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Elevator Speech 

The Ptolemy project studies modeling, simulation, 
and design of concurrent, real-time, embedded 
systems. The focus is on assembly of concurrent 
components. The key underlying principle in the 
project is the use of well-defined models of 
computation that govern the interaction between 
components. A major problem area being 
addressed is the use of heterogeneous mixtures of 
models of computation. A software system called 
Ptolemy II is being constructed in Java, and serves 
as the principal laboratory for experimentation. 
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The Ptolemy Project 
Demographics, 2009 

Staffing: 
  1 professor 
  9 graduate students 
  3 postdocs 
  3 full-time staff 
  several visitors 

Sponsors: 
  Government 

  National Science Foundation 
  Army Research Office 
  Air Force Research Lab 
  Air Force Office of Scientific Research 

  Industry 
  Agilent 
  Bosch 
  HSBC 
  Lockheed-Martin 
  National Instruments 
  Toyota 

History: 
The project was 
started in 1990, though 
its mission and focus 
has evolved 
considerably. An open-
source, extensible 
software framework 
(Ptolemy II) constitutes 
the principal 
experimental 
laboratory. 
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Cyber-Physical Systems (CPS): 
Orchestrating networked computational  
resources with physical systems 

Power 
generation and 
distribution 

Courtesy of  
General Electric 

Military systems: 

E-Corner, Siemens 

Transportation 
(Air traffic 
control at 
SFO) Avionics 

Telecommunications 

Factory automation 

Instrumentation 
(Soleil Synchrotron) 

Daimler-Chrysler 

Automotive 

Building Systems 
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First Challenge on the Cyber Side: 
Real-Time Software 
Correct execution of a program in C, C#, Java, 
Haskell, etc. has nothing to do with how long it 
takes to do anything. All our computation and 
networking abstractions are built on this premise. 

Timing of programs is not repeatable, 
except at very coarse granularity.  

Programmers have to step outside the 
programming abstractions to specify 
timing behavior. 
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Second Challenge on the Cyber Side: 
Concurrency  
(Needed for real time and multicore) 

Threads dominate concurrent software. 

  Threads: Sequential computation with shared memory. 
  Interrupts: Threads started by the hardware. 

Incomprehensible interactions between threads are the sources of many 
problems: 

  Deadlock 
  Priority inversion 
  Scheduling anomalies 
  Timing variability 
  Nondeterminism  
  Buffer overruns 
  System crashes 
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Consider an Automotive Example 

Periodic events 

Quasi-periodic events 

Sporadic events 

Consider handling this with timers, interrupts, threads, 
shared memory, priorities, and mutual exclusion. 
This is a nightmare! 



Lee, Berkeley 8 

The Current State of Affairs 

We build embedded 
software on abstractions  
where time is irrelevant  
using concurrency  
models that are  
incomprehensible. 

Just think what we could do with the  
right abstractions! 
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The Answer 

  Disciplined concurrent and timed models of 
computation (MoCs). 

Today I will focus on explaining how we use Ptolemy II to 
study concurrent and timed MoCs. 
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Kahn Process Networks (PN) 
A Concurrent Model of Computation (MoC) 

•  A set of components called actors. 
•  Each representing a sequential procedure. 
•  Where steps in these procedures receive or send 

messages to other actors (or perform local operations). 
•  Messages are communicated asynchronously with 

unbounded buffers. 
•  A procedure can always send a message. It does not need 

to wait for the recipient to be ready to receive. 
•  Messages are delivered reliably and in order. 
•  When a procedure attempts to receive a message, that 

attempt blocks the procedure until a message is available. 
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Coarse History 

  Semantics given by Gilles Kahn in 1974. 
  Fixed points of continuous and monotonic functions 

  More limited form given by Kahn and MacQueen in 1977. 
  Blocking reads and nonblocking writes. 

  Generalizations to nondeterministic systems 
  Kosinski [1978], Stark [1980s], … 

  Bounded memory execution given by Parks in 1995. 
  Solves an undecidable problem. 

  Debate over validity of this policy, Geilen and Basten 2003. 
  Relationship between denotational and operational semantics. 

