
EECS 249 Guest Lecture

Berkeley, CA
September 8, 2009

Overview of the Ptolemy Project

Edward A. Lee
Robert S. Pepper Distinguished Professor

Lee, Berkeley 2

Elevator Speech

The Ptolemy project studies modeling, simulation,
and design of concurrent, real-time, embedded
systems. The focus is on assembly of concurrent
components. The key underlying principle in the
project is the use of well-defined models of
computation that govern the interaction between
components. A major problem area being
addressed is the use of heterogeneous mixtures of
models of computation. A software system called
Ptolemy II is being constructed in Java, and serves
as the principal laboratory for experimentation.

Lee, Berkeley 3

The Ptolemy Project
Demographics, 2009

Staffing:
  1 professor
  9 graduate students
  3 postdocs
  3 full-time staff
  several visitors

Sponsors:
  Government

  National Science Foundation
  Army Research Office
  Air Force Research Lab
  Air Force Office of Scientific Research

  Industry
  Agilent
  Bosch
  HSBC
  Lockheed-Martin
  National Instruments
  Toyota

History:
The project was
started in 1990, though
its mission and focus
has evolved
considerably. An open-
source, extensible
software framework
(Ptolemy II) constitutes
the principal
experimental
laboratory.

Lee, Berkeley 4 Courtesy of Kuka Robotics Corp.

Cyber-Physical Systems (CPS):
Orchestrating networked computational
resources with physical systems

Power
generation and
distribution

Courtesy of
General Electric

Military systems:

E-Corner, Siemens

Transportation
(Air traffic
control at
SFO) Avionics

Telecommunications

Factory automation

Instrumentation
(Soleil Synchrotron)

Daimler-Chrysler

Automotive

Building Systems

Lee, Berkeley 5

First Challenge on the Cyber Side:
Real-Time Software
Correct execution of a program in C, C#, Java,
Haskell, etc. has nothing to do with how long it
takes to do anything. All our computation and
networking abstractions are built on this premise.

Timing of programs is not repeatable,
except at very coarse granularity.

Programmers have to step outside the
programming abstractions to specify
timing behavior.

Lee, Berkeley 6

Second Challenge on the Cyber Side:
Concurrency
(Needed for real time and multicore)

Threads dominate concurrent software.

  Threads: Sequential computation with shared memory.
  Interrupts: Threads started by the hardware.

Incomprehensible interactions between threads are the sources of many
problems:

  Deadlock
  Priority inversion
  Scheduling anomalies
  Timing variability
  Nondeterminism
  Buffer overruns
  System crashes

Lee, Berkeley 7

Consider an Automotive Example

Periodic events

Quasi-periodic events

Sporadic events

Consider handling this with timers, interrupts, threads,
shared memory, priorities, and mutual exclusion.
This is a nightmare!

Lee, Berkeley 8

The Current State of Affairs

We build embedded
software on abstractions
where time is irrelevant
using concurrency
models that are
incomprehensible.

Just think what we could do with the
right abstractions!

Lee, Berkeley 9

The Answer

  Disciplined concurrent and timed models of
computation (MoCs).

Today I will focus on explaining how we use Ptolemy II to
study concurrent and timed MoCs.

Lee 01: 10

Kahn Process Networks (PN)
A Concurrent Model of Computation (MoC)

•  A set of components called actors.
•  Each representing a sequential procedure.
•  Where steps in these procedures receive or send

messages to other actors (or perform local operations).
•  Messages are communicated asynchronously with

unbounded buffers.
•  A procedure can always send a message. It does not need

to wait for the recipient to be ready to receive.
•  Messages are delivered reliably and in order.
•  When a procedure attempts to receive a message, that

attempt blocks the procedure until a message is available.

Lee 01: 11

Coarse History

  Semantics given by Gilles Kahn in 1974.
  Fixed points of continuous and monotonic functions

  More limited form given by Kahn and MacQueen in 1977.
  Blocking reads and nonblocking writes.

  Generalizations to nondeterministic systems
  Kosinski [1978], Stark [1980s], …

  Bounded memory execution given by Parks in 1995.
  Solves an undecidable problem.

  Debate over validity of this policy, Geilen and Basten 2003.
  Relationship between denotational and operational semantics.

