The Synchronous Model of Computation

Stavros Tripakis
UC Berkeley

EE 249 Lecture – Sep 15, 2009
Fundamental characteristics of the synchronous MoC

• Notion of *synchronous round* (or *cycle*)
• Concurrency
• Determinism (most of the time)
 – Same (sequence of) inputs => same (sequence of) outputs
• Contrast this to:
 – Concurrency with threads:
 • Non-deterministic: results depend on interleaving
 – Concurrency in Kahn Process Networks:
 • Asynchronous (interleaving), but still deterministic
 • Needs unbounded buffers in general, for communication
The synchronous round

round 1 round 2
Example: synchronous block diagram

A, B, C A, C, B ...

rounds
Example: synchronous block diagram

deterministic concurrency
Example: FIR filter

\[y(n) = \frac{1}{3} x(n) + \frac{1}{3} x(n-1) + \frac{1}{3} x(n-2) \]

Where is the synchronous round here?
Example: sequential logic diagram

Where is the synchronous round here?
Example: control loop

initialize state;
while (true) do
 read inputs;
 compute outputs;
 update state;
 write outputs;
end while;

Where is the synchronous round here?
Example: control loop (v2)

initialize state;
while (true) do
 await clock tick;
 read inputs;
 compute outputs;
 update state;
 write outputs;
end while;
Is this an important model of computation?

• Yes!
 – Extremely widespread, both in terms of models/languages, and in terms of applications
• Examples of **applications**:
 – Synchronous digital circuits
 – 99% (?) of control software
 • Read-compute-write control loops
 • Nuclear, avionics, automotive, ...
 – Multimedia, ...
Is this an important model of computation?

Engine control model in Simulink
Copyright The Mathworks

HW

SW ++

c.f. Simulink to FPGA, or to HDL
Is this an important model of computation?

- Yes!
 - Extremely widespread, both in terms of models/languages, and in terms of applications

- Examples of **models and languages**:
 - Mealy/Moore machines
 - Verilog, VHDL, ...
 - (discrete-time) Simulink
 - Synchronous languages
 - (Synchronous) Statecharts
 - The synchronous-reactive (SR) domain in Ptolemy II
 - ...
Myths about synchronous models

• Synchronous models have zero-time semantics
 – Synchronous semantics are essentially untimed: they do not have a quantitative notion of time.
 – Famous Esterel statements [Berry-Gonthier ‘92]:
 • every 1000 MILLISEC do emit SEC end
 • every 1000 MILLIMETER do emit METER end
 – Synchronous models can capture both time-triggered and event-triggered systems. E.g.:
 • Do something every 20ms
 • Do something whenever you receive an interrupt from the engine
Example: control loop (v3)

initialize state;
while (true) do
 await clock tick
 or any other interrupt;
read inputs;
compute outputs;
update state;
write outputs;
end while;
Myths about synchronous models

• But:
 – The synchronous cycles could be interpreted as discrete time: 0, 1, 2, 3, …, in which case we have a discrete-time semantics…
 – … and this can also be seen as an abstraction of real-time:
 – C.f. timing analysis of digital circuits
 – C.f. WCET analysis of synchronous control loops
Myths about synchronous models

• Synchronous models are non-implementable (because zero-time is impossible to achieve)
 – Hein?
Benefits of synchronous models

• Often more light-weight than asynchronous
 – No interleaving => less state explosion
• Often deterministic
 – Easier to understand, easier to verify
• SW implementations:
 – No operating system required
 – Static scheduling, no memory allocations, no dynamic creation of processes, ...
• Simple timing/schedulability analysis
 – Often simple WCET analysis also: no loops
Asynchronous vs. Synchronous Product

component automata

asynchronous product

synchronous product
Lecture plan

• Part 1: Single-rate synchronous models
• Part 2: Multi-rate synchronous models
• Part 3: Feedback and Causality
Part 1: Single-rate synchronous models

• Moore/Mealy machines
• Synchronous block diagrams
 – Inspired by discrete-time Simulink, and SCADE
• Lustre
• Esterel
Moore Machines

- States: \(\{q_0, q_1, q_2, q_3\}\)
- Initial state: \(q_0\)
- Input symbols: \(\{x, y, z\}\)
- Output symbols: \(\{a, b, c\}\)
- Output function:
 - Out : States \(\rightarrow\) Outputs
- Transition function:
 - Next: States \(x\) Inputs \(\rightarrow\) States

\[\text{Where is the synchronous round here?}\]
Moore machine: a circuit view

\[x(n) \rightarrow \text{Next} \rightarrow \text{Out} \rightarrow y(n) \]

\[s(n) \rightarrow \text{clock} \]
Mealy Machines

- States: \{S0, S1, S2\}
- Initial state: S0
- Input symbols: \{0,1\}
- Output symbols: \{0,1\}
- Output function:
 - Out : States × Inputs → Outputs
- Transition function:
 - Next: States × Inputs → States

Where is the synchronous round here?
Mealy machine: a circuit view

Is this a “purely synchronous” model?
Moore vs. Mealy machines

Moore or Mealy?

