
MetamodelsMetamodels

Basics (see papers)

Two approaches to metamodeling:
– Traditional

• Modeling of modeling languages including the
languages’concrete syntax (notations), abstract syntax,
and semantics.

• Metamodels determine the set of valid models that can be
defined with models’ language and behavior in a particular
domain.

• Generic functions in model-based design such as model
building, model transformation, and model management
are supported by metaprogrammable tools.

• The tools’ core functions are independent from the
particular DSMLs and can be instantiated using
metamodels.

– Models of Computation-based
Copyright A. Sangiovanni-Vincentelli

Why is Metamodeling Important?
• Advantages of Domain Specific Modeling• Advantages of Domain-Specific Modeling

– Familiar, relevant modeling concepts, relationships, and
presentation

– Customized modeling constraintsCustomized modeling constraints
– Tailored Scope
– Custom analysis capabilities and system artifact generation
– Correctness-by-constructiony
– “The right tool for the job”

• BUT, it is expensive and time-consuming to create
e odeli l e d tool f o t h!new modeling languages and tools from scratch!

– E.G., a custom modeling environment for co-designing the
hardware and software for a specific type of missile

– E G a custom modeling environment for documenting theE.G., a custom modeling environment for documenting the
architecture of one particular system

October 27, 2009

3

How Does Metamodeling Help?
• Metamodeling Language: A modeling language used• Metamodeling Language: A modeling language used

to specify other modeling languages

• Applies the benefits of domain-specific modeling to• Applies the benefits of domain-specific modeling to
the design of modeling languages
– Concepts and relationships key to specifying language syntax
– Constraints prevent users from building “non-sensical”Constraints prevent users from building non sensical

languages
– Domain-specific modeling environments can be automatically

generated from metamodels
API f i i d i l ti d l b– APIs for parsing, querying, and manipulating models can be
generated as well

– Metamodels can easily be revised to update the
language as program needs changeg g p g g

October 27, 2009

4

What is a Metamodel?
A d l f th t f d li l• A model of the syntax of a modeling language
– Formal language specification artifact
– Domain conceptsp
– Domain relationships
– Domain-specific visualizations
– Domain-specific system design constraints– Domain-specific system design constraints

• Analogy: A metamodel is to a graphical modeling
language what a BNE Grammar is to a textual
language.

• Terminology: GME uses metamodels to generate
paradigms which configure GME into a domain-paradigms, which configure GME into a domain-
specific modeling environment (DSME).

October 27, 2009

5

Model-Integrated Computing
Key Idea: Capture intrinsic domain concepts with domain-specific
modeling languages (DSML-s) and partition DSML-s into structural
and behavioral semantics.

The structural semantics
l d i ll excludes semantically

meaningless models. • The structural semantics views a model as a structure, and
provides a means for calculating which structures are well-formed.

• The behavioral semantics defines what the structures
do.

No operator was provided
for composition of values,

 thi d l i so this merge model is
semantically meaningless
in this domain.

Specification of Structural
Semantics of DSML-s

• GME, the metaprogrammable modeling tool of ISIS, supports rapid
t ti f t d l d DSML d l

Abstract syntax of
DSML-s are defined by
metamodels.

 CrRrCYD

CRYL

Y

JiiY

),(

)(,,,

|

 • Metamodels define the structural semantics
of DSML-s:

construction of metamodels and DSML models. Metamodeling languages
provide structural
semantics.

Basic metamodeling notation: UML Class Diagram + OCL

OCL Constraints:
self.transTo->forAll(s | s <> self)

A metamodeling language
is one of the DSML-s: is one of the DSML s:
the same tool can be used
for modeling and
metamodeling.

MetaGME metamodel of simple statecharts Model-editor generated from metamodel

B h i l ti d fi d ith d l

Specification of Behavioral
Semantics of DSML-s

C++ coding permits
complex behavioral
semantics, but the
“ ifi i ”

• Behavioral semantics are defined with model
transformations and semantic anchoring. ': YY

T RR

“specifications” are
cluttered with C++
details.