  Many related models intertwined.
  Actors (Hewitt, Agha), CSP (Hoare), CCS (Milner), Interaction

(Wegner), Streams (Broy, …), Dataflow (Dennis, Arvind, …)...

Lee 01: 12

Syntax
•  Processes communicate via ports.
•  Ports are connected to one another, indicating message pathways.
•  Interconnection of ports is

specified separately from
the procedures.

while(true) {
 data1 = in1.get();
 data2 = in2.get();
 … do something with it …
}

Message pathway

Port

Fork

Process

Discussion: What should a fork do?

while(true) {
 data = …
 outputPort.send(data);
}

Lee 01: 13

Properties of PN (Two Big Topics)

  Assuming “well-behaved” actors, a PN network is
determinate in that the sequence of tokens on each
arc is independent of the thread scheduling strategy.

 Making this statement precise, however, is nontrivial.
See fixed-point semantics of previous lecture.

  PN is Turing complete.
 Given only boolean tokens, memoryless functional

actors, Switch, Select, and initial tokens, one can
implement a universal Turing machine.

 Whether a PN network deadlocks is undecidable.
 Whether buffers grow without bound is undecidable.

Lee 01: 14

Dataflow

Dataflow models are similar to PN models except that
actor behavior is given in terms of discrete “firings” rather
than processes. A firing occurs in response to inputs.

Lee, Berkeley 15

A few variants of dataflow MoCs

  Computation graphs [Karp and Miller, 1966]
  Static dataflow [Dennis, 1974]
  Dynamic dataflow [Arvind, 1981]
  Structured dataflow [Matwin & Pietrzykowski 1985]
  K-bounded loops [Culler, 1986]
  Synchronous dataflow [Lee & Messerschmitt, 1986]
  Structured dataflow and LabVIEW [Kodosky, 1986]
  PGM: Processing Graph Method [Kaplan, 1987]
  Synchronous languages [Lustre, Signal, 1980’s]
  Well-behaved dataflow [Gao, 1992]
  Boolean dataflow [Buck and Lee, 1993]
  Multidimensional SDF [Lee, 1993]
  Cyclo-static dataflow [Lauwereins, 1994]
  Integer dataflow [Buck, 1994]
  Bounded dynamic dataflow [Lee and Parks, 1995]
  Heterochronous dataflow [Girault, Lee, & Lee, 1997]
  …

Lee, Berkeley 16

The Problem

Dataflow models can be built with message passing
libraries and with threads. But should the programmer be
asked to handle the considerable subtleties?

Few programmers will get it right…

Lee, Berkeley 17

Some Subtleties

  Termination, deadlock, and livelock (halting)
  Bounding the buffers.
  Fairness
  Parallelism
  Data structures and shared data
  Determinism
  Real-time constraints
  Syntax

Lee, Berkeley 18

Question 1:
Is “Fair” Scheduling a Good Idea?

In the following model, what happens if every actor is
given an equal opportunity to run?

Lee, Berkeley 19

Question 2:
Is “Data-Driven” Execution a Good Idea?

In the following model, if actors are allowed to run when
they have input data on connected inputs, what will
happen?

Lee, Berkeley 20

Question 3:
When are Outputs Required?

Is the execution shown for the following model the “right”
execution?

Lee, Berkeley 21

Question 4: Is “Demand-Driven” Execution
a Good Idea?

In the following model, if actors are allowed to run when
another actor requires their outputs, what will happen?

Lee, Berkeley 22

Question 5: What is the “Correct”
Execution of This Program?

Lee, Berkeley 23

Question 6: What is the Correct Behavior
of this Program?

Lee, Berkeley 24

Naïve Schedulers Fail

  Fair
  Demand driven
  Data driven
  Most mixtures of demand and data driven

If programmers are building such programs with
message passing libraries or threads, what will keep
them from repeating these mistakes that have been
made by top experts in the field?

Lee, Berkeley 25

Question 7:
How to support nondeterminism?

Merging of streams is needed for some
applications. Does this require fairness?
What does fairness mean?

Lee, Berkeley 26

These problems have been solved!
Let’s not make programmers re-solve
them for every program.

In Ptolemy II, a
programmer
specifies a director,
which provides
much more
structure than
message-passing
or thread library. It
provides a
concurrent model of
computation (MoC).

