Overview of the Ptolemy Project

Edward A. Lee
Robert S. Pepper Distinguished Professor

EECS 249 Guest Lecture

Berkeley, CA
September 8, 2009

Elevator Speech

The Ptolemy project studies modeling, simulation,
and design of concurrent, real-time, embedded
systems. The focus is on assembly of concurrent
components. The key underlying principle in the
project is the use of well-defined models of
computation that govern the interaction between
components. A major problem area being
addressed is the use of heterogeneous mixtures of
models of computation. A software system called
Ptolemy |l is being constructed in Java, and serves
as the principal laboratory for experimentation.

Lee, Berkeley 2

The Ptolemy Project
Demographics, 2009

Sponsors:
o Government
National Science Foundation
Army Research Office
Air Force Research Lab
Air Force Office of Scientific Research
o Industry
Agilent
Bosch
HSBC
Lockheed-Martin
National Instruments
Toyota

History:

The project was
started in 1990, though
its mission and focus
has evolved
considerably. An open-
source, extensible
software framework
(Ptolemy Il) constitutes
the principal
experimental
laboratory.

Staffing:

o 1 professor

9 graduate students
3 postdocs

3 full-time staff

o
o
o
o several visitors

Lee, Berkeley 3

i Transportation
(Air traffic
s control at

| SFO)

Cyber-Physical Systems (CPS):
Orchestrating networked computational

resources with physical systems

Building Systems .
rw Telecommunications

Avionics

Automotive

\ooo

; ‘\nun
a

\ooo

oy -
B / Instrumentation

3 >
i i1
(4 9
sy ‘)
L/
RS o B
A 24 ~Z S

Factory automation

.- ~—

4 generation and
distribution

ﬁ‘ ‘ ‘Q‘h
e - e)
"y’ S~ L ¢7’,//“\l
- ‘
"— ' \\ Nk_ ’, _{’ PR \
- ' ’ S9! s .
7 § o’ & ! » 7,
, E
R R I RN e A
’ sy SST Sl N Ak £-- RAR
/ /, \ | ’ s -—"f " 17 ol
< P/ ’, W ==ty / ol
= T A Ry =T (V"< \
/ / "'\) - '\\\(‘:_ ../.4../4— :
Y 72 AN R ...
AWREEIAL N SRR A"y
/ .—4‘:?--1 |‘ A ”\I/’ v "\
L AN Lo\ LAETN A ‘o
s | WO '\/ \ 7" J
] < - L Ay '
' PROE ey \\Q;%ﬁ‘“xh\&\
)\< SN ~ '
I Srodluy T S]
220880 g
! e~ SN \
) NSO s

\ ‘ "/ N < ‘.\\ \‘é‘\\ “
p ,:4- AL) Courtesy of
L,’f;’a,fffi,‘,‘ SERLLE -3 General Electric

Courtesy of Kuka Robotics Corp. Lee, Berkeley 4

First Challenge on the Cyber Side:
Real-Time Software

Correct execution of a program in C, C#, Java,
Haskell, etc. has nothing to do with how long it
takes to do anything. All our computation and
networking abstractions are built on this premise.

Timing of programs is not repeatable,
except at very coarse granularity.

Programmers have to step outside the
programming abstractions to specify
timing behavior.

Lee, Berkeley 5

Second Challenge on the Cyber Side:

Concurrency
(Needed for real time and multicore)

Threads dominate concurrent software.

Threads: Sequential computation with shared memory.
Interrupts: Threads started by the hardware.

Incomprehensible interactions between threads are the sources of many
problems:

Deadlock

Priority inversion
Scheduling anomalies
Timing variability
Nondeterminism
Buffer overruns
System crashes

Lee, Berkeley 6

Consider an Automotive Example

Periodic events
IIIIIIIIIIIIIIII,

Quasi-periodic events
[N I A N I 1 S O N
poradic events
I I S

Consider handling this with timers, interrupts, threads,
shared memory, priorities, and mutual exclusion.

This is a nightmare!
Lee, Berkeley 7

The Current State of Affairs

We build embedded
software on abstractions
where time is irrelevant
using concurrency
models that are
iIncomprehensible.

Just think what we could do with the
right abstractions!

Lee, Berkeley 8

The Answer

o Disciplined concurrent and timed models of
computation (MoCs).

Today I will focus on explaining how we use Ptolemy Il to
study concurrent and timed MoCs.