Graph transformations
provide a transparent
mechanism to attach
semantics However not semantics. However, not
all behavioral semantics
ca be specified this way.

Semantic anchoring with
ASM captures the best
of both worlds: Simple

h f igraph transformations
and simple behavioral
specifications.

Metaprogrammable Tools
M d l b d d l t i ti l!- Model-based development is practical!

- Domain specific abstractions are not only desirable; they
are affordable

- DSML-s are not programming languagesDSML s are not programming languages

GME
Generic Model Editor (GME)

UDM
Model Management

Design Space
Exploration

Best of Breed

• Modeling Tools
• Simulators
• Verifiers
• Model Checkers

Meta
Models OTIF

BACKPLANE

TOOL

TOOL
ADAPTOR

TOOL

TOOL
ADAPTOR

TOOL

TOOL
ADAPTOR MANAGER

METADATA

DESERT
Component
Abstraction (TA)

Design Space
Modeling (MD)

Design Space
Encoding (TE)

Design Space
Pruning

Design
Decoding

Component
Reconstruction

Exploration

GReAT
Open Tool Integration
Framework

REGISTRATION/NOTIFICATION/TRANSFER SERVICES

SEMANTIC
TRANSLATOR

SEMANTIC
TRANSLATOR

Standard interface/
Protocol

METADATA

Model TransformationMIC Tool Suite

Semantics Metamodel
M C f l i t i ifi d i• MoCs are powerful in capturing specific designs,
embedded electronic systems are inherently
heterogeneous. g

• Modeling requires multiple MoC-specific models, thus
making the overall system’s analysis problematic
because its behavior is not a priori expressible in abecause its behavior is not a priori expressible in a
mathematical formalism that can be inferred from the
components’ MoCs.

• Semantics Metamodeling is a way to uniformly
abstract away MoC specificities while consolidating
MoC commonalities in the semantics metamodelMoC commonalities in the semantics metamodel.

• It results in a mechanism to analyze and design
complex systems without renouncing the properties
of the components’ MoCs.

Copyright A. Sangiovanni-Vincentelli

Metropolis MetamodelMetropolis Metamodel

Where We Are Headed

An Abstract Semantics

A Finer Abstract Semantics

A Concrete Semantics
(or Model of Computation)

Tagged Signal Abstract Semantics

Tagged Signal Abstract Semantics:

signal is a member of a set of signals,
where the set depends on the model of
computation and resolved data type of
the connection

a “process” is a subset of the
signals with which it interacts. the connection.

SS

g

21 SSP

t b i t t t

11 Ss 22 Ss

port may be an input or an output,
or neither or both. It is irrelevant.

This outlines a general abstract semantics that gets specialized. When it g g p
becomes concrete you have a
model of computation.

A Finer Abstraction Semantics

Functional Abstract Semantics:

a process is now a function from
input signals to output signals.

SS

p g p g

21: SSF

t i ith

11 Ss 22 Ss

port is now either an
input or an output (or both).

This outlines an abstract semantics for deterministic producer/consumer actorsThis outlines an abstract semantics for deterministic producer/consumer actors.

Uses for Such an Abstract Semantics

• Give structure to the sets of signals
U th C t t i t t t i– e.g. Use the Cantor metric to get a metric

space.

Gi t t t th f ti l• Give structure to the functional
processes
– e.g. Contraction maps on the Cantor

metric space.

• Develop static analysis techniques
– e.g. Conditions under which a hybrid

systems is provably non-Zeno.

Another Finer Abstract Semantics

Process Networks Abstract Semantics:
t f i l id hi h llsets of signals are monoids, which allows

us to incrementally construct them. E.g.
• stream
• event sequence

d i t

A process is a sequence of
operations on its signals where the
operations are the associative
operation of a monoid • rendezvous points …

SS

operation of a monoid

21 SSP

t i ith

11 Ss 22 Ss

f port is now either an
input or an output or both.