Library of
directors

Program using actor-oriented
components and a PN MoC

Lee, Berkeley 27

The PN Director solves the above
problems by implementing a “useful
execution”

Define a correct execution to be any execution for
which after any finite time every signal is a prefix of the
signal given by the (Kahn) least-fixed-point semantics.

Define a useful execution to be a correct execution that
satisfies the following criteria:
1.  For every non-terminating model, after any finite time, a

useful execution will extend at least one stream in finite
(additional) time.

2.  If a correct execution satisfying criterion (1) exists that
executes with bounded buffers, then a useful execution will
execute with bounded buffers.

Lee, Berkeley 28

Programmers should not have to figure out
how to solve these problems!
Undecidability and Turing Completeness [Buck 93]

Given the following four actors and Boolean streams, you
can construct a universal Turing machine:

Hence, the following questions are undecidable:
  Will a model deadlock (terminate)?
  Can a model be executed with bounded buffers?

Lee, Berkeley 29

Our solution:
Parks’ Strategy [Parks 95]

This “solves” the undecidable problems:
  Start with an arbitrary bound on the capacity of all buffers.
  Execute as much as possible.
  If deadlock occurs and at least one actor is blocked on a write,

increase the capacity of at least one buffer to unblock at least one
write.

  Continue executing, repeatedly checking for deadlock.

This delivers a useful execution (possibly taking infinite
time to tell you whether a model deadlocks and how
much buffer memory it requires).

Lee, Berkeley 30

There are many more subtleties!
We need disciplined concurrent models of
computation, not arbitrarily flexible libraries.

Some principles:

  Do not use nondeterministic programming models to accomplish
deterministic ends.

  Use concurrency models that have analogies in the physical
world (actors, not threads).

  Provide these in the form of models of computation (MoCs) with
well-developed semantics and tools.

  Use specialized MoCs to exploit semantic properties (avoid
excess generality).

  Leave the choice of shared memory or message passing to the
compiler.

Lee, Berkeley 31

Our Premise: Software Components are Actors
rather than Objects

The alternative: Actor oriented:

actor name

data (state)

ports

Input data

parameters

 Output data

What flows through
an object is

evolving data

class name

data

methods

call return

What flows through
an object is

sequential control

The established: Object-oriented:

Things happen to objects

Actors make things happen

Lee, Berkeley 32

Ptolemy II: Our Laboratory for Experiments with
Actor-Oriented Design

Director from a library
defines component
interaction semantics

Large, behaviorally-
polymorphic component
library.

Visual editor supporting an abstract syntax

Type system for
transported data

Concurrency management supporting
dynamic model structure.

Lee, Berkeley 33

Approach: Concurrent Composition of Software
Components, which are themselves designed
with Conventional Languages

Lee, Berkeley 34

Our Laboratory Infrastructure

If you want to experimental work in biology, physics, or
chemistry, you don’t want to start from scratch with a
empty room for your lab.

Leverage the work of others!

Ohloh (a branch of SourceForge) analysis says that
Ptolemy II has 1.8 M lines of code, an estimated effort of
517 person years, worth $28.4 million. (9/7/09)
https://www.ohloh.net/p/12005

Lee, Berkeley 35

Separable Tool Architecture

 Abstract Syntax
 Concrete Syntax
 Abstract Semantics
 Concrete Semantics

Lee, Berkeley 36

The Basic Abstract Syntax for
Composition

•  Entities
•  Attributes on entities (parameters)
•  Ports in entities
•  Links between ports
•  Width on links (channels)
•  Hierarchy

Concrete syntaxes:
•  XML
•  Visual pictures
•  Actor languages (Cal, StreamIT, …)

Lee, Berkeley 37

Meta Model: Kernel Classes
Supporting the Abstract Syntax

These get subclassed for specific purposes.

Lee, Berkeley 38

Separable Tool Archictecture

 Abstract Syntax
 Concrete Syntax
 Abstract Semantics
 Concrete Semantics

Lee, Berkeley 39

MoML
XML Schema for this Abstract Syntax

Ptolemy II designs are represented in XML:

 ...
 <entity name="FFT" class="ptolemy.domains.sdf.lib.FFT">
 <property name="order" class="ptolemy.data.expr.Parameter" value="order">
 </property>
 <port name="input" class="ptolemy.domains.sdf.kernel.SDFIOPort">
 ...
 </port>
 ...
 </entity>
 ...
 <link port="FFT.input" relation="relation"/>
 <link port="AbsoluteValue2.output" relation="relation"/>
 ...