Lee, Berkeley 9

Kahn Process Networks (PN)
A Concurrent Model of Computation (MoC)

A set of components called actors.
Each representing a sequential procedure.

Where steps in these procedures receive or send
messages to other actors (or perform local operations).

Messages are communicated asynchronously with
unbounded buffers.

A procedure can always send a message. It does not need
to wait for the recipient to be ready to receive.

Messages are delivered reliably and in order.

When a procedure attempts to receive a message, that
attempt blocks the procedure until a message is available.

Lee 01: 10

Coarse History

o Semantics given by Gilles Kahn in 1974.

Fixed points of continuous and monotonic functions

o More limited form given by Kahn and MacQueen in 1977.
Blocking reads and nonblocking writes.

o Generalizations to nondeterministic systems
Kosinski [1978], Stark [1980s], ...

o Bounded memory execution given by Parks in 1995.
Solves an undecidable problem.

o Debate over validity of this policy, Geilen and Basten 2003.
Relationship between denotational and operational semantics.

o Many related models intertwined.

Actors (Hewitt, Agha), CSP (Hoare), CCS (Milner), Interaction
(Wegner), Streams (Broy, ...), Dataflow (Dennis, Arvind, ...)...

Lee 01: 11

Syntax

- Processes communicate via ports.
- Ports are connected to one another, indicating message pathways.

- Interconnection of ports is
specified separately from
the procedures. Message pathway

Fork

/ Process
SOURCE1 SINK1

Port

| while (true) {

<2 datal = inl.get (),
SOURCE2 dataZ2 = inZ2.get();
. do something with it ..

while (true) {

data = .. _ _
outputPort.send (data) ; Discussion: What should a fork do?

} Lee 01: 12

Properties of PN (Two Big Topics)

o Assuming “well-behaved” actors, a PN network is
determinate in that the sequence of tokens on each
arc is independent of the thread scheduling strategy.

Making this statement precise, however, is nontrivial.
See fixed-point semantics of previous lecture.

o PN is Turing complete.

Given only boolean tokens, memoryless functional
actors, Switch, Select, and initial tokens, one can
Implement a universal Turing machine.

Whether a PN network deadlocks is undecidable.
Whether buffers grow without bound is undecidable.

Lee 01: 13

Dataflow

Dataflow models are similar to PN models except that
actor behavior is given in terms of discrete “firings” rather
than processes. A firing occurs in response to inputs.

Lee 01: 14

O OO0 OO OO O O0OO0OO0OO0OO0OO0OO0OO0OO0

A few variants of dataflow MoCs

Computation graphs [Karp and Miller, 1966]

Static dataflow [Dennis, 1974]

Dynamic dataflow [Arvind, 1981]

Structured dataflow [Matwin & Pietrzykowski 1985]
K-bounded loops [Culler, 1986]

Synchronous dataflow [Lee & Messerschmitt, 19806]
Structured dataflow and LabVIEW [Kodosky, 1986]
PGM: Processing Graph Method [Kaplan, 1987]
Synchronous languages [Lustre, Signal, 1980’s]
Well-behaved dataflow [Gao, 1992]

Boolean dataflow [Buck and Lee, 1993]
Multidimensional SDF [Lee, 1993]

Cyclo-static dataflow [Lauwereins, 1994]

Integer dataflow [Buck, 1994]

Bounded dynamic dataflow [Lee and Parks, 1995]
Heterochronous dataflow [Girault, Lee, & Lee, 1997]

Lee, Berkeley 15

The Problem

Dataflow models can be built with message passing
libraries and with threads. But should the programmer be
asked to handle the considerable subtleties?

Few programmers will get it right...

Lee, Berkeley 16

Some Subtleties

Termination, deadlock, and livelock (halting)
Bounding the buffers.

Fairness

Parallelism

Data structures and shared data
Determinism

Real-time constraints

Syntax

O
O
O
O
O
O
O
O

Lee, Berkeley 17

Question 1:
Is “Fair” Scheduling a Good Idea?

In the following model, what happens if every actor is
given an equal opportunity to run?

PN Director
Ramp
>
DZ+—;’§ooleanSelect Display
q—’_D’|: |
Ramp2 F
N A
1]
Const

Lee, Berkeley 18

Question 2:
|s “Data-Driven” Execution a Good Idea?

In the following model, if actors are allowed to run when
they have input data on connected inputs, what will
happen?

PN Director

Ramp

Dz+—;ks1'oolean8elect Display

Ramp2 =
A
a—

Const

Av

Av

Lee, Berkeley 19

Question 3:
When are Outputs Required?