This outlines an abstract semantics for actors constructed as processes that

process is not necessarily functional
(can be nondeterministic).

This outlines an abstract semantics for actors constructed as processes that
incrementally read and write port data.

Concrete Semantics that Conform with the Process Networks
Abstract Semantics

• Communicating Sequential Processes (CSP)
[Hoare]

• Calculus of Concurrent Systems (CCS) [Milner]
• Kahn Process Networks (KPN) [Kahn]

Nondeterministic extensions of KPN [Various]• Nondeterministic extensions of KPN [Various]
• Actors [Hewitt]

Some Implementations:
• Occam, Lucid, and Ada languages, , g g
• Ptolemy Classic and Ptolemy II (PN and CSP

domains)
S C• System C

• Metropolis

A Finer Abstract Semantics

Firing Abstract Semantics:

signals are monoids (can be
incrementally constructed) (e.g.
streams discrete event signals)

a process still a function from
input signals to output signals,
but that function now is defined
in terms of a firing function. streams, discrete-event signals).

SS

in terms of a firing function.

21: SSF

t i till ith

11 Ss 22 Ss

port is still either an
input or an output.

The process function F is the least fixed point of a functional defined in terms The process function F is the least fixed point of a functional defined in terms
of f.

Models of Computation that Conform to the Firing Abstract
Semantics

f• Dataflow models (all variations)
• Discrete-event models

In Ptolemy II actors written to theIn Ptolemy II, actors written to the
firing abstract semantics can be used
with directors that conform only to thewith directors that conform only to the
process network abstract semantics.

Such actors are said to be behaviorally
l hipolymorphic.

A Still Finer Abstract Semantics

Stateful Firing Abstract Semantics:

a process still a function from
input signals to output signals,
but that function now is defined
in terms of two functions.

signals are monoids (can be
incrementally constructed) (e.g.
streams discrete event signals)

SS

in terms of two functions.

21: SSF
streams, discrete-event signals).

t i till ith

11 Ss 22 Ss

21: SSf state space port is still either an
input or an output.

The function f gives outputs in terms of inputs and the current state The

21f
1: Sg

state space

The function f gives outputs in terms of inputs and the current state. The
function g updates the state.

Models of Computation that Conform to the Stateful Firing
Abstract Semantics

S h ti• Synchronous reactive
• Continuous time
• Hybrid systems• Hybrid systems

Stateful firing supports iteration to a fixed point, which
is required for hybrid systems modeling.

In Ptolemy II, actors written to the stateful firingIn Ptolemy II, actors written to the stateful firing
abstract semantics can be used with directors that
conform only to the firing abstract semantics or to the
p ocess net o k abst act semanticsprocess network abstract semantics.

Such actors are said to be behaviorally polymorphic.

Where We Are

Tagged Signal Semantics

Process Networks Semantics

Firing Semanticsg Se a cs

Stateful Firing Semantics

Where We Are

Tagged Signal Semantics

Process Networks Semantics

Firing Semanticsg Se a cs

Stateful Firing SemanticsKahn process
networks

dataflow

networks discrete
events

synchronous/
reactive

hybrid systemsy y

continuous
time

Meta Frameworks: Ptolemy II

Tagged Signal Semantics

Process Networks Semantics

Firing Semanticsg Se a cs

Stateful Firing SemanticsKahn process
networks

dataflowPtolemy II emphasizes construction of “behaviorally
polymorphic” actors with stateful firing semantics

networks discrete
events

synchronous/
reactive

hybrid systems

(the “Ptolemy II actor semantics”), but also provides
support for broader abstract semantic models via its
abstract syntax and type system.y y

continuous
time

Meta Frameworks: Metropolis

Tagged Signal Semantics

Process Networks Semantics

Firing Semanticsg Se a cs

Stateful Firing SemanticsKahn process
networks

dataflowMetropolis provides a process networks abstract
semantics and emphasizes formal description of networks discrete

events
synchronous/

reactive
hybrid systems

constraints, communication refinement, and joint
modeling of applications and architectures.

y y

continuous
time

Metropolis MetamodelMetropolis Metamodel

Copyright A. Sangiovanni-

Metropolis Objects

• Metropolis elements adhere to a “separation of concerns” point of view.

