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Basics (see papers)

Two approaches to metamodeling:
– Traditional

• Modeling of modeling languages including the 
languages’concrete syntax (notations), abstract syntax, 
and semantics. 

• Metamodels determine the set of valid models that can be 
defined with models’ language and behavior in a particular 
domain. 

• Generic functions in model-based design such as model 
building, model transformation, and model management 
are supported by metaprogrammable tools. 

• The tools’ core functions are independent from the 
particular DSMLs and can be instantiated using 
metamodels.

– Models of Computation-based
Copyright A. Sangiovanni-Vincentelli



Why is Metamodeling Important?
• Advantages of Domain Specific Modeling• Advantages of Domain-Specific Modeling

– Familiar, relevant modeling concepts, relationships, and 
presentation

– Customized modeling constraintsCustomized modeling constraints
– Tailored Scope
– Custom analysis capabilities and system artifact generation
– Correctness-by-constructiony
– “The right tool for the job”

• BUT, it is expensive and time-consuming to create 
e odeli l e d tool f o t h!new modeling languages and tools from scratch!

– E.G., a custom modeling environment for co-designing the 
hardware and software for a specific type of missile

– E G a custom modeling environment for documenting theE.G., a custom modeling environment for documenting the 
architecture of one particular system
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How Does Metamodeling Help?
• Metamodeling Language: A modeling language used• Metamodeling Language: A modeling language used 

to specify other modeling languages

• Applies the benefits of domain-specific modeling to• Applies the benefits of domain-specific modeling to 
the design of modeling languages
– Concepts and relationships key to specifying language syntax
– Constraints prevent users from building “non-sensical”Constraints prevent users from building non sensical  

languages
– Domain-specific modeling environments can be automatically 

generated from metamodels
API f i i d i l ti d l b– APIs for parsing, querying, and manipulating models can be 
generated as well

– Metamodels can easily be revised to update the 
language as program needs changeg g p g g
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What is a Metamodel?
A d l f th t f d li l• A model of the syntax of a modeling language
– Formal language specification artifact
– Domain conceptsp
– Domain relationships
– Domain-specific visualizations
– Domain-specific system design constraints– Domain-specific system design constraints

• Analogy: A metamodel is to a graphical modeling 
language what a BNE Grammar is to a textual 
language.

• Terminology: GME uses metamodels to generate 
paradigms which configure GME into a domain-paradigms, which configure GME into a domain-
specific modeling environment (DSME).

October 27, 2009
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Model-Integrated Computing
Key Idea: Capture intrinsic domain concepts with domain-specific 
modeling languages (DSML-s) and partition DSML-s into structural
and behavioral semantics.

The structural semantics 
l d  i ll  excludes semantically 

meaningless models. • The structural semantics views a model as a structure, and 
provides a means for calculating which structures are well-formed.

• The behavioral semantics defines what the structures 
do.

No operator was provided 
for composition of  values, 

 thi   d l i  so this merge model is 
semantically meaningless 
in this domain.



Specification of Structural 
Semantics of DSML-s

• GME, the metaprogrammable modeling tool of ISIS, supports rapid 
t ti f t d l d DSML d l

Abstract syntax of  
DSML-s are defined by 
metamodels. 
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 • Metamodels define the structural semantics 
of DSML-s: 

construction of metamodels and DSML models. Metamodeling languages 
provide structural 
semantics. 

Basic metamodeling notation: UML Class Diagram + OCL

OCL Constraints:
self.transTo->forAll(s | s <> self) 

A metamodeling language 
is one of  the DSML-s: is one of  the DSML s: 
the same tool can be used 
for modeling and 
metamodeling. 

MetaGME metamodel of simple statecharts Model-editor generated from metamodel



B h i l ti d fi d ith d l

Specification of Behavioral 
Semantics of DSML-s

C++ coding permits 
complex behavioral 
semantics, but the 
“ ifi i ”    

• Behavioral semantics are defined with model  
transformations and semantic anchoring.   ': YY

T RR 

“specifications”   are 
cluttered with C++ 
details.