Is the execution shown for the following model the “right”
execution?

DRNESEE
PN Director 10907
10908
10910
Ramp 10911

of 10912
N ‘ BooleanSelect Display [[10913
T 10914

|| |Losis

Ramp2 =
[| A 4|
Al Display2 4| .unbounded.Display2 Q@@
El File Help
1

Av

Lee, Berkeley 20

Question 4: Is “Demand-Driven” Execution
a Good Idea?

In the following model, if actors are allowed to run when
another actor requires their outputs, what will happen?

PN Director

Ramp BooleanSwitch Display
{ b]
B ‘ -

Display2
Const ’El

Lee, Berkeley 21

Question 5: What is the “Correct”
Execution of This Program?

PN Director

Ramp BoolTeanSwitch AddSubtract Display

- —E

° Capacity of a queue exceeds maximum capacity. Perhaps you have an unbounded queue?
in .inconsistent.PN Director

Dismiss il Display Stack Trace

Lee, Berkeley 22

Question 6: What is the Correct Behavior
of this Program?

PN Director

Ramp BooleanSwitch
T Display2
&

u" i |

Exception @

° Capacity of a queue exceeds maximum capacity. Perhaps you have an unbounded queue?
in .inconsistent.PN Director

Dismiss il Display Stack Trace

Lee, Berkeley 23

Naive Schedulers Falil

o Fair

o Demand driven

o Data driven

o Most mixtures of demand and data driven

If programmers are building such programs with
message passing libraries or threads, what will keep
them from repeating these mistakes that have been
made by top experts in the field?

Lee, Berkeley 24

Question 7:
How to support nondeterminism?

PN Director
Value Producer 1 H NondeterministicMerge
Value Consumer
Value Producer 2 *—J
Observer

Merging of streams is needed for some
applications. Does this require fairness?
What does fairness mean?

Lee, Berkeley 25

These problems have been solved!
Let’s not make programmers re-solve
them for every program.

Library of Program using actor-oriented
directors components and a PN MoC

¥ file:/C:/eal/talks/08/models/ObserverPatterninPN.xml

File View Edit Graph Debug Help |n Pt0|emy ”’ a

HoeaRaAOP @D mmdioce programmer
Bforece | - specifies a director,
e E which provides

..... == HpF Directo%

----- == pN Director m u C h m O re

----- =3 DE Director P

----- =3 R Director | Value Producer 1 NondelerministicMerge StrU CtU re th a n
----- B3 Rendezvous Director — .

----- E=3 FSM Director
_____ == T Director | Value Producer 2

----- B3 CTEmbedded Director

e consumer || message-passing
or thread library. It
provides a
concurrent model of
[| computation (MoC).

Lee, Berkeley 26

The PN Director solves the above
problems by implementing a “useful
execution”

Define a correct execution to be any execution for
which after any finite time every signal is a prefix of the
signal given by the (Kahn) least-fixed-point semantics.

Define a useful execution to be a correct execution that
satisfies the following criteria:
For every non-terminating model, after any finite time, a
useful execution will extend at least one stream in finite
(additional) time.

If a correct execution satisfying criterion (1) exists that
executes with bounded buffers, then a useful execution will
execute with bounded buffers.

Lee, Berkeley 27

Programmers should not have to figure out
how to solve these problems!
Undecidability and Turing Completeness [Buck 93]

Given the following four actors and Boolean streams, you
can construct a universal Turing machine:

BooleanSelect BooleanSwitch
SampleDelay D—T —T{>
Boolgan > (0} 3> >—
function p? _F{>

Hence, the following questions are undecidable:
Will a model deadlock (terminate)?
Can a model be executed with bounded buffers?

Lee, Berkeley 28

Our solution:
Parks’ Strategy [Parks 995]

This “solves” the undecidable problems:
Start with an arbitrary bound on the capacity of all buffers.
Execute as much as possible.

If deadlock occurs and at least one actor is blocked on a write,
increase the capacity of at least one buffer to unblock at least one
write.

Continue executing, repeatedly checking for deadlock.
This delivers a useful execution (possibly taking infinite
time to tell you whether a model deadlocks and how
much buffer memory it requires).

Lee, Berkeley 29

There are many more subtleties!
We need disciplined concurrent models of
computation, not arbitrarily flexible libraries.