• Processes (Computation)

Proc1P1 P2

Active Objects
Sequential Executing Thread

• Processes (Computation)

• Media (Communication)

I1 I2
Media1

Passive Objects
Implement Interface Services

• Quantity Managers (Coordination)

Copyright A. Sangiovanni-Vincentelli

QM1

Schedule access to
resources and quantities

Metro. Netlists and Events Problem Statement
Approach
Contribution

Metropolis Architectures are created via two netlists:
• Scheduled – generate events1 for services in the scheduled netlist.
• Scheduling – allow these events access to the services and annotate

t ith titi

Proc1

Scheduled Netlist Scheduling Netlist

events with quantities.

Proc2

Event1 –
represents a

Related Work

Proc1

P1 Global
Time

Proc2

P2

represents a
transition in the
action automata
of an object. Can
b t t d

I1

be annotated
with any number
of quantities.
This allows

Media1 QM1

I2 1 E Lee and A Sangiovanni-Vincentelli A Unified Framework for

performance
estimation.

Copyright A. Sangiovanni-Vincentelli

2 1. E. Lee and A. Sangiovanni-Vincentelli, A Unified Framework for
Comparing Models of Computation, IEEE Trans. on Computer
Aided Design of Integrated Circuits and Systems, Vol. 17, N. 12,
pg. 1217-1229, December 1998

Key Modeling Concepts
An e ent is the f ndamental concept in the• An event is the fundamental concept in the
framework
– Represents a transition in the action automata of an object
– An event is owned by the object that exports it
– During simulation, generated events are termed as event

instances
E t b t t d ith b f titi– Events can be annotated with any number of quantities

– Events can partially expose the state around them,
constraints can then reference or influence this state

A i d t t f f t• A service corresponds to a set of sequences of events
– All elements in the set have a common begin event and a

common end event
A i b t i d ith t– A service may be parameterized with arguments

Copyright A. Sangiovanni-Vincentelli

1. E. Lee and A. Sangiovanni-Vincentelli, A Unified Framework for Comparing Models of Computation,
IEEE Trans. on Computer Aided Design of Integrated Circuits and Systems, Vol. 17, N. 12, pg. 1217-1229, December 1998

Action Automata
P t k ti• Processes take actions.
– statements and some expressions, e.g.

y = z+port.f();, z+port.f(), port.f(), i < 10, …y p ();, p (), p (), ,
– only calls to media functions are observable actions

• An execution of a given netlist is a sequence of vectors ofAn execution of a given netlist is a sequence of vectors of
events.
– event : the beginning of an action, e.g. B(port.f()),

th d f ti E(t f()) ll Nthe end of an action, e.g. E(port.f()), or null N
– the i-th component of a vector is an event of the i-th

processp

• An execution is legal if
it satisfies all coordination constraints and

Copyright A. Sangiovanni-Vincentelli

– it satisfies all coordination constraints, and
– it is accepted by all action automata.

Execution semantics
A ti t tAction automaton:

– one for each action of each process
• defines the set of sequences of events that can happen• defines the set of sequences of events that can happen

in executing the action

– a transition corresponds to an event:
• it may update shared memory variables:

– process and media member variables
– values of actions-expressions

• it may have guards that depend on states of other action
automata and memory variables

– each state has a self-loop transition witheach state has a self loop transition with
the null N event.

– all the automata have their alphabets in

Copyright A. Sangiovanni-Vincentelli

common:
• transitions must be taken together in different automata,

if they correspond to the same event.