Graph transformations 
provide a transparent 
mechanism to attach 
semantics  However  not semantics. However, not 
all behavioral semantics 
ca be specified this way.

Semantic anchoring with 
ASM captures the best 
of  both worlds: Simple 

h f igraph transformations 
and simple behavioral 
specifications.



Metaprogrammable Tools
M d l b d d l t i ti l!- Model-based development is practical!

- Domain specific abstractions are not only desirable; they 
are affordable

- DSML-s are not programming languagesDSML s are not programming languages

GME
Generic Model Editor (GME)

UDM
Model Management

Design Space 
Exploration

Best of Breed 

• Modeling Tools
• Simulators
• Verifiers
• Model Checkers

Meta
Models OTIF

 

BACKPLANE 

TOOL 

TOOL 
ADAPTOR

TOOL 

TOOL 
ADAPTOR 

TOOL 

TOOL 
ADAPTOR MANAGER 

METADATA 

DESERT
Component
Abstraction (TA)

Design Space
Modeling (MD)

Design Space
Encoding (TE)

Design Space
Pruning 

Design 
Decoding

Component
Reconstruction

Exploration

GReAT
Open Tool Integration
Framework

REGISTRATION/NOTIFICATION/TRANSFER SERVICES

SEMANTIC 
TRANSLATOR 

SEMANTIC 
TRANSLATOR 

Standard interface/ 
Protocol 

METADATA 

Model TransformationMIC Tool Suite



Semantics Metamodel
M C f l i t i ifi d i• MoCs are powerful in capturing specific designs, 
embedded electronic systems are inherently 
heterogeneous. g

• Modeling requires multiple MoC-specific models, thus 
making the overall system’s analysis problematic 
because its behavior is not a priori expressible in abecause its behavior is not a priori expressible in a 
mathematical formalism that can be inferred from the 
components’ MoCs.

• Semantics Metamodeling is a way to uniformly 
abstract away MoC specificities while consolidating 
MoC commonalities in the semantics metamodelMoC commonalities in the semantics metamodel. 

• It results in a mechanism to analyze and design 
complex systems without renouncing the properties 
of the components’ MoCs. 

Copyright A. Sangiovanni-Vincentelli



Metropolis MetamodelMetropolis Metamodel



Where We Are Headed

An Abstract Semantics

A Finer Abstract Semantics

A Concrete Semantics
(or Model of Computation)



Tagged Signal Abstract Semantics

Tagged Signal Abstract Semantics:

signal is a member of a set of signals, 
where the set depends on the model of 
computation and resolved data type of 
the connection

a “process” is a subset of the 
signals with which it interacts. the connection.

SS

g

21 SSP 

t b i t t t

11 Ss 22 Ss 

port may be an input or an output,
or neither or both. It is irrelevant.

This outlines a general abstract semantics that gets specialized. When it g g p
becomes concrete you have a
model of computation.



A Finer Abstraction Semantics

Functional Abstract Semantics:

a process is now a function from 
input signals to output signals.

SS

p g p g

21: SSF 

t i ith

11 Ss 22 Ss 

port is now either an
input or an output (or both).

This outlines an abstract semantics for deterministic producer/consumer actorsThis outlines an abstract semantics for deterministic producer/consumer actors.



Uses for Such an Abstract Semantics

• Give structure to the sets of signals
U th C t t i t t t i– e.g. Use the Cantor metric to get a metric 

space.

Gi t t t th f ti l• Give structure to the functional 
processes
– e.g. Contraction maps on the Cantor 

metric space.

• Develop static analysis techniques
– e.g. Conditions under which a hybrid 

systems is provably non-Zeno.