Lee, Berkeley 40

Separable Tool Archictecture

 Abstract Syntax
 Concrete Syntax
 Abstract Semantics
 Concrete Semantics

Lee, Berkeley 41

Abstract Semantics (Informally)
of Actor-Oriented Models of Computation

Actor-Oriented Models of
Computation that we have
implemented:

•  dataflow (several variants)
•  process networks
•  distributed process networks
•  Click (push/pull)
•  continuous-time
•  CSP (rendezvous)
•  discrete events
•  distributed discrete events
•  synchronous/reactive
•  time-driven (several variants)
•  …

execution control data transport

init()
fire()

Lee, Berkeley 42

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
  Initialization
  Execution
  Finalization

Lee, Berkeley 43

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
  Initialization
  Execution
  Finalization

E.g., in DE: Post tags on the event
queue corresponding to any initial
events the actor wants to
produce.

Lee, Berkeley 44

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
  Initialization
  Execution
  Finalization

Iterate
If (prefire()) {
 fire();
 postfire();
}

Only the postfire() method
should change the state of the
actor.

Lee, Berkeley 45

How Does This Work?
Execution of Ptolemy II Actors

Flow of control:
  Initialization
  Execution
  Finalization

Lee, Berkeley 46

Definition of the Register Actor (Sketch)

class Register extends TypedAtomicActor {
 private Object state;
 boolean prefire() {
 if (trigger is known) { return true; }
 }
 void fire() {
 if (trigger is present) {
 send state to output;
 } else {
 assert output is absent;
 }
 }
 void postfire() {
 if (trigger is present) {
 state = value read from data input;
 }
 }

Can the
actor fire?

React to
trigger
input.

Read the
data input
and update
the state.

trigger
input
port

data input port

Lee, Berkeley 47

Separable Tool Archictecture

 Abstract Syntax
 Concrete Syntax
 Abstract Semantics
 Concrete Semantics

Lee, Berkeley 48

Concrete Semantics Example 1:
Discrete Event (DE) Model of Computation
(MoC)

DE Director implements 
timed semantics using an 
event queue 

Event source 

Time line 

Signal 
put() method inserts a token
into the event queue.

In DE, actors send time-
stamped events to one
another, and events are
processed in chronological
order.

Lee, Berkeley 49

Example 2: Kahn Process Networks (PN)
Model of Computation (MoC)

actor == thread 

signal == stream 

reads block 

writes don’t 
Kahn, MacQueen, 1977 

In PN, every
actor runs in
a thread,
with blocking
reads of
input ports
and non-
blocking
writes to
outputs.

Lee, Berkeley 50

Example 3: Synchronous Dataflow (SDF)

In SDF, actors “fire,” and in each firing, consume a
fixed number of tokens from the input streams, and
produce a fixed number of tokens on the output
streams.

SDF is a special case of PN
where deadlock and
boundedness are decidable. It is
well suited to static scheduling
and code generation. It can also
be automatically parallelized.

Lee, Berkeley 51

Example 4: Synchronous/Reactive (SR)

At each tick of a global “clock,” every
signal has a value or is absent.

Like SDF, SR is decidable and suitable for
code generation. It is harder to parallelize
than SDF, however.

SR languages: Esterel, SyncCharts, Lustre,
SCADE, Signal.

Lee, Berkeley 52

Example 5: Rendezvous

actor == thread 

writes block 

CSP (Hoare), SCCS (Milner), 
Reo (Arbab) 

In Rendezvous, every
actor runs in a thread,
with blocking reads of
input ports and blocking
writes to outputs. Every
communication is a
(possibly multi-way)
rendezvous.

reads block 

Lee, Berkeley 53

Example 6: Continuous Time (CT)

Director includes an ODE solver. 

In CT, actors operate on
continuous-time and/or
discrete-event signals. An
ODE solver governs the
execution.

Signal is a 
continuous-time 
function. 

Lee, Berkeley 54

Ptolemy II Software Architecture
Built for Extensibility

Ptolemy II packages
have carefully
constructed
dependencies and
interfaces

PN

CSP

CT Kernel

Data

Actor Math

Graph

Lee, Berkeley 55

Models of Computation
Implemented in Ptolemy II

  CI – Push/pull component interaction
  Click – Push/pull with method invocation
  CSP – concurrent threads with rendezvous
  Continuous – continuous-time modeling with fixed-point semantics
  CT – continuous-time modeling
  DDF – Dynamic dataflow
  DE – discrete-event systems
  DDE – distributed discrete events
  DPN – distributed process networks
  FSM – finite state machines
  DT – discrete time (cycle driven)
  Giotto – synchronous periodic
  GR – 3-D graphics
  PN – process networks
  Rendezvous – extension of CSP
  SDF – synchronous dataflow
  SR – synchronous/reactive
  TM – timed multitasking

Most of
these are
actor
oriented.

Lee, Berkeley 56

Scalability 101:
Hierarchy - Composite Components

toplevel CompositeEntity
transparent or opaque
CompositeEntity

Entity
Relation dangling

Port

Port
opaque Port

Lee, Berkeley 57

Ptolemy II Hierarchy Supports Heterogeneity

This requires a composable abstract semantics.

Concurrent actors governed by one model of
computation (e.g., Discrete Events).

Modal behavior given in another MoC.

Detailed dynamics given
in a third MoC (e.g.

Continuous Time)

Lee, Berkeley 58

Hierarchical Heterogeneity (HH)
Supports Hybrid Systems

Combinations of synchronous/reactive,
discrete-event, and continuous-time
semantics offer a powerful way to represent
and execute hybrid systems.

HyVisual is a
specialization of the
meta framework
Ptolemy II.

Lee, Berkeley 59

In All Cases: Composition Semantics

Each actor is a function:

Composition in three forms:
  Cascade connections
  Parallel connections
  Feedback connections
All three are function composition.

 The nontrivial part of this is feedback, but
we know how to handle that.

The concurrency model is
called the “model of
computation” (MoC).

The model of computation
determines the formal
properties of the set T:

Useful MoCs:
•  Process Networks
•  Synchronous/Reactive
•  Time-Triggered
•  Discrete Events
•  Dataflow
•  Rendezvous
•  Continuous Time
•  …

f : (T → B*) m → (T → B*) n

Lee, Berkeley 60

Semantics Clears Up Subtleties:
E.g. Simultaneous Events

By default, an actor produces events with the same time as the input
event. But in this example, we expect (and need) for the BooleanSwitch to
“see” the output of the Bernoulli in the same “firing” where it sees the event
from the PoissonClock. Events with identical time stamps are also ordered,
and reactions to such events follow data precedence order.

Lee, Berkeley 61

Semantics Clears Up Subtleties:
E.g. Feedback

Data precedence analysis has to take into account the non-strictness of
this actor (that an output can be produced despite the lack of an input).

Lee, Berkeley 62

Zeno Systems

Theorem: If every directed cycle contains a delta-causal
component, then the system is non-Zeno.

Lee, Berkeley 63

Some Research Thrusts in the
Ptolemy Project

  Systems of systems: Modeling and design of large scale systems, those that
include networking, database, grid computing, and information subsystems.

  Understandable concurrency: This effort focuses on models of concurrency in
software that are more understandable and analyzable than the prevailing
abstractions based on threads.

  Multicore and parallelism in embedded systems: Code generation for parallel
machines, scalable parallelism, model engineering, model transformation.

  Precision-timed (PRET) machines: Introduce timing into the core abstractions of
computing, beginning with instruction set architectures, using configurable hardware
as an experimental platform.

  Real-time software: Models of computation with time and concurrency,
metaprogramming techniques, code generation and optimization, domain-specific
languages, schedulability analysis, programming of sensor networks.

  Distributed computing: Models of computation based on distributed discrete
events, backtracking techniques, lifecycle management, unreliable networks,
modeling of sensor networks.

  Hybrid systems: Blended continuous and discrete dynamics, models of time,
operational semantics, language design.

Lee, Berkeley 64

The Ptolemy Pteam

John
Eidson

Isaac Liu

Christopher Brooks

Jia Zou

Edward
Lee

Ben
Lickly

Thomas
Huining

Feng

Jackie
Mankit
Leung

Jeff
Jensen

Bert Rodiers Hiren Patel

Yasemin
Demir

Shanna-
Shaye
Forbes

Thomas
Mandl

Elefterios
Matsikoudis