Action Automata

• y=x+1;

B y=x+1 B x+1 E x+1 E y=x+1
y:=Vx+1

B x+1 E x+1 E y=x+1
* = write y* * *

y=x+1

B x+1 E x+1 E y x+1
y:=any

B x+1 E x+1
Vx+1 :=x+1x+1 Vx+1 : x+1

E x+1
Vx+1 :=any

write x

0Vx+1 0
0
0

B y=x+1 B x+1 E x+1NN N E y=x+1

5
0
0

5
5
0

1
0
0

1
1
0

Vx+1
y
x

Copyright A. Sangiovanni-Vincentelli
Return

B y=x+1 B x+1 E x+1NN N E y=x+1

Process Network Abstract Semantics in Metropolis

MP1X Y P2X Y
Model Medium

process P{ interface reader extends Port{ interface writer extends Port{

Env1 Env2
Process

port reader X;
port writer Y;
thread(){

update int read();
eval int n();

}

update void write(int i);
eval int space();

}
while(true){
...
z = f(X.read());

medium M implements reader, writer{
int storage;
int n, space;

Y.write(z);
}}}

void write(int z){
await(space>0; this.writer ; this.writer)

n=1; space=0; storage=z;
}}
word read(){ ... }

}Thanks to
Doug Densmore

Leveraging the Abstract Semantics for Refinement
Verification in Metropolis

Writer process Reader processwrite(), read()

Example: a unbounded FIFO v.s. a bounded FIFO with the finer service.

Writer process Reader process

(), ()

Unbounded FIFO Level
Bounded FIFO Level

Y2T
write() Th,Wk

T2Y
read()

• Implement the upper level services
using the current services

• Bounded FIFO API, e.g. release space,
move data
• FIFO width and length parameterized

: refinement relation

• Metropolis represent both levels of abstraction explicitly, rather than replacing the upper level.p p p y, p g pp

• Refinement relation is associated with properties to preserve through the refinement.

Semantics summary

• Processes run sequential code concurrently,
each at its own arbitrary pace.

• Read-Write and Write-Write hazards may cause
unpredictable results

atomicity has to be explicitly specified– atomicity has to be explicitly specified.

• Progress may block at synchronization points
– awaits
– function calls and labels to which awaits or constraints refer.

• The legal behavior of a netlist is given by a set
f fof sequences of event vectors.
– multiple sequences reflect the non-determinism of the

semantics:

Copyright A. Sangiovanni-Vincentelli

concurrency, synchronization (awaits and constraints)

Metropolis Architecture RepresentationMetropolis Architecture Representation

Architecture components
An architecture component specifies services i eAn architecture component specifies services, i.e.

• what it can do
• how much it costs

Copyright A. Sangiovanni-Vincentelli

Meta-model: architecture components
An architecture component specifies services i eAn architecture component specifies services, i.e.

• what it can do:
interfaces, methods, coordination (awaits, constraints), netlists

• how much it costs:
quantities, annotated with events, related over a set of events

interface BusMasterService extends Port {
update void busRead(String dest, int size);
update void busWrite(String dest, int size);

medium Bus implements BusMasterService …{
port BusArbiterService Arb;

}

port MemService Mem; …
update void busRead(String dest, int size) {

if(dest== …) Mem.memRead(size);
}

Copyright A. Sangiovanni-Vincentelli

}

…

Meta-model: quantities
The domain D of the quantity e g real for the global time• The domain D of the quantity, e.g. real for the global time,

• The operations and relations on D, e.g. subtraction, <, =,

• The function from an event instance to an element of D,

• Axioms on the quantity, e.g.

the global time is non-decreasing in a sequence of vectors of any

feasible executionfeasible execution.
class GTime extends Quantity {

double t;
double sub(double t2, double t1){...}(,){ }
double add(double t1, double t2){…}
boolean equal(double t1, double t2){ ... }
boolean less(double t1, double t2){ ... }
double A(event e int i){ }double A(event e, int i){ ... }
constraints{
forall(event e1, event e2, int i, int j):
GXI.A(e1, i) == GXI.A(e2, j) -> equal(A(e1, i), A(e2, j)) &&

Copyright A. Sangiovanni-Vincentelli

GXI.A(e1, i) < GXI.A(e2, j) -> (less(A(e1, i), A(e2, j)) ||
equal(A(e1, i), A(e2. j)));

}}

Meta-model: architecture components
Thi d li h i i i i d d t f i• This modeling mechanism is generic, independent of services
and cost specified.