Another Finer Abstract Semantics

Process Networks Abstract Semantics:
t f i l id hi h llsets of signals are monoids, which allows 

us to incrementally construct them. E.g.
• stream
• event sequence

d i t

A process is a sequence of 
operations on its signals where the 
operations are the associative 
operation of a monoid • rendezvous points …

SS

operation of a monoid

21 SSP 

t i ith

11 Ss 22 Ss 

f port is now either an
input or an output or both.

This outlines an abstract semantics for actors constructed as processes that 

process is not necessarily functional 
(can be nondeterministic).

This outlines an abstract semantics for actors constructed as processes that 
incrementally read and write port data.



Concrete Semantics that Conform with the Process Networks 
Abstract Semantics

• Communicating Sequential Processes (CSP) 
[Hoare]

• Calculus of Concurrent Systems (CCS) [Milner]
• Kahn Process Networks (KPN) [Kahn]

Nondeterministic extensions of KPN [Various]• Nondeterministic extensions of KPN [Various]
• Actors [Hewitt]

Some Implementations:
• Occam, Lucid, and Ada languages, , g g
• Ptolemy Classic and Ptolemy II (PN and CSP 

domains)
S C• System C

• Metropolis



A Finer Abstract Semantics

Firing Abstract Semantics:

signals are monoids (can be 
incrementally constructed) (e.g. 
streams discrete event signals)

a process still a function from 
input signals to output signals, 
but that function now is defined 
in terms of a firing function. streams, discrete-event signals).

SS

in terms of a firing function.

21: SSF 

t i till ith

11 Ss 22 Ss 

port is still either an
input or an output.

The process function F is the least fixed point of a functional defined in terms The process function F is the least fixed point of a functional defined in terms 
of f.



Models of Computation that Conform to the Firing Abstract 
Semantics

f• Dataflow models (all variations)
• Discrete-event models

In Ptolemy II actors written to theIn Ptolemy II, actors written to the 
firing abstract semantics can be used 
with directors that conform only to thewith directors that conform only to the 
process network abstract semantics.

Such actors are said to be behaviorally 
l hipolymorphic.



A Still Finer Abstract Semantics

Stateful Firing Abstract Semantics:

a process still a function from 
input signals to output signals, 
but that function now is defined 
in terms of two functions.

signals are monoids (can be 
incrementally constructed) (e.g. 
streams discrete event signals)

SS

in terms of two functions.

21: SSF 
streams, discrete-event signals).

t i till ith

11 Ss 22 Ss 

21: SSf  state space port is still either an
input or an output.

The function f gives outputs in terms of inputs and the current state  The 

21f
1: Sg

state space

The function f gives outputs in terms of inputs and the current state. The 
function g updates the state.



Models of Computation that Conform to the Stateful Firing 
Abstract Semantics

S h ti• Synchronous reactive
• Continuous time
• Hybrid systems• Hybrid systems

Stateful firing supports iteration to a fixed point, which 
is required for hybrid systems modeling.

In Ptolemy II, actors written to the stateful firingIn Ptolemy II, actors written to the stateful firing 
abstract semantics can be used with directors that 
conform only to the firing abstract semantics or to the 
p ocess net o k abst act semanticsprocess network abstract semantics.

Such actors are said to be behaviorally polymorphic.



Where We Are

Tagged Signal Semantics

Process Networks Semantics

Firing Semanticsg Se a cs

Stateful Firing Semantics



Where We Are

Tagged Signal Semantics

Process Networks Semantics

Firing Semanticsg Se a cs

Stateful Firing SemanticsKahn process
networks

dataflow

networks discrete
events

synchronous/
reactive

hybrid systemsy y

continuous
time



Meta Frameworks: Ptolemy II

Tagged Signal Semantics

Process Networks Semantics

Firing Semanticsg Se a cs

Stateful Firing SemanticsKahn process
networks

dataflowPtolemy II emphasizes construction of “behaviorally 
polymorphic” actors with stateful firing semantics 

networks discrete
events

synchronous/
reactive

hybrid systems

(the “Ptolemy II actor semantics”), but also provides 
support for broader abstract semantic models via its 
abstract syntax and type system.y y

continuous
time



Meta Frameworks: Metropolis

Tagged Signal Semantics

Process Networks Semantics

Firing Semanticsg Se a cs

Stateful Firing SemanticsKahn process
networks

dataflowMetropolis provides a process networks abstract 
semantics and emphasizes formal description of networks discrete

events
synchronous/

reactive
hybrid systems

constraints, communication refinement, and joint 
modeling of applications and architectures.