  Many related models intertwined. 
  Actors (Hewitt, Agha), CSP (Hoare), CCS (Milner), Interaction 

(Wegner), Streams (Broy, …), Dataflow (Dennis, Arvind, …)... 
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Syntax 
•  Processes communicate via ports. 
•  Ports are connected to one another, indicating message pathways. 
•  Interconnection of ports is 

specified separately from  
the procedures. 

while(true) { 
  data1 = in1.get(); 
  data2 = in2.get(); 
  … do something with it … 
} 

Message pathway 

Port 

Fork 

Process 

Discussion: What should a fork do? 

while(true) { 
  data = … 
  outputPort.send(data); 
} 
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Properties of PN (Two Big Topics) 

  Assuming “well-behaved” actors, a PN network is 
determinate in that the sequence of tokens on each 
arc is independent of the thread scheduling strategy. 

 Making this statement precise, however, is nontrivial. 
See fixed-point semantics of previous lecture. 

  PN is Turing complete. 
 Given only boolean tokens, memoryless functional 

actors, Switch, Select, and initial tokens, one can 
implement a universal Turing machine. 

 Whether a PN network deadlocks is undecidable. 
 Whether buffers grow without bound is undecidable. 
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Dataflow 

Dataflow models are similar to PN models except that 
actor behavior is given in terms of discrete “firings” rather 
than processes. A firing occurs in response to inputs. 
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A few variants of dataflow MoCs 

  Computation graphs [Karp and Miller, 1966] 
  Static dataflow [Dennis, 1974] 
  Dynamic dataflow [Arvind, 1981] 
  Structured dataflow [Matwin & Pietrzykowski 1985] 
  K-bounded loops [Culler, 1986] 
  Synchronous dataflow [Lee & Messerschmitt, 1986] 
  Structured dataflow and LabVIEW [Kodosky, 1986] 
  PGM: Processing Graph Method [Kaplan, 1987] 
  Synchronous languages [Lustre, Signal, 1980’s] 
  Well-behaved dataflow [Gao, 1992] 
  Boolean dataflow [Buck and Lee, 1993] 
  Multidimensional SDF [Lee, 1993] 
  Cyclo-static dataflow [Lauwereins, 1994] 
  Integer dataflow [Buck, 1994] 
  Bounded dynamic dataflow [Lee and Parks, 1995] 
  Heterochronous dataflow [Girault, Lee, & Lee, 1997] 
  … 
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The Problem 

Dataflow models can be built with message passing 
libraries and with threads. But should the programmer be 
asked to handle the considerable subtleties? 

Few programmers will get it right… 
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Some Subtleties 

  Termination, deadlock, and livelock (halting) 
  Bounding the buffers. 
  Fairness 
  Parallelism 
  Data structures and shared data 
  Determinism 
  Real-time constraints 
  Syntax 
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Question 1: 
Is “Fair” Scheduling a Good Idea? 

In the following model, what happens if every actor is 
given an equal opportunity to run? 
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Question 2: 
Is “Data-Driven” Execution a Good Idea? 

In the following model, if actors are allowed to run when 
they have input data on connected inputs, what will 
happen? 
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Question 3: 
When are Outputs Required? 

Is the execution shown for the following model the “right” 
execution? 
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Question 4: Is “Demand-Driven” Execution 
a Good Idea? 

In the following model, if actors are allowed to run when 
another actor requires their outputs, what will happen? 
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Question 5: What is the “Correct” 
Execution of This Program? 
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Question 6: What is the Correct Behavior 
of this Program? 



Lee, Berkeley 24 

Naïve Schedulers Fail 

  Fair 
  Demand driven 
  Data driven 
  Most mixtures of demand and data driven 

If programmers are building such programs with 
message passing libraries or threads, what will keep 
them from repeating these mistakes that have been 
made by top experts in the field? 
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Question 7: 
How to support nondeterminism? 

Merging of streams is needed for some 
applications. Does this require fairness? 
What does fairness mean? 
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These problems have been solved! 
Let’s not make programmers re-solve 
them for every program. 

In Ptolemy II, a 
programmer 
specifies a director, 
which provides 
much more 
structure than 
message-passing 
or thread library. It 
provides a 
concurrent model of 
computation (MoC). 

Library of 
directors 

Program using actor-oriented 
components and a PN MoC 
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The PN Director solves the above 
problems by implementing a “useful 
execution” 

Define a correct execution to be any execution for 
which after any finite time every signal is a prefix of the 
signal given by the (Kahn) least-fixed-point semantics. 