Some principles:

o Do not use nondeterministic programming models to accomplish
deterministic ends.

o Use concurrency models that have analogies in the physical
world (actors, not threads).

o Provide these in the form of models of computation (MoCs) with
well-developed semantics and tools.

o Use specialized MoCs to exploit semantic properties (avoid
excess generality).

o Leave the choice of shared memory or message passing to the
compiler.

Lee, Berkeley 30

The established: Object-oriented:

r

call

class name

data

methods 1

return

The alternative: Actor oriented:

I

actor name

data (state)

parameters ‘

ports

Input data Output data

Our Premise: Software Components are Actors
rather than Objects

What flows through
an object is
sequential control

Things happen to objects

Actors make things happen

What flows through
an object is
evolving data

Lee, Berkeley 31

Ptolemy |I: Our Laboratory for Experiments with
Actor-Oriented Design

5' Concurrency management supporting
dynamic model structure.
eaeaRaP>ile@=»mmdloo e

| Utilities

Director from a library
defines component

) Drectors | peDirecr ‘ interaction semantics
Bctors - rd Assembler.act'or composes a
=4 Sources a record token, which is then passed through a channel that
- | GenericSources has random delay. The tokens arrive possibly in another
- _.| TmedSources order. The Record Disassembler actor separates the string
" Clock from the sequence number. The strings are displayed as
CurrentTime received (possible out of order), and resequenced by the
PoissonClock Sequencer actor, which puts them back in order. This example
- (Bo] TimedSinewave demonstrates how types propagate through record composition
3 TriggeredClock and decomposition.
YariableClock
LEJ_] S ceSources Master Clock String Sequence Display As Received
[+ | Sinks
- :]] Array 1 @—0—9 » Record Assembler
#-_] Conversion Channel Model
[+] FlowControl Sequence Count . oee Record
La rge, behaV|oraIIy- —— Resequenced

ﬁggrrr;orphic component Fg- [Type system for

et The channel is modeled > transported data
- by a variable delay, which | > r-l
= Visual editor supporting an abstract syntax
- _‘__m_.__“““'_":“““". _l_I_FTUTmmlu A LCEE darna Tanuong Aoy

[1|Berkeley 32

x xw mgn
v ‘,;] n
Approach: Concurrent Composition of Software
)))s ™ []
5L'| Components, which are themselves designed
\ ith C tional L
e D pLoie d O D a d avd umm
o D ptole data pe/demo/Router/Route File Help
File View Edit Graph Debug Help public class Gaussian extends RandomSource { =
. ——— /*% Construct an actor with the given container and name.
@ @ Q ’ II ‘. ’ » - * w m ¢ * [@param container The container.
: — * [@param name The name of this actor.
] Utilities A~ - * [@exception IllegallctionException If the actor cannot be contained
" Directors i DE Dlremor ThIS model +* by the proposed container.
,J Record AS * [@exception NameDuplicationException If the container already has an
- - a record to * actor with this name.
=)~ _4 Sources +
[+~ | GenericSources has randon public Gaussian{CompositeEntity container, String name)
(=) JTimedSources 0rder- The throws NameDuplicationException, IllegaliActionException {
Clock from the sd super (container, namwe);
CurrentTime received (N
) output.setTypeEquals (BaseType.DOUBLE) ;
PoissonClock Sequencer|
TimEdSinewave demonstrat mean = new PortParameter (this, "mean", new DoubleToken(0.0)):
TriggeredClock and decom mean. setTypeEquals (BaseType . DOUBLE) ;
B variableClock
\}j_] SequenceSources Master Clock Stnng Sequence StandardDev?at%on = new Porcl?arameter(ch:.s, "standardDeviation®)
i Sinks standardDeviation.setExpression("1.0");
lﬂ —I il — standardDeviation.setTypeEquals (BaseType.DOUELE) ;
®-) Array »)
i#-__] Conwversions
#-__) FlowContral Sequence Count FEPEEEREEETEEETEEE TR ETF LI T EIIFEEIEE T EE T Ediiddiiiiiiiiiiiiiii
EJ_] HigherOrderactors i ports and parameters rid
liJ—l :io X B /** The wean of the random nurber.
(#-_] Logic - s meio nas ot double, initially with value O
ol v " ype do e, initially with walue 0.
R RTINS " Gaussian | cystomize i
A\ Documentation » ‘tParameter mean;
-
- S il kYl Appearance P landard deviation of the random nuber.
et by e R0 ik e vy e L. 3
’--:’-:-..“ R Save Actor In Library 1as double, initially with wvalue 1.
i .
Listen to Actor 't eter standardDeviation;
\ Set Breakpoints
kp EEEPEEEETETEiddddiiddididddididdddiidddiiiddidiiiididiiiiiiiiy
Convert to Class public methods i
N Authors: Edward A| Open Actor Chrl+L))

Open Istance) |Berkeley 33

Our Laboratory Infrastructure

If you want to experimental work in biology, physics, or
chemistry, you don’t want to start from scratch with a
empty room for your lab.