y y

continuous
time



Metropolis MetamodelMetropolis Metamodel
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Metropolis Objects

• Metropolis elements adhere to a “separation of concerns” point of view.

• Processes (Computation)

Proc1P1 P2

Active Objects
Sequential Executing Thread

• Processes (Computation)

• Media (Communication)

I1 I2
Media1

Passive Objects
Implement Interface Services

• Quantity Managers (Coordination)

Copyright A. Sangiovanni-Vincentelli

QM1

Schedule access to 
resources and quantities



Metro. Netlists and Events Problem Statement
Approach
Contribution

Metropolis Architectures are created via two netlists:
• Scheduled – generate events1 for services in the scheduled netlist.
• Scheduling – allow these events access to the services and annotate

t ith titi

Proc1

Scheduled Netlist Scheduling Netlist

events with quantities.

Proc2

Event1 –
represents a

Related Work

Proc1

P1 Global
Time

Proc2

P2

represents a 
transition in the 
action automata 
of an object. Can 
b t t d

I1

be annotated
with any number 
of quantities. 
This allows 

Media1 QM1

I2 1 E Lee and A Sangiovanni-Vincentelli A Unified Framework for

performance 
estimation. 

Copyright A. Sangiovanni-Vincentelli

2 1. E. Lee and A. Sangiovanni-Vincentelli, A Unified Framework for 
Comparing Models of Computation,  IEEE Trans. on Computer 
Aided Design of Integrated Circuits and Systems, Vol. 17, N. 12, 
pg. 1217-1229, December 1998 



Key Modeling Concepts
An e ent is the f ndamental concept in the• An event is the fundamental concept in the 
framework
– Represents a transition in the action automata of an object
– An event is owned by the object that exports it
– During simulation, generated events are termed as event 

instances
E t b t t d ith b f titi– Events can be annotated with any number of quantities

– Events can partially expose the state around them, 
constraints can then reference or influence this state

A i d t t f f t• A service corresponds to a set of sequences of events
– All elements in the set have a common begin event and a 

common end event
A i b t i d ith t– A service may be parameterized with arguments

Copyright A. Sangiovanni-Vincentelli
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Action Automata
P t k ti• Processes take actions.
– statements and some expressions, e.g.

y = z+port.f();,  z+port.f(),  port.f(),  i < 10, …y p ();, p (), p (), ,
– only calls to media functions are observable actions

• An execution of a given netlist is a sequence of vectors ofAn execution of a given netlist is a sequence of vectors of 
events.
– event : the beginning of an action, e.g. B(port.f()), 

th d f ti E( t f()) ll Nthe end of an action, e.g. E(port.f()), or null N
– the i-th component of a vector is an event of the i-th 

processp

• An execution is legal if
it satisfies all coordination constraints and

Copyright A. Sangiovanni-Vincentelli

– it satisfies all coordination constraints, and
– it is accepted by all action automata.



Execution semantics
A ti t tAction automaton:

– one for each action of each process
• defines the set of sequences of events that can happen• defines the set of sequences of events that can happen 

in executing the action

– a transition corresponds to an event:
• it may update shared memory variables:

– process and media member variables
– values of actions-expressions

• it may have guards that depend on states of other action 
automata and memory variables

– each state has a self-loop transition witheach state has a self loop transition with 
the null N event.

– all the automata have their alphabets in 

Copyright A. Sangiovanni-Vincentelli

common:
• transitions must be taken together in different automata, 

if they correspond to the same event.