Moore or Mealy?
Moore vs. Mealy machines

• Every Moore machine is also a Mealy machine
 – Why?

• Is it possible to transform a Mealy machine to a Moore machine?
Synchronous block diagrams

- Physical models often described in continuous-time
- Controller part (e.g., Transmission Control Unit) is discrete-time
Synchronous block diagrams

Modeling an Automatic Transmission Controller

Double-click to open the GUI and select a maneuver.

Copyright 1990-2005 The MathWorks Inc.
Example: FIR filter

\[y(n) = \frac{1}{3} x(n) + \frac{1}{3} x(n-1) + \frac{1}{3} x(n-2) \]

\[y(n) = \frac{1}{3} x(n) + \frac{1}{3} S_1(n) + \frac{1}{3} S_2(n) \]

\[S_1(n+1) = x(n) \]

\[S_2(n+1) = S_1(n) \]

\[S_1(0) = \text{initial state} \]

\[S_2(0) = \text{initial state} \]

What is the Mealy machine for this diagram?
Hierarchy in synchronous block diagrams
Hierarchy in synchronous block diagrams

Fundamental modularity concept
Semantics of hierarchical SBDs

• Can we define the semantics of a composite SBD as a Mealy machine?
 – In particular, with a pair of (Out, Next) functions?
Problem with “monolithic” semantics

False I/O dependencies

=>

Model not usable in some contexts

\[
P.\text{out}(x_1, x_2) \text{ returns } (y_1, y_2)\\
\{\\
y_1 := A.\text{out}(x_1);\\ny_2 := B.\text{out}(x_2);\\n\text{return } (y_1, y_2);\\n\}\n\]
Solution

• Generalize from a single, to MANY output functions

```
P.out1( in1 ) returns out1 {
    return A.out( in1 );
}

P.out2( in2 ) returns out2 {
    return B.out( in2 );
}
```
Lustre

• The FIR filter in Lustre:

```plaintext
node fir (x : real) returns (y : real);
var
  s1, s2 : real;
let
  s1 = 0 -> pre x;
  s2 = 0 -> pre s1;
  y = x/3 + s1/3 + s2/3;
tel
```

![Diagram of the FIR filter](image)
Lustre

• The FIR filter in Lustre:

```plaintext
node fir (x : real) returns (y : real);
var
  s1, s2 : real;
let
  s1 = 0 -> pre x;
  s2 = 0 -> pre s1;
  y = x/3 + s1/3 + s2/3;
tel
```

![FIR filter diagram](image)
Lustre

• The FIR filter in Lustre:

```lustre
node fir (x : real) returns (y : real);
var
  s1, s2 : real;
let
  y = x/3 + s1/3 + s2/3;
  s2 = 0 -> pre s1;
  s1 = 0 -> pre x;
tel
```

What has changed? Is this correct?
Lustre

• The FIR filter in Lustre (no explicit state vars):

```plaintext
node fir (x : real) returns (y : real);
let
  y = x/3
  + (0 -> pre x)/3
  + (0 -> (0 -> pre pre x))/3;
 tel
```

![Diagram of the FIR filter](image-url)
Esterel

• The FIR filter in Esterel:

```plaintext
module FIR:
    input x : double;
    output y : double;

var s1 := 0 : double, s2 := 0 : double in
    loop
        await x ;
        emit y(x/3 + s1/3 + s2/3) ;
        s2 := s1 ;
        s1 := x ;
    end loop
end var.
```
Esterel

• The FIR filter in Esterel:

```esterel
module FIR:
    input  x : double;
    output y : double;

var s1 := 0 : double, s2 := 0 : double in
loop
    await x ;
    emit y(x/3 + s1/3 + s2/3) ;
    s1 := x ;
    s2 := s1 ;
end loop
end var.
```

What has changed? Is this correct?
Esterel

• A speedometer in Esterel:

```plaintext
module SPEEDOMETER:
    input sec, cm;                   % pure signals
    output speed : double;          % valued signal
loop
    var cpt := 0 : double in
    abort
        loop
            await cm;
            cpt := cpt + 1.0
        end loop
    when sec do
        emit speed(cpt)
    end abort
end var
end loop.
```
Lustre

• The speedometer in Lustre:

```lustre
node speedometer(sec, cm: bool) returns (speed: real);
var
  cpt1, cpt2 : int;
  sp1, sp2 : real;
let
  cpt1  = counter(cm, sec);
  sp1   = if sec then real(cpt1) else 0.0;
  cpt2  = counter(sec, cm);
  sp2   = if (cm and (cpt2 > 0))
    then 1.0/(real(cpt2))
    else 0.0;
  speed = max(sp1, sp2);
tel
```
Part 2: Multi-rate synchronous models