Leverage the work of others!

Ohloh (a branch of SourceForge) analysis says that
Ptolemy |l has 1.8 M lines of code, an estimated effort of

517 person years, worth $28.4 million. (9/7/09)
https://www.ohloh.net/p/12005

Lee, Berkeley 34

Separable Tool Architecture

o Abstract Syntax

o Concrete Syntax

o Abstract Semantics
o Concrete Semantics

Lee, Berkeley 35

The Basic Abstract Syntax for

Composition
connection
Entity - Relation > Entity

Port Link ‘ Link Port

Attributes

Attributes
Oo X °$
2\ /4‘
% & ..
? ® S « Entities
Port * Attributes on entities (parameters)
Entity * Ports in entities
Attributes * Links between ports

 Width on links (channels)

 Hierarchy
Concrete syntaxes:

« XML
 Visual pictures
» Actor languages (Cal, StreamlT, ...)

Lee, Berkeley 36

Meta Model: Kernel Classes
Supporting the Abstract Syntax

NamedObj
_______________________ :< ' CrossRefList '
1.1 i
Port 1.1 L 1
-_container : Entity 1.1
-_relationsList : CrossRefList 11
. +Port()
Entity container +Port(w : Workspace)
0.1 on +Port(container : Entity, name : String) link Relation
-_portList : NamedList h ___|+connectedPorts() : Enumeration
containee [*isLinked(r : Relation) : boolean 0.n -_portList : CrossRefList

+Entity()

+Entity(name : String)

+Entity(w : Workspace, name : String)
+connectedPorts() : Enumeration
+connectionsChanged(p : Port)
+getPort(name : String) : Port
+getPorts() : Enumeration
+linkedRelations() : Enumeration
+newPort(name : String) : Port
+removeAllPorts()

_addPort(p : Port)

_removePort(p : Port)

+isOpaque() : boolean
+linkedRelations() : Enumeration
+link(r : Relation)

+numLinks() : int
+setContainer(c : Entity)
+unlink(r : Relation)

+unlinkAll()

#_link(r : Relation)

0..n

link

These get subclassed for specific purposes.

+Relation()

+Relation(name : String)

+Relation(w : Workspace, name : String)
+linkedPorts() : Enumeration
+linkedPorts(except : Port) : Enumeration
+numLinks() : int

+unlinkAll()

#_checkPort(p : Port)

#_getPortList() : CrossRefList

Lee, Berkeley 37

Separable Tool Archictecture

o Abstract Syntax

o Concrete Syntax

o Abstract Semantics
o Concrete Semantics

Lee, Berkeley 38

MoML
XML Schema for this Abstract Syntax

Ptolemy |l designs are represented in XML.:

<entity name="FFT" class="ptolemy.domains.sdf.lib.FFT">
<property name="order" class="ptolemy.data.expr.Parameter" value="order">
</property>
<port name="input" class="ptolemy.domains.sdf.kernel.SDFIOPort">
</port>
</entity>
<link port="FFT.input" relation="relation"/>
<link port="AbsoluteValue2.output" relation="relation"/>

Lee, Berkeley 39

Separable Tool Archictecture

o Abstract Syntax

o Concrete Syntax

o Abstract Semantics
o Concrete Semantics

Lee, Berkeley 40

|

Abstract Semantics (Informally)
of Actor-Oriented Models of Computation

execution control

(send(0,t

(&

~

P1

e

J

EActor

data transport

receiver.put(t) /

s

G

get(0)

E2

tokent)

IORelation Receiver
(inside port)

Actor-Oriented Models of
Computation that we have
implemented:

« dataflow (several variants)

* process networks

» distributed process networks
* Click (push/pull)

« continuous-time

» CSP (rendezvous)

* discrete events

» distributed discrete events

» synchronous/reactive

* time-driven (several variants)

Lee, Berkeley 41

Register

How Does This Work? fﬁ
Execution of Ptolemy |l Actors

Flow of control:
o Initialization

o Execution

o Finalization

Lee, Berkeley 42

Register

How Does This Work? jf
Execution of Ptolemy |l Actors

Flow of control:

O E.g., in DE: Post tags on the event
o Execution queue corresponding to any initial
events the actor wants to

o Finalization produce.