Action Automata

• y=x+1;

B y=x+1 B x+1 E x+1 E y=x+1
y:=Vx+1

B x+1 E x+1 E y=x+1
* = write y* * *

y=x+1

B x+1 E x+1 E y x+1
y:=any

B x+1 E x+1
Vx+1 :=x+1x+1 Vx+1 : x+1

E x+1
Vx+1 :=any

write x

0Vx+1 0
0
0

B y=x+1 B x+1 E x+1NN N E y=x+1

5
0
0

5
5
0

1
0
0

1
1
0

Vx+1
y
x

Copyright A. Sangiovanni-Vincentelli
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B y=x+1 B x+1 E x+1NN N E y=x+1



Process Network Abstract Semantics in Metropolis

MP1X Y P2X Y
Model Medium

process P{ interface reader extends Port{ interface writer extends Port{

Env1 Env2
Process

port reader X; 
port writer Y;
thread(){

update int read();
eval int n();

}

update void write(int i);
eval int space();

}
while(true){ 
...
z = f(X.read());

medium M implements reader, writer{
int storage;
int n, space;

Y.write(z);
}}}

void write(int z){
await(space>0; this.writer ; this.writer)

n=1; space=0; storage=z;
}}
word read(){ ... }

}Thanks to 
Doug Densmore



Leveraging the Abstract Semantics for Refinement 
Verification in Metropolis

Writer process Reader processwrite(), read()

Example: a unbounded FIFO  v.s. a bounded FIFO with the finer service.

Writer process Reader process

(), ()

Unbounded FIFO Level
Bounded FIFO Level

Y2T
write() Th,Wk

T2Y
read()

• Implement the upper level services 
using the current services

• Bounded FIFO API, e.g. release space, 
move data
• FIFO width and length parameterized

: refinement relation

• Metropolis represent both levels of abstraction explicitly, rather than replacing the upper level.p p p y, p g pp

• Refinement relation is associated with properties to preserve through the refinement.



Semantics summary

• Processes run sequential code concurrently, 
each at its own arbitrary pace.

• Read-Write and Write-Write hazards may cause 
unpredictable results

atomicity has to be explicitly specified– atomicity has to be explicitly specified.

• Progress may block at synchronization points
– awaits
– function calls and labels to which awaits or constraints refer.

• The legal behavior of a netlist is given by a set 
f fof sequences of event vectors.
– multiple sequences reflect the non-determinism of the 

semantics:

Copyright A. Sangiovanni-Vincentelli
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Metropolis Architecture RepresentationMetropolis Architecture Representation



Architecture components
An architecture component specifies services i eAn architecture component specifies services, i.e.

• what it can do 
• how much it costs

Copyright A. Sangiovanni-Vincentelli



Meta-model: architecture components
An architecture component specifies services i eAn architecture component specifies services, i.e.

• what it can do:
interfaces, methods, coordination (awaits, constraints), netlists

• how much it costs:
quantities, annotated with events, related over a set of events

interface BusMasterService extends Port {
update void busRead(String dest, int size);
update void busWrite(String dest, int size);

medium Bus implements BusMasterService …{
port BusArbiterService Arb;

}

port MemService Mem; …
update void busRead(String dest, int size) {

if(dest== … ) Mem.memRead(size);
}

Copyright A. Sangiovanni-Vincentelli

}

…



Meta-model: quantities
The domain D of the quantity e g real for the global time• The domain D of the quantity, e.g. real for the global time,

• The operations and relations on D, e.g. subtraction, <, =,

• The function from an event instance to an element of D,

• Axioms on the quantity, e.g.

the global time is non-decreasing in a sequence of vectors of any 

feasible executionfeasible execution.
class GTime extends Quantity {

double t;
double sub(double t2, double t1){...}( , ){ }
double add(double t1, double t2){…}
boolean equal(double t1, double t2){ ... }
boolean less(double t1, double t2){ ... }
double A(event e int i){ }double A(event e, int i){ ... }
constraints{
forall(event e1, event e2, int i, int j):
GXI.A(e1, i) == GXI.A(e2, j) -> equal(A(e1, i), A(e2, j)) &&

Copyright A. Sangiovanni-Vincentelli

GXI.A(e1, i) < GXI.A(e2, j) -> (less(A(e1, i), A(e2, j)) || 
equal(A(e1, i), A(e2. j)));

}}



Meta-model: architecture components
Thi d li h i i i i d d t f i• This modeling mechanism is generic, independent of services 
and cost specified.