- Synchronous block diagrams with triggers
 - Inspired by discrete-time Simulink, and SCADE
- Lustre with \textit{when/current}
- What about Esterel?
Triggered and timed synchronous block diagrams

• Motivated by Simulink, SCADE
Triggered synchronous block diagrams

multi-rate models:

- B executed only when trigger = true
- All signals “present” always
- But not all updated at the same time
- E.g., output of B updated only when trigger is true

Question: do triggers increase expressiveness?
Trigger elimination
Trigger elimination: atomic blocks

(a) eliminating the trigger from a combinational atomic block

(b) eliminating the trigger from a unit-delay
Timed diagrams

“static” multi-rate models
Timed diagrams = \textbf{statically} triggered diagrams

where produces: true, false, true, false, …
Multi-clock synchronous programs in Lustre

• Then \textbf{when} and \textbf{current} operators:

\begin{verbatim}
node A(x: int, b: bool) returns (y: int);
let
 y = current (x when b);
tel
\end{verbatim}

\begin{verbatim}
x: 0 1 2 3 4 5 ...
b: T F T F F T ...
x when b: 0 2 5 ...
y: 0 0 2 2 2 5 ...
\end{verbatim}
Multi-clock synchronous programs in Lustre

node A(x1,x2: int, b: bool) returns (y: int);
let
 y = x1 + (x2 when b);
tel

What is the meaning of this program?
Forbidden in Lustre
Multi-clock synchronous programs in Lustre

• In Lustre, every signal has a clock = “temporal” type

• The clock-calculus: a sort of type checking
 – Only signals with same clock can be added, multiplied, ...
 – How to check whether two clocks (i.e., boolean signals) are the same?
 • Problem undecidable in general
 • In Lustre, check is syntactic
Multi-rate in Esterel

```merlin
Mul6-rate
in
Esterel
53
every 1000 MILLISEC do
  emit SEC
end
||
every 1000 MILLIMETER do
  emit METER
end
```
Part 3: Feedback and Causality

• Vanilla feedback:
 – Cyclic dependencies “broken” by registers, delays, ...

• Unbroken cyclic dependencies:
 – Lustre/SBD solution: forbidden
 – Esterel/HW solution: forbidden unless if it makes sense
 • Malik’s example
 • Constructive semantics
Feedback in Lustre

node counter() returns (c : int);
let
c = 0 -> (pre c) + 1;
tel

node counter() returns (c : int);
let
c = 0 -> c + 1;
tel

OK

Rejected
Feedback in Synchronous Block Diagrams

• Same as Lustre:

Rejected, unless A or B is Moore machine
What about this?

Cyclic combinational circuit.
Useful: equivalent acyclic circuit is almost 2x larger

z = if c then
 F(G(x))
else
 G(F(x))

[Malik’94]
Can we give meaning to cyclic synchronous models?

• Think of them as fix-point equations:
 \(-x = F(x)\)

• What is the meaning of these:
 \(-x = \text{not } x\)
 \(-x = x\)

• Is unique solution enough?
 \(-x = x \text{ or not } x\)
Constructive semantics

• Reason in constructive logic instead of classical logic
• “x or not x” not an axiom
• Then we cannot prove x=1 from:
 \[-x = x \text{ or not } x\]
Constructive semantics

• Fix-point analysis in a flat CPO:
 – Start with “bottom” (undefined), iterate until fix-point is reached:
 • Guaranteed in finite number of iterations, because no. signals and no. values are both finite
 – If solution contains no undefined values, then circuit is constructive

• In our example:
 – $x = x$ or not x
 – Bottom is the fix-point
 – Circuit not constructive
Constructive semantics: theoretical basis

• Kleene fixed point theorem:
 – Let L be a CPO and $f : L \rightarrow L$ be a \textit{continuous} (and therefore \textit{monotone}) function. Then f has a least fixed point equal to $\sup \{ \text{bot}, f(\text{bot}), f(f(\text{bot})), \ldots \}$

• In our flat CPO, continuous = monotone:
 – Non-monotone: $f(\text{bot}) > f(a)$, where a is not bot
 – Not a realistic function

• In out flat CPO, termination is guaranteed.
Constructive semantics

• Another example:
 \[-x = a \text{ and not } y\]
 \[-y = b \text{ and not } x\]

• Here we have external inputs, must try for all possible input combinations

• Exercise!
Summary

• Synchronous model of computation:
 – Widespread, many languages, many applications
 – Easier to understand, easier to verify (than asynchronous interleaving)
 – Interesting semantically

• To go further:
 – Interesting implementation problems: how to preserve the properties that the synchronous abstraction provides (determinism, values, ...) during implementation?
Questions?
References

• State machines (Moore, Mealy, ...):

• Synchronous block diagrams:
 – Lublinerman and Tripakis papers on modular code generation: available from http://www-verimag.imag.fr/~tripakis/publis.html

• Synchronous languages:

• Constructive semantics:

• General, overview: