
Interface Synthesis:
Convertibility Verification
and Converter Synthesis

Outline
  Motivations
   Interface verification
  Correctness specification
  Converter synthesis

– Automata based
– Game-theory based
– Trace-theory based

  Summary and Conclusions

Motivations
   Re-use strategy critical for cost and time-to-market
   Systems assembled from internal and third party IPs
   Correctness of composition must be verified

–  Costly simulations may still miss problems
–  Safety critical applications require a formal correctness proof

   Abstract component models used to specify the
requirements
–  Transaction Level Models shorten time-to-verification
–  Standards used to simplify the problem

   Formal proofs usually based on type systems
–  Typically only limited to static information

Behavioral Types
   Define the protocol of interaction

–  Includes dynamic behavior as well as static typing
information

   Distinguishes I/O behavior so that
–  it defines assumptions on the accepted inputs,
–  it provides guarantees on the generated outputs

   Compatibility defined
–  Two IPs are compatible if the output guarantees of

one satisfy (or imply) the input assumptions of the
other

Consumer
Possibly wait between a and b

Producer
Send b immediately after a

Example

b

T

a

0

1

b

T

a

T

0

1

Data partitioned into two parts: a and b

Observations
   The problem of checking compatibility can be set up as a game
   Here reduced to checking trace containment

–  Producer Outputs ⊆ Consumer Inputs
   For open systems the procedure must include the environment

–  Helpful environments are used to decide compatibility and to compute
the input assumptions and output guarantees of the composite

   Symbols are used to represent data
–  Data must be represented explicitly when the protocol depends on the

values
   Some mechanism in the implementation must signal whether a

or b is being transferred
–  We don’t need to be specific at this level of description
–  Any mechanism will do (toggling bits, additional signal, etc.)

Consumer
Must receive b immediately after a

b

T

a

0

1

Example revisited

Producer
Possibly wait between a and b

b

T

a

T

0

1

Data partitioned into two parts: a and b

Adapter

Compatibility
   The protocols are incompatible

–  Direct connection leads to (possible) failure
   The interaction can be mediated by an adapter

–  Potentially makes the system globally compatible
   Compatibility redefined

–  Two IPs are compatible if the output guarantees of one can be used to
satisfy the input assumptions of the other

   There are many possible adapters
–  Liberally generate legal transactions on the receiver side and accept all

transactions on the producer side
–  Probably not what we want!

   Need a strategy to design a correct adapter
–  Need to understand what the word “correct” really means

Converter Synthesis
   Borriello et al, 1988

–  Timing diagram based
   Narayan et al, 1995

–  Language based

   Passerone et al, 1998
–  Automata based

   Smith et al, 1998
–  FIFO based

   In all cases the semantics of a correct
conversion is embedded in the algorithm

Correctness Specification

a b T a’ b’ T’ Producer
Protocol

Consumer
Protocol Converter

(synthesized)

Correctness Specification
(transaction monitor)

a b T a’ b’ T’

   Extend converter synthesis with a correctness specification
–  Provides the notion of compatibility

   Correctness embodied by a transaction monitor
–  Defines the correct interactions
–  Monitors signals from both the producer and the consumer

Observations
   The converter must conform to the correctness

specification
–  But the specification does not define how the conversion should

be done

   Example of specification
–  No symbol should be discarded or duplicated
–  Symbols must be delivered in the order in which they are

received
–  Only one symbol can be in flight at any time

   But does not require that, for example
–  b follows a, and a follows b

(T,T’) (a,a’) (b,b’)

(a,T’)

(a,a’)
(T,T’)

(T,a’)

(a,b’)

(T,b’)
(b,T’)

(b,b’)
(T,T’)

(b,a’)

0

a b

Example

No data in transit

“a” transmitted
but not received

“b” transmitted
but not received

Outline
  Motivations
   Interface verification
  Correctness specification
  Converter synthesis

– Automata based
– Game-theory based
– Trace-theory based

  Summary and Conclusions

Converter Synthesis
   Start from the product of the interacting protocols

–  Most general form of the converter
–  It adapts the producer and consumer protocols without

synchronization

   Make the converter conform to the specification
–  Must remove transitions from the product that are not allowed by

the specification

   Ensure that the converter is responsive (receptive)
to the producer protocol
–  It must accept all possible transactions

Product Computation

b

T

a

T

b’ T’
a’

T/T’

T/T’

a/T’

b/T’

T/a’

T/b’

b/b’

a/a’
a/b’

b/a’

T/a’

T/b’

Conformance to Specification

T/T’

T/T’

a/T’

b/T’

T/a’

T/b’

a/a’
a/b’

b/a’

T/a’

(T,T’) (a,a’) (b,b’)

(a,T’)

(a,a’)
(T,T’)

(T,a’)

(a,b’)

(T,b’)
(b,T’)

(b,b’)
(T,T’) (b,a’)

0

a b

Converter Specification

0 b

a

b/b’

T/b’
0

Final converter

b

T

a

T

b’ T’
a’

T/T’

T/T’

a/T’

T/b’

a/b’

b/a’

Outline
  Motivations
   Interface verification
  Correctness specification
  Converter synthesis

– Automata based
– Game-theory based
– Trace-theory based

  Summary and Conclusions

Game theoretic formulation

P
ro

du
ce

r
C

on
su

m
er

C
onverter S

pe
ci

fic
at

io
n

Player 1 Player 2

Game played between
the protocols and the
specification on one
side, and the converter
on the other