• Which levels of abstraction, what kind of quantities, what kind of 
t t i t h ld b d t t hit tcost constraints should be used to capture architecture 

components?
– depends on applications:  on-going research

Transaction:Transaction:
Services:

- fuzzy instruction set for SW, execute() for HW 
- bounded FIFO (point-to-point)

Quantities:

CPU ASIC2ASIC1

Sw1 HwSw2 Hw

C-Ctl Channel Ctl C-Ctl
- #reads, #writes, token size, context switchesSw I/F Channel I/F

Wrappers
Bus I/F B-I/F

CPU-IOs Virtual BUS:
Services:

- data decomposition/composition

Physical:
S i f ll h t i tie g PIBus 32b

- data decomposition/composition
- address (internal v.s. external)

Quantities: same as above, different weights

Copyright A. Sangiovanni-Vincentelli

Services: full characterization
Quantities: time

e.g. PIBus 32b

e.g. OtherBus 64b...

RTOS



Quantity resolution
The 2-step approach to resolve quantities at each state of a netlist beingThe 2-step approach  to resolve quantities at each state of a netlist being 

executed:
1. quantity requests

for each process Pi, for each event e that Pi can take, find all the quantityfor each process Pi, for each event e that Pi can take, find all the quantity 
constraints on e.

In the meta-model, this is done by explicitly requesting quantity 
annotations at the relevant events, i.e. Quantity.request(event, 
requested quantities).

2. quantity resolution
find a vector made of the candidate events and a set of quantities 

t t d ith h f th t h th t th t t d titiannotated with each of the events, such that the annotated quantities 
satisfy:
– all the quantity requests, and

all the axioms of the Quantity types– all the axioms of the Quantity types.
In the meta-model, this is done by letting each Quantity type implement 
a resolve() method, and the methods of relevant Quantity types are 
iteratively called.

Copyright A. Sangiovanni-Vincentelli

y
– theory of fixed-point computation



Quantity resolution

• The 2-step approach is same as how schedulers work, e.g. OS 
schedulers, BUS schedulers, BUS bridge controllers.

• Semantically a scheduler can be considered as one that resolves• Semantically, a scheduler can be considered as one that resolves 
a quantity called execution index.

• Two ways to model schedulers: 
1 A1. As processes: 

– explicitly model the scheduling protocols using the meta-model 
building blocks
a good reflection of actual implementations– a good reflection of actual implementations

2. As quantities:
– use the built-in request/resolve approach for modeling the 

scheduling protocolsscheduling protocols
– more focus on resolution (scheduling) algorithms, than protocols: 

suitable for higher level abstraction models

Copyright A. Sangiovanni-Vincentelli



Architecture Modeling Related Work
1. David C. Luckham and James Vera, An Event-Based1. David C. Luckham and James Vera, An Event Based 

Architecture Definition Language , IEEE Transactions on 
Software Engineering, Vol. 21, No 9, pg. 717-734, Sep. 1995. 

2 Ingo Sander and Axel Jantsch System Modeling and2. Ingo Sander and Axel Jantsch, System Modeling and 
Transformational Design Refinement in ForSyDe, IEEE 
Transactions on CAD, Vol. 23, No 1, pg. 17-32, Jan. 2004.