• Which levels of abstraction, what kind of quantities, what kind of
t t i t h ld b d t t hit tcost constraints should be used to capture architecture

components?
– depends on applications: on-going research

Transaction:Transaction:
Services:

- fuzzy instruction set for SW, execute() for HW
- bounded FIFO (point-to-point)

Quantities:

CPU ASIC2ASIC1

Sw1 HwSw2 Hw

C-Ctl Channel Ctl C-Ctl
- #reads, #writes, token size, context switchesSw I/F Channel I/F

Wrappers
Bus I/F B-I/F

CPU-IOs Virtual BUS:
Services:

- data decomposition/composition

Physical:
S i f ll h t i tie g PIBus 32b

- data decomposition/composition
- address (internal v.s. external)

Quantities: same as above, different weights

Copyright A. Sangiovanni-Vincentelli

Services: full characterization
Quantities: time

e.g. PIBus 32b

e.g. OtherBus 64b...

RTOS

Quantity resolution
The 2-step approach to resolve quantities at each state of a netlist beingThe 2-step approach to resolve quantities at each state of a netlist being

executed:
1. quantity requests

for each process Pi, for each event e that Pi can take, find all the quantityfor each process Pi, for each event e that Pi can take, find all the quantity
constraints on e.

In the meta-model, this is done by explicitly requesting quantity
annotations at the relevant events, i.e. Quantity.request(event,
requested quantities).

2. quantity resolution
find a vector made of the candidate events and a set of quantities

t t d ith h f th t h th t th t t d titiannotated with each of the events, such that the annotated quantities
satisfy:
– all the quantity requests, and

all the axioms of the Quantity types– all the axioms of the Quantity types.
In the meta-model, this is done by letting each Quantity type implement
a resolve() method, and the methods of relevant Quantity types are
iteratively called.

Copyright A. Sangiovanni-Vincentelli

y
– theory of fixed-point computation

Quantity resolution

• The 2-step approach is same as how schedulers work, e.g. OS
schedulers, BUS schedulers, BUS bridge controllers.

• Semantically a scheduler can be considered as one that resolves• Semantically, a scheduler can be considered as one that resolves
a quantity called execution index.

• Two ways to model schedulers:
1 A1. As processes:

– explicitly model the scheduling protocols using the meta-model
building blocks
a good reflection of actual implementations– a good reflection of actual implementations

2. As quantities:
– use the built-in request/resolve approach for modeling the

scheduling protocolsscheduling protocols
– more focus on resolution (scheduling) algorithms, than protocols:

suitable for higher level abstraction models

Copyright A. Sangiovanni-Vincentelli

Architecture Modeling Related Work
1. David C. Luckham and James Vera, An Event-Based1. David C. Luckham and James Vera, An Event Based

Architecture Definition Language , IEEE Transactions on
Software Engineering, Vol. 21, No 9, pg. 717-734, Sep. 1995.

2 Ingo Sander and Axel Jantsch System Modeling and2. Ingo Sander and Axel Jantsch, System Modeling and
Transformational Design Refinement in ForSyDe, IEEE
Transactions on CAD, Vol. 23, No 1, pg. 17-32, Jan. 2004.

3. Paul Lieverse, Pieter van der Wolf, Ed Deprettere, and Kees
Vissers, A Methodology for Architecture Exploration of
Heterogeneous Signal Processing Systems, IEEE Workshop in
Signal Processing Systems, Taipei, Taiwan, 1999. ReturnSignal Processing Systems, Taipei, Taiwan, 1999.