Lee, Berkeley 43

How Does This Work?

Execution of Ptolemy |l Actors

Flow of control:
o Initialization

o Execution

o Finalization

Register

B

Iterate

If (prefire()) {
fire();

& postfire();
}

Only the postfire() method
should change the state of the
actor.

Lee, Berkeley 44

Register

How Does This Work? jf
Execution of Ptolemy |l Actors

Flow of control:
o Initialization

o Execution

o Finalization

Lee, Berkeley 45

Can the
actor fire?

React to
trigger
input.

Read the
data input
and update
the state.

4

Definition of the Register Actor (Sketch)

class Register extends TypedAtomicActor
private Object state;
boolean prefire () ({

if (trigger is known) { return true; }

~

}

[void f:l.re() { Register
1f (trigger 1s present) {
send state to output; @ v
} else { _ _
, data input port trigger
assert output 1s absent; input
} port
Lol
;

void postfire() {
1if (trigger 1s present) {
state = value read from data input;

Lee, Berkeley 46

Separable Tool Archictecture

o Abstract Syntax

o Concrete Syntax

o Abstract Semantics
o Concrete Semantics

Lee, Berkeley 47

(MoC)

Concrete Semantics Example 1:
Discrete Event (DE) Model of Computation

DE Director implements
timed semantics using an

DE Director

PoissonClock

16 o

event queue

In DE, actors send time-
et stamped events to one
another, and events are
processed in chronological
order.

Event source

Signal

put() method inserts a token

into the event queue.

155..mﬂﬂﬂﬂmm H M M n |

0 5 10 15 20 25 30

Time line

Lee, Berkeley 48

Example 2: Kahn Process Networks (PN)
Model of Computation (MoC)

PN Director This model, whose structure is due to Kahn and MacQueen, calculate actor == thread In PN, every
integers whose prime factors are only 2, 3, and 5, with no redundancie .
It uses the OrderedMerge actor, which takes two monotonically increag#fg actor runs in
input sequences and merges them into one monotonically increasinggbutput sequence.
a thread,
Scale5 P BoolfBnSwitch This BooleanSwitch is used |\w/jth blocking
to starve the model after
5}) ¢ E— S a power of 5 greater than |Freads of
B ‘ F 1000000 is produced. This |- t port
Limit on powers of 5 results in deterministically N pU pO S
) stopping the execution. and non-
OrderedMerge I I t bIOCking
I SampleDelay3 S|gna == stream WriteS tO
Scale3
outputs.
OrderedMerge2 SampleDelay2
In the PN domain, each actor executes
in its own Java thread. That thread readS bIOCk
iteratively reads inputs, performs 7 |
computation, and produces outputs.
. b
writes don’t
Kahn, MacQueen, 1977 (=

The output is an ordered sequence of integers of the form
2" * 3"m * 5%, where n, m and k are non-negative integers.

ee, Berkeley 49

fixed number of tokens from the input streams, and

produce a fixed number of tokens on the output
streams.

Synchronous Dataflow Modeling
- Estimate the spectrum of three sinusoids in noise
Sinewave by three different techniques.

Spectrum

SmoothedPeriododram

AddSubtract SequencePlotter

Maximum EntropySpgctrum

This example illustrates SDF modeling, which

is well-suited to signal processing. In SDF,
components communicate using streams, but their
production and consumption rates are fixed.
Because of these fixed rates, extensive static
analysis of the model is possible, enabling
efficient code generation and optimization.

Example 3: Synchronous Dataflow (SDF)

SDF is a special case of PN
where deadlock and
boundedness are decidable. It is
well suited to static scheduling
and code generation. It can also
be automatically parallelized.