3. Paul Lieverse, Pieter van der Wolf, Ed Deprettere, and Kees 
Vissers, A Methodology for Architecture Exploration of 
Heterogeneous Signal Processing Systems, IEEE Workshop in 
Signal Processing Systems, Taipei, Taiwan, 1999. ReturnSignal Processing Systems, Taipei, Taiwan, 1999. 

Metropolis Rapide1 ForSyDe2 SPADE3

Mapping x x x x

Return

Quantity Managers x No No No; collectors 
in bldg blocks

Event Based x x x No
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Pure Architecture Model x x No; 
Functional 
tied to Arch.

x



Programmable Arch. Modeling

• Computation Services

PPC405 Mi Bl S thSlS thM tPPC405 MicroBlaze SynthSlaveSynthMaster

Computation Services
Read (addr, offset, cnt, size), Write(addr, offset, cnt, size), 

( l )

• Communication Services
Processor On Chip

Execute (operation, complexity)

Communication ServicesProcessor
Local
Bus

(PLB)

On-Chip
Peripheral

Bus
(OPB)

BRAM
Communication Services
addrTransfer(target, master)
addrReq(base, offset, transType, device)
addrAck(device)

• Other Services dataTransfer(device, readSeq, writeSeq)
dataAck(device)

Copyright A. Sangiovanni-Vincentelli

OPB/PLB Bridge
Mapping 
Process

Task Before Mapping
Read (addr, offset, cnt, size)
Task After Mapping
Read (0x34, 8, 10, 4)



Programmable Arch. Modeling

• Coordination Services

PPC Sched OPB SchedPLB SchedMicroBlaze PPC Sched OPB SchedPLB SchedSched

BRAM Sched General SchedBRAM Sched General Sched

P C d()
Request (event e)

-Adds event to pending 

Resolve()

-Uses algorithm to select an 

PostCond()

-Augment event with information
(annotation). This is typically thep g

queue of requested events
g

event from the pending queue
(annotation). This is typically the 
interaction with the quantity manager

GTime

Copyright A. Sangiovanni-Vincentelli



Prog. Platform Characterization
Need to tie the model to actual implementation data!

1. Create template system 
description

p

description.

2. Generate many 
permutations of the 
architecture using this 
template and run themtemplate and run them 
through programmable 
platform tool flow.

3. Extract the desired 
performance information 

Copyright A. Sangiovanni-Vincentelli

from the tool reports for 
database population.



Prog. Platform Characterization
C t d t b ONCE i tCreate database ONCE prior to 
simulation and populate with 
independent (modular) 
information.

1. Data detailing 
performance based on 
physical implementationphysical implementation.

2. Data detailing the 
composition of 

From Char Flow Shown

communication transactions.

3. Data detailing the 
processing elements

From Metro Model Design

From ISS for PPC
1 Douglas Densmore Adam Donlin A Sangiovanni-Vincentelli FPGA Architecture Characterization in

processing elements 
computation.

Work with Xilinx Research Labs

Copyright A. Sangiovanni-Vincentelli

1. Douglas Densmore, Adam Donlin, A.Sangiovanni Vincentelli, FPGA Architecture Characterization in 
System Level Design, Submitted to CODES 2005.

2. Adam Donlin and Douglas Densmore, Method and Apparatus for Precharacterizing Systems for Use 
in System Level Design of Integrated Circuits, Patent Pending.



Modeling & Char. Review

Task1 Task2 Task3 Task4
Scheduling Netlist

DedHW SchedDEDICATED HW

S

Global
Time

PPC SchedPPC

PLB Sched

BRAM SchedBRAM

PLB

Scheduled Netlist Characterizer
Media (scheduled) Process

Copyright A. Sangiovanni-Vincentelli

( ) Process

Quantity Manager Quantity
Enabled Event

Disabled Event



Arch. Refinement Verification

• Architectures often involve hierarchy and multiple abstraction levels.
• These techniques are limited if it is not possible to check if elements in 

hierarchy or less abstract components are implementations of theirhierarchy or less abstract components are implementations of their 
counterparts.

• Asks “Can I substitute M1 for M2?”
1 Representing the internal structure of a component1. Representing the internal structure of a component.
2. Recasting an architectural description in a new style.
3. Applying tools developed for one style to another style.

Refinement Technique Description Metropolis

D. Garlan, Style-Based Refinement for Software Architectures, SIGSOFT 96, San Francisco, CA, pg. 72-75.

Style/Pattern Based Define template components. Prove they have a 
desired relationship once. Build arch. from them.

Potential; TTL 
YAPI

Event Based Properties (behaviors) expressed as event lists. 
Explicitly look for this event patterns.

Discussed
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Interface Based Create structure capturing all behavior of a 
components interface. Compare two models. 

Discussed



JPEG Encoder Function Model (Block Level)Example Design

1. Select an application 
and understand its 
behavior

3. Assemble an 
architecture from library 
services or create your 

Preprocessing DCT Quantization Huffman

behavior.

2. Create a Metropolis 
functional model which 

d l h b h

y
own services.

4. Map the 
functionality to the

5. Extract a structural 
file from the top level 
netlist of the

Mapping 
ProcessMapping 

Process

Mapping 
ProcessMapping 

Process

File for Xilinx EDK 
T l Fl

models this behavior.
functionality to the 
architecture.
netlist of the 
architecture created.

SynthMaster
Tool Flow

SynthSlave

Structure
Extractor Top Level Netlist

On-Chip
Peripheral

Bus
(OPB)

SynthSlave

MicroBlaze
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IP Library
(OPB)MicroBlaze

BRAMBRAM



Example Design Cont. Problem Statement
Approach
Contribution

File for Xilinx EDK 
Tool Flow

1. Feed the captured 
structural file to the 
permutation generator.

2. Feed the permutations to the 
Xilinx tools and extract the data.
3. Capture execution info for 
software and hardware services.
4. Provide transaction info for 
communication services.

Permutation Generator

Permutation 1 Permutation 2 Permutation N

Platform Characterization Tool (Xilinx EDK/ISE Tools)

Permutation 1 Permutation 2 Permutation N

ISS Info Char

Software Routines
int DCT (data){
Begin

Hardware Routines
DCT1 = 10 Cycles

Manual

Char
DataTransaction

Info

Begin
calculate …

…
} Automatic32 Bit Read = Ack, Addr, Data, Trans, Ack

Manual
y

DCT2 =5 Cycles
FFT = 5 Cycles
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Characterizer Database



Example Design Cont.
JPEG Encoder Function Model (Block Level)

Preprocessing DCT Quantization Huffman

JPEG Encoder Function Model (Block Level)

MappingM i Mapping

1. Simulate the design and observe 
the performance.

Backend Tool Process:
1. Abstract Syntax Tree (AST) retrieves 
structure.

SynthMasterMi Bl

Mapping 
Process
Mapping 
Process

Mapping 
ProcessMapping 

Process
Execution time 100ms
Bus Cycles 4000
Ave Memory Occupancy 500KB

structure.

2. Control Data Flow Graph - Depth
FORTE – Intel Tool
Reactive Models UC Berkeley

On-Chip
Peripheral

Bus

SynthMaster

SynthSlave

MicroBlaze 2. Refine design to meet performance 
requirements.

3 Use Refinement Verification to check
New Algorithm

Reactive Models – UC Berkeley

3. Event Traces – Refinement
Properties.

Bus
(OPB)

BRAMBRAM

3. Use Refinement Verification to check 
validity of design changes.

• Depth, Vertical, or Horizontal
• Refinement properties

BRAM

Depth
p
Vertical Refinement
Horizontal Refinement

ISS Info
Char

p p
Concurrent
Vertical 
Refinement 

V ifi ti
Execution time 200ms
B C l 1000

4. Re-simulate to see if your goals are 
met.
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Char
DataTransaction

Info

Verification
Tool

Yes? No?

Bus Cycles 1000
Ave Memory Occupancy 
100KB


