0) (1) (2)…

(0) (2) (0)…

•  Is (1) reachable from (0)?

68

Reachability graph

p1 p2 p3 t1
t2

t3

100

•  For bounded nets the Coverability Tree is called Reachability
Tree since it contains all possible reachable markings

69

Reachability graph

p1 p2 p3 t1
t2

t3

100

010
t1

•  For bounded nets the Coverability Tree is called Reachability
Tree since it contains all possible reachable markings

70

Reachability graph

p1 p2 p3 t1
t2

t3

100

010

001

t1

t3

•  For bounded nets the Coverability Tree is called Reachability
Tree since it contains all possible reachable markings

71

Reachability graph

p1 p2 p3 t1
t2

t3

100

010

001

t1

t3 t2

•  For bounded nets the Coverability Tree is called Reachability
Tree since it contains all possible reachable markings

72

Subclasses of Petri nets

•  Reachability analysis is too expensive

•  State equations give only partial information

•  Some properties are preserved by reduction rules
e.g. for liveness and safeness

•  Even reduction rules only work in some cases

•  Must restrict class in order to prove stronger results

73

Marked Graphs

•  Every place has at most 1 predecessor and 1 successor transition

•  Models only causality and concurrency (no conflict)

NO

YES

74

State Machines

•  Every transition has at most 1 predecessor and 1 successor place

•  Models only causality and conflict
–  (no concurrency, no synchronization of parallel activities)

YES NO

75

Free-Choice Petri Nets (FCPN)

Free-Choice (FC)

Extended Free-Choice Confusion (not-Free-Choice)

t1

t2

Free-Choice: the outcome of a choice depends on the
value of a token (abstracted non-deterministically)
rather than on its arrival time.

every transition after choice
has exactly 1 predecessor place

76

Free-Choice nets

•  Introduced by Hack (‘72)
•  Extensively studied by Best (‘86) and Desel and Esparza (‘95)
•  Can express concurrency, causality and choice without confusion
•  Very strong structural theory

–  necessary and sufficient conditions for liveness and safeness, based on
decomposition

–  exploits duality between MG and SM

77

MG (& SM) decomposition

•  An Allocation is a control function that chooses which transition fires
among several conflicting ones (A: P T).

•  Eliminate the subnet that would be inactive if we were to use the
allocation...

•  Reduction Algorithm
–  Delete all unallocated transitions

–  Delete all places that have all input transitions already deleted

–  Delete all transitions that have at least one input place already deleted

•  Obtain a Reduction (one for each allocation) that is a conflict free subnet

78

•  Choose one successor for each conflicting place:

MG reduction and cover

79

•  Choose one successor for each conflicting place:

MG reduction and cover

80

•  Choose one successor for each conflicting place:

MG reduction and cover

81

•  Choose one successor for each conflicting place:

MG reduction and cover

82

•  Choose one successor for each conflicting place:

MG reduction and cover

83

MG reductions

•  The set of all reductions yields a cover of MG components (T-
invariants)

84

MG reductions

•  The set of all reductions yields a cover of MG components (T-
invariants)

85

MG reductions

•  The set of all reductions yields a cover of MG components (T-
invariants)

86

Hack’s theorem (‘72)

•  Let N be a Free-Choice PN:
–  N has a live and safe initial marking (well-formed)

if and only if
–  every MG reduction is strongly connected and not empty, and

 the set of all reductions covers the net

–  every SM reduction is strongly connected and not empty, and

 the set of all reductions covers the net

87

Hack’s theorem

•  Example of non-live (but safe) FCN

88

Hack’s theorem

•  Example of non-live (but safe) FCN

89

Hack’s theorem

•  Example of non-live (but safe) FCN

90

Hack’s theorem

•  Example of non-live (but safe) FCN

91

Hack’s theorem

•  Example of non-live (but safe) FCN

92

Hack’s theorem

•  Example of non-live (but safe) FCN

93

Hack’s theorem

•  Example of non-live (but safe) FCN

94

Hack’s theorem

•  Example of non-live (but safe) FCN

95

Hack’s theorem

•  Example of non-live (but safe) FCN

96

Hack’s theorem

•  Example of non-live (but safe) FCN

97

Hack’s theorem

•  Example of non-live (but safe) FCN

98

Hack’s theorem

•  Example of non-live (but safe) FCN

99

Hack’s theorem

•  Example of non-live (but safe) FCN

100

Hack’s theorem

•  Example of non-live (but safe) FCN

101

Hack’s theorem

•  Example of non-live (but safe) FCN

102

Hack’s theorem

•  Example of non-live (but safe) FCN

Deadlock

103

Summary of LSFC nets

•  Largest class for which structural theory really helps

•  Structural component analysis may be expensive
(exponential number of MG and SM components in the worst case)

•  But…
–  number of MG components is generally small

–  FC restriction simplifies characterization of behavior

104

Petri Net extensions

•  Add interpretation to tokens and transitions
–  Colored nets (tokens have value)

•  Add time
–  Time/timed Petri Nets (deterministic delay)

–  type (duration, delay)
–  where (place, transition)

–  Stochastic PNs (probabilistic delay)
–  Generalized Stochastic PNs (timed and immediate transitions)

•  Add hierarchy
–  Place Charts Nets

105

PNs Summary

•  PN Graph: places (buffers), transitions (actions), tokens (data)

•  Firing rule: transition enabled if there are enough tokens in each input
place

•  Properties

–  Structural (consistency, structural boundedness…)

–  Behavioral (reachability, boundedness, liveness…)

•  Analysis techniques

–  Structural (only CN or CS): State equations, Invariants

–  Behavioral: coverability tree

•  Reachability

•  Subclasses: Marked Graphs, State Machines, Free-Choice PNs

2

106

References

•  T. Murata Petri Nets: Properties, Analysis and Applications

•  http://www.daimi.au.dk/PetriNets/