Lee, Berkeley 50

Example 4: Synchronous/Reactive (SR)

File Help

signal has a value or is absent. ;

SR Director NonStrictDisplay2 10

v 15
] C i |

Ramp Ll
> S Nbkact NonStrictDela ?jl | ﬂ
B | | ¢ i ' NonStrictDisplay
-]
This model demonstrates that a NonStrictDelay actor
breaks a feedback loop in a SR model.
. . . . File Hel
Like SDF, SR is decidable and suitable for e =
code generation. It is harder to parallelize T
than SDF, however. :
10
15 I
SR languages: Esterel, SyncCharts, Lustre, - -
SCADE, Signal. &l | o

Lee, Berkeley 51

Example 5: Rendezvous

RendezvousDirector In RendeZVOUS, every
- llustration of Barrier Synchronization using Rendezvous actor runs in a thread
e with blocking reads of

Ramp in multi-way Display

This model illustrates a design pattern with rendezvous [rendezvous. . .
called a "barrier synchronization.” In this example, the : ‘ } ¢ >|§| Inpl'It portS and bIOCklng
writes to outputs. Every

two Ramps are sending increasing sequences of integers
to the Displays. However, the transfer is constrained to Ramp2

occur only when both the Barrier actor and the Sleep of Displayz commun ICatlon IS a
actor read inputs. Thus, a multi-way rendezvous between B ‘ } 9'5 . .

the two Ramp actors, the two Display actors, the Barrier (pOSSIbly mUItI-Way)
actor, and the Sleep actor constrains the two transfers Barrier ren d ezvous

to the Display actors to occur simultaneously. The
Sleep actor will sleep a random amount of time after
reading its input, and during that time will not accept
additional inputs. Thus, after the first two (why two?) Sleep
transfers to the Display actors the time between
transfers is controlled by the Sleep actor.

oot writes block
N Random wait time.
CSP (Hoare), SCCS (Milner), f
Reo (Arbab)
actor == thread reads block

Lee, Berkeley 52

Example 6: Continuous Time (CT)

Continuous-Time (CT) Solver
- This model shows a nonlinear feedback | 1N CT, actors ope rate on
i :10.0 system that exhibits chaotic behavior. . .
:Izg:zga:ZS-O tt):s modeled in continuous time. The continuous-time and/Or
AR e CT director uses a sophisticated discrete-event signals. An
> ordinary differential equation solver
, to execute the model. This particular ODE solver governs the
model is known as a Lorenz attractor. .
¢ execution.
P 1
T
Expression 1 Integratof 1
sgmarvc-x) Strange Attractor | et 2
Integratof 2 B I l I I I I i
Expression 2] i 20F _
L__E(lambda-)e)'mae S|gna| IS a sk 1
| Integrator 3 continuous-time 10 1
I Expression 3 . = i
function. o o |
{ -
101 7]
Director includes an ODE solver. oy .
15 10 5 0] 10 15
¥1

Lee, Berkeley 53

Ptolemy Il Software Architecture
Built for Extensibility

have carefully

constructed
dependencies and

interfaces

Lee, Berkeley 54

Models of Computation
Implemented in Ptolemy Il

Cl — Push/pull component interaction

Click — Push/pull with method invocation

CSP - concurrent threads with rendezvous

Continuous — continuous-time modeling with fixed-point semantics
CT — continuous-time modeling

DDF — Dynamic dataflow

DE — discrete-event systems Most of
DDE — distributed discrete events these are
DPN — distributed process networks actor
FSM — finite state machines oriented.

DT — discrete time (cycle driven)
Giotto — synchronous periodic
GR - 3-D graphics

PN — process networks
Rendezvous — extension of CSP
SDF — synchronous dataflow
SR — synchronous/reactive

TM — timed multitasking

O OO OOOOOOOOOOGOOO O O

Lee, Berkeley 55

Scalability 101:
Hierarchy - Composite Components

(

()

r
Relatio

Gntity
opaque Po

transparent or opaque
GompositeEntity

Port

e

danglin@

O
)

_/

-

toplevel CompositeEntity
J

Lee, Berkeley 56

Ptolemy |l Hierarchy Supports Heterogeneity

PlotPasitions vs Time | Concurrent actors governed by one model of
'Iil computation (e.g., Discrete Events).
The sticky masses system has two modes of operation, Modal behavior given in another MoC.

"Separate" and "Together," corresponding to P | . , , , '

the point masses are stuck together. The "jrfit" Refinement Solver This model gives two separate ordinary differential

has a transition that is used to initialize thé "Se - equations, one for each point mass attached to a spring.
model (double click on that transition 16 see its The ZeroCrossingDetector actor detects the collision

- of the point masses and emits the "touched" event.
abs(Force) > Stickfiess

Separate.p1 = P1,; Separate.p2 =

_ P1 integrator
Expression

Vi
V1 integrator r’
[oaral ~ 1.0°1.0 - 1.0°P1
P1

touched_IsRresent && (V1-V2) > 0. V2 integrator V2 P2 integrator
Together.p =\P1; Together.v = (V1 Expression2 r.