Game structure

P
ro

du
ce

r
C

on
su

m
er

C
onverter S

pe
ci

fic
at

io
n

Player 1 Player 2

Game structure Transition system
such that each state
–  gives the available

moves for the
producer,

–  gives the available
responses for the
converter

Some states in the
game structure have
an empty set of
available responses
–  They correspond to the

illegal states in the
product machine

Playing the game

P
ro

du
ce

r
C

on
su

m
er

C
onverter S

pe
ci

fic
at

io
n

Player 1 Player 2

move 1

move 2

• Player 1 starts the
game by choosing a
move available from
the producer

Game structure

• Player 2 responds
with a move allowed
by consumer and
specification

• The game transitions
to a new state given
the two moves

Winning the game
   Winning the game

–  Player 1 wins if it can steer the game to a state where
Player 2 (the converter) has no moves

–  Player 2 wins if it can always steer the game to a
state where it has moves

–  Players can play according to a strategy

   A converter is a winning strategy for Player 2
–  If a winning strategy does not exist, then the protocols

are incompatible
–  Game solved via traditional game theory results
–  Complexity linear in the size of the game structure

Game theory: advantages
   Game theory a more general basis for the definition

of the problem
–  The approach is abstract and generic
–  Can easily be extended to multi-player scenarios
–  Limited information scenarios also studied in the literature

   Generalizes to more expressive specifications
–  Can add fairness constraints without changing the theory
–  Omega-regular games are well studied
–  Computational complexity increases

   Tools for solving games already available

(T,T’) (a,a’) (b,b’)

(a,T’)

(T,T’)

(T,a’)

(a,b’)

(T,b’)

(b,T’)

(T,T’)

(b,a’)

0

a b

Fairness Example

aa
(T,T’)

(T,a’)

(a,a’)

(a,a’)
bb

(b,a’) (a,b’)

(T,T’)

(b,b’)

(T,b’)

(b,b’)

 ¬a ∧ ¬aa ∧ ¬b ∧ ¬bb

Outline
  Motivations
   Interface verification
  Correctness specification
  Converter synthesis

– Automata based
– Game-theory based
– Trace-theory based

  Summary and Conclusions

Receptiveness and failures
   The models described so far are not receptive

–  This is intended to constrain the behaviors of the environment to
only those that are “acceptable”

–  This is unlike, for example, I/O Automata

   We would like to recover receptiveness by explicitly
modeling the occurrence of a failure

   Dill’s trace structures
–  A trace is either a success or a failure
–  A trace structure contains a set of success traces and a set of

failure traces
–  Trace structures must be receptive

Example of failures

Receiving an a or b at the wrong time causes a failure

b

T

a

T

0

1

F

b

a

a
b
T

Failures and composition
   A trace structure that has no failures is said to be

“failure-free”
   A trace structure that has failures can still be used!

–  It is enough to compose it with an environment that does not
excite the failure

–  We also refer to them as “helpful” environments

   Successes and failures thus implicitly function as
the input requirements and the output guarantees of
a behavior type
–  We can use the property of failure-freedom to define the notion

of satisfaction of a specification

Conformance

T’ T

Failure-Free Failure-Free

   T conforms to T’ if and only if, for all possible environments E
–  if T’ makes E failure free
–  then T makes E failure free

Conformance

T’

Failure-Free

   T conforms to T’ if and only if, for all possible environments E
–  if T’ makes E failure free
–  then T makes E failure free

T

Failure-Free

Conformance

T’

Failure-Free

   T conforms to T’ if and only if, for all possible environments E
–  if T’ makes E failure free
–  then T makes E failure free

T

Failure-Free

Mirror
   Checking conformance involves considering all

possible environments
–  Too complex

   Conformance can be characterized by a single
trace structure
–  The maximal environment that makes the composition

failure-free
–  This environment is called a mirror

   Result
–  T ≤ T’ if and only if
–  T || mirror(T’) is failure-free.

Mirror

T’

Failure-Free

   Result
–  T ≤ T’ if and only if
–  T || mirror(T’) is failure-free.

T

Failure-Free

Conversion as Rectification

(a b) (a’ b’) Producer
Protocol

(handshake)

Consumer
Protocol
(serial)

Converter

Correctness Specification (a b) (a’ b’)

T’

T

C ≤ mirror(H || S || mirror(spec))

General formulation
   Experimented with Dill’s trace theory verifier

–  Applicable to both synchronous and asynchronous systems

   Generalized trace theory to arbitrary models of
computation
–  The model must satisfy the axioms of trace algebras
–  The axioms provide the necessary assumptions to prove the

rectification in a more general setting

   Future research
–  Models as algebras can be related by homomorphisms
–  Considering rectification across models of computation

Applications
   What are the potential applications?

–  Composition verification
–  Protocol conversion
–  Domain conversion/mix-mode simulation
–  Design of communication independent IPs
–  Test bench generation (master and slave)
–  Mixed transaction/signal level simulation for accuracy/

performance tradeoffs
–  Stack layer synthesis
–  Bus bridge synthesis

Tool support

   Tool support is important!
–  Have demonstrated a prototype in 1998
–  Have been focusing mostly on the theory

   Need complementary technologies
–  Shimizu et al. presented monitor specs for protocols
–  Siegmund et al. presented work on transaction based

verification in SystemC based on regular expressions
–  Need to put all these technologies into a coherent

framework for IP-based design

Summary
   Compatibility rephrased in terms of the existence of an adapter

–  Interface verification requires synthesizing the converter

   Correctness expressed in terms of a specification
–  Reordering, buffering, latency, etc.

   Converter synthesis extended to account for the specification
–  Synthesis problem cast and solved as a game

–  Game theory a more general basis for formulating the problem

Abstract Correctness Specification

(a b) (a’ b’) Producer
Protocol

(handshake)

Consumer
Protocol
(serial)

Converter
(synthesized)

Correctness Specification
(transaction monitor)

(a b) (a’ b’)