Metropolis Rapide1 ForSyDe2 SPADE3

Mapping x x x x

Return

Quantity Managers x No No No; collectors
in bldg blocks

Event Based x x x No

Copyright A. Sangiovanni-Vincentelli

Pure Architecture Model x x No;
Functional
tied to Arch.

x

Programmable Arch. Modeling

• Computation Services

PPC405 Mi Bl S thSlS thM tPPC405 MicroBlaze SynthSlaveSynthMaster

Computation Services
Read (addr, offset, cnt, size), Write(addr, offset, cnt, size),

(l)

• Communication Services
Processor On Chip

Execute (operation, complexity)

Communication ServicesProcessor
Local
Bus

(PLB)

On-Chip
Peripheral

Bus
(OPB)

BRAM
Communication Services
addrTransfer(target, master)
addrReq(base, offset, transType, device)
addrAck(device)

• Other Services dataTransfer(device, readSeq, writeSeq)
dataAck(device)

Copyright A. Sangiovanni-Vincentelli

OPB/PLB Bridge
Mapping
Process

Task Before Mapping
Read (addr, offset, cnt, size)
Task After Mapping
Read (0x34, 8, 10, 4)

Programmable Arch. Modeling

• Coordination Services

PPC Sched OPB SchedPLB SchedMicroBlaze PPC Sched OPB SchedPLB SchedSched

BRAM Sched General SchedBRAM Sched General Sched

P C d()
Request (event e)

-Adds event to pending

Resolve()

-Uses algorithm to select an

PostCond()

-Augment event with information
(annotation). This is typically thep g

queue of requested events
g

event from the pending queue
(annotation). This is typically the
interaction with the quantity manager

GTime

Copyright A. Sangiovanni-Vincentelli

Prog. Platform Characterization
Need to tie the model to actual implementation data!

1. Create template system
description

p

description.

2. Generate many
permutations of the
architecture using this
template and run themtemplate and run them
through programmable
platform tool flow.

3. Extract the desired
performance information

Copyright A. Sangiovanni-Vincentelli

from the tool reports for
database population.

Prog. Platform Characterization
C t d t b ONCE i tCreate database ONCE prior to
simulation and populate with
independent (modular)
information.

1. Data detailing
performance based on
physical implementationphysical implementation.

2. Data detailing the
composition of

From Char Flow Shown

communication transactions.

3. Data detailing the
processing elements

From Metro Model Design

From ISS for PPC
1 Douglas Densmore Adam Donlin A Sangiovanni-Vincentelli FPGA Architecture Characterization in

processing elements
computation.

Work with Xilinx Research Labs

Copyright A. Sangiovanni-Vincentelli

1. Douglas Densmore, Adam Donlin, A.Sangiovanni Vincentelli, FPGA Architecture Characterization in
System Level Design, Submitted to CODES 2005.

2. Adam Donlin and Douglas Densmore, Method and Apparatus for Precharacterizing Systems for Use
in System Level Design of Integrated Circuits, Patent Pending.

Modeling & Char. Review

Task1 Task2 Task3 Task4
Scheduling Netlist

DedHW SchedDEDICATED HW

S

Global
Time

PPC SchedPPC

PLB Sched

BRAM SchedBRAM

PLB

Scheduled Netlist Characterizer
Media (scheduled) Process

Copyright A. Sangiovanni-Vincentelli

() Process

Quantity Manager Quantity
Enabled Event

Disabled Event

Arch. Refinement Verification

• Architectures often involve hierarchy and multiple abstraction levels.
• These techniques are limited if it is not possible to check if elements in

hierarchy or less abstract components are implementations of theirhierarchy or less abstract components are implementations of their
counterparts.

• Asks “Can I substitute M1 for M2?”
1 Representing the internal structure of a component1. Representing the internal structure of a component.
2. Recasting an architectural description in a new style.
3. Applying tools developed for one style to another style.