— 2.0°2.0-2.0'P2 I

Detailed dynamics'given
in a third MoC (e.qg. ?_F;
ContinUOUS T| e) AddSubtract ZeroCrossingDetector V1 and V2 are velocities,

e + touched and P1 and P2 are positions
— — of the two masses.

This requires a composable abstract semantics.
Lee, Berkeley 57

true
P1=p1;P2=p2

Hierarchical Heterogeneity (HH)
Supports Hybrid Systems

Newton's Cradle

Combinations of synchronous/reactive,
discrete-event, and continuous-time

semantics offer a powerful way to represent
and execute hybrid systems.

ball1

initialTheta
initiaIThela_dola

Graphic Animation
X 2
el ball2 .
initialTheta i

velocities ModalModel positions

ballClass _

initial Thetay Y
initialTheta_dot E theta
= theta_dot

|

h 2
initialThela_dotj S}D s
HyVisual is a e
specialization of the [1_dod
| 2_dot; X 3
meta framework B dm;(\ _) >
Ptolemy II. -n-va”hewzl y theta_3
initialTheta_dot g}D 2
Q] theta_3_dot

Lee, Berkeley 58

In All Cases: Composition Semantics

The concurrency model is
called the “model of
computation” (MoC).

The model of computation
determines the formal
properties of the set T:

Each actor is a function:

% * Useful MoCs:
f: (T9 B) " — (T% B) " * Process Networks

C tion in th ¢ _ » Synchronous/Reactive
omposition in three forms: - Time-Triggered

o Cascade connections . Discrete Events
o Parallel connections * Dataflow

o Feedback connections * Rendezvous
All three are function composition. + Continuous Time

The nontrivial part of this is feedback, but .

we know how to handle that. Lee, Berkeley 59

Semantics Clears Up Subtleties:
E.g. Simultaneous Events

T T I

DE Director 0 5 165 i

e e LT

5 10 15 20 25 30
TimedPlotter2

PoissonClock

D@ LBernoullI
By default, an actor produces events with the same time as the input

event. But in this example, we expect (and need) for the BooleanSwitch to
“see” the output of the Bernoulli in the same “firing” where it sees the event

from the PoissonClock. Events with identical time stamps are also ordered,
and reactions to such events follow data precedence order.

Lee, Berkeley 60

Semantics Clears Up Subtleties:
E.g. Feedback

DEE Director Sensor

- E]-E] } e forgettingRate: 0.5

InstanceOfSensor

. Expression

InstanceOfSenfo previous,| Previous * forgettingRate + x* (1.0 - forgettingRate) +-

_J
TimedPlotter
ooo|
»

Data precedence analysis has to take into account the non-strictness of
this actor (that an output can be produced despite the lack of an input).

Register

Lee, Berkeley 61

Zeno Systems [

1.05[

1.00[

095

0.90 ! | ! | |
DE Director 1.0 1.1 1.2 1.3 1.4 1.5 1.6
- TimedPlotter

»
\ 4

SingleEvent
VariableDelay

Ramp

Expression

Theorem: If every directed cycle contains a delta-causal
component, then the system is non-Zeno.

Lee, Berkeley 62

Some Research Thrusts in the
Ptolemy Project

o Systems of systems: Modeling and design of large scale systems, those that
include networking, database, grid computing, and information subsystems.

o Understandable concurrency: This effort focuses on models of concurrency in
software that are more understandable and analyzable than the prevailing
abstractions based on threads.

o Multicore and parallelism in embedded systems: Code generation for parallel
machines, scalable parallelism, model engineering, model transformation.

o Precision-timed (PRET) machines: Introduce timing into the core abstractions of
computing, beginning with instruction set architectures, using configurable hardware
as an experimental platform.

o Real-time software: Models of computation with time and concurrency,
metaprogramming techniques, code generation and optimization, domain-specific
languages, schedulability analysis, programming of sensor networks.

o Distributed computing: Models of computation based on distributed discrete
events, backtracking techniques, lifecycle management, unreliable networks,
modeling of sensor networks.

o Hybrid systems: Blended continuous and discrete dynamics, models of time,
operational semantics, language design. Lee, Berkeley 63

The Ptolemy Pteam

Jackie i ‘ Elefterios
Mankit Matsikoudis
Leun "“",ﬁ..::

LR ERF R REPEEEPEPEFFEERFI

Humlng
Feng

Christopher Brooks | Bert Rodiers

2