Refinement Technique Description Metropolis

D. Garlan, Style-Based Refinement for Software Architectures, SIGSOFT 96, San Francisco, CA, pg. 72-75.

Style/Pattern Based Define template components. Prove they have a
desired relationship once. Build arch. from them.

Potential; TTL
YAPI

Event Based Properties (behaviors) expressed as event lists.
Explicitly look for this event patterns.

Discussed

Copyright A. Sangiovanni-Vincentelli

p y p

Interface Based Create structure capturing all behavior of a
components interface. Compare two models.

Discussed

JPEG Encoder Function Model (Block Level)Example Design

1. Select an application
and understand its
behavior

3. Assemble an
architecture from library
services or create your

Preprocessing DCT Quantization Huffman

behavior.

2. Create a Metropolis
functional model which

d l h b h

y
own services.

4. Map the
functionality to the

5. Extract a structural
file from the top level
netlist of the

Mapping
ProcessMapping

Process

Mapping
ProcessMapping

Process

File for Xilinx EDK
T l Fl

models this behavior.
functionality to the
architecture.
netlist of the
architecture created.

SynthMaster
Tool Flow

SynthSlave

Structure
Extractor Top Level Netlist

On-Chip
Peripheral

Bus
(OPB)

SynthSlave

MicroBlaze

Copyright A. Sangiovanni-Vincentelli

IP Library
(OPB)MicroBlaze

BRAMBRAM

Example Design Cont. Problem Statement
Approach
Contribution

File for Xilinx EDK
Tool Flow

1. Feed the captured
structural file to the
permutation generator.

2. Feed the permutations to the
Xilinx tools and extract the data.
3. Capture execution info for
software and hardware services.
4. Provide transaction info for
communication services.

Permutation Generator

Permutation 1 Permutation 2 Permutation N

Platform Characterization Tool (Xilinx EDK/ISE Tools)

Permutation 1 Permutation 2 Permutation N

ISS Info Char

Software Routines
int DCT (data){
Begin

Hardware Routines
DCT1 = 10 Cycles

Manual

Char
DataTransaction

Info

Begin
calculate …

…
} Automatic32 Bit Read = Ack, Addr, Data, Trans, Ack

Manual
y

DCT2 =5 Cycles
FFT = 5 Cycles

Copyright A. Sangiovanni-Vincentelli

Characterizer Database

Example Design Cont.
JPEG Encoder Function Model (Block Level)

Preprocessing DCT Quantization Huffman

JPEG Encoder Function Model (Block Level)

MappingM i Mapping

1. Simulate the design and observe
the performance.

Backend Tool Process:
1. Abstract Syntax Tree (AST) retrieves
structure.

SynthMasterMi Bl

Mapping
Process
Mapping
Process

Mapping
ProcessMapping

Process
Execution time 100ms
Bus Cycles 4000
Ave Memory Occupancy 500KB

structure.

2. Control Data Flow Graph - Depth
FORTE – Intel Tool
Reactive Models UC Berkeley

On-Chip
Peripheral

Bus

SynthMaster

SynthSlave

MicroBlaze 2. Refine design to meet performance
requirements.

3 Use Refinement Verification to check
New Algorithm

Reactive Models – UC Berkeley

3. Event Traces – Refinement
Properties.

Bus
(OPB)

BRAMBRAM

3. Use Refinement Verification to check
validity of design changes.

• Depth, Vertical, or Horizontal
• Refinement properties

BRAM

Depth
p
Vertical Refinement
Horizontal Refinement

ISS Info
Char

p p
Concurrent
Vertical
Refinement

V ifi ti
Execution time 200ms
B C l 1000

4. Re-simulate to see if your goals are
met.

Copyright A. Sangiovanni-Vincentelli

Char
DataTransaction

Info

Verification
Tool

Yes? No?

Bus Cycles 1000
Ave Memory Occupancy
100KB