Define a useful execution to be a correct execution that 
satisfies the following criteria: 
1.  For every non-terminating model, after any finite time, a 

useful execution will extend at least one stream in finite 
(additional) time. 

2.  If a correct execution satisfying criterion (1) exists that 
executes with bounded buffers, then a useful execution will 
execute with bounded buffers. 
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Programmers should not have to figure out 
how to solve these problems! 
Undecidability and Turing Completeness [Buck 93] 

Given the following four actors and Boolean streams, you 
can construct a universal Turing machine: 

Hence, the following questions are undecidable: 
  Will a model deadlock (terminate)? 
  Can a model be executed with bounded buffers? 
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Our solution: 
Parks’ Strategy [Parks 95] 

This “solves” the undecidable problems: 
  Start with an arbitrary bound on the capacity of all buffers. 
  Execute as much as possible. 
  If deadlock occurs and at least one actor is blocked on a write, 

increase the capacity of at least one buffer to unblock at least one 
write. 

  Continue executing, repeatedly checking for deadlock. 

This delivers a useful execution (possibly taking infinite 
time to tell you whether a model deadlocks and how 
much buffer memory it requires). 
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There are many more subtleties! 
We need disciplined concurrent models of 
computation, not arbitrarily flexible libraries. 

Some principles: 

  Do not use nondeterministic programming models to accomplish 
deterministic ends. 

  Use concurrency models that have analogies in the physical 
world (actors, not threads). 

  Provide these in the form of models of computation (MoCs) with 
well-developed semantics and tools. 

  Use specialized MoCs to exploit semantic properties (avoid 
excess generality). 

  Leave the choice of shared memory or message passing to the 
compiler. 
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Our Premise: Software Components are Actors 
rather than Objects 

The alternative: Actor oriented: 

actor name 

data (state) 

ports 

Input data 

parameters 

   Output data 

What flows through 
an object is 

evolving data 

class name 

data 

methods 

call return 

What flows through 
an object is 

sequential control 

The established: Object-oriented: 

Things happen to objects 

Actors make things happen 
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Ptolemy II: Our Laboratory for Experiments with 
Actor-Oriented Design 

Director from a library 
defines component 
interaction semantics 

Large, behaviorally-
polymorphic component 
library. 

Visual editor supporting an abstract syntax 

Type system for 
transported data 

Concurrency management supporting 
dynamic model structure. 
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Approach: Concurrent Composition of Software 
Components, which are themselves designed 
with Conventional Languages 
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Our Laboratory Infrastructure 

If you want to experimental work in biology, physics, or 
chemistry, you don’t want to start from scratch with a 
empty room for your lab. 

Leverage the work of others! 

Ohloh (a branch of SourceForge) analysis says that 
Ptolemy II has 1.8 M lines of code, an estimated effort of 
517 person years, worth $28.4 million.  (9/7/09) 
https://www.ohloh.net/p/12005 
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Separable Tool Architecture 

 Abstract Syntax 
 Concrete Syntax 
 Abstract Semantics 
 Concrete Semantics 
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The Basic Abstract Syntax for 
Composition 

•  Entities 
•  Attributes on entities (parameters) 
•  Ports in entities 
•  Links between ports 
•  Width on links (channels) 
•  Hierarchy 

Concrete syntaxes: 
•  XML 
•  Visual pictures 
•  Actor languages (Cal, StreamIT, …) 
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Meta Model: Kernel Classes 
Supporting the Abstract Syntax 

These get subclassed for specific purposes. 
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Separable Tool Archictecture 

 Abstract Syntax 
 Concrete Syntax 
 Abstract Semantics 
 Concrete Semantics 



Lee, Berkeley 39 

MoML 
XML Schema for this Abstract Syntax 

Ptolemy II designs are represented in XML: 

    ... 
    <entity name="FFT" class="ptolemy.domains.sdf.lib.FFT"> 
        <property name="order" class="ptolemy.data.expr.Parameter" value="order"> 
        </property> 
        <port name="input" class="ptolemy.domains.sdf.kernel.SDFIOPort"> 
           ... 
        </port> 
        ... 
    </entity> 
    ... 
    <link port="FFT.input" relation="relation"/> 
    <link port="AbsoluteValue2.output" relation="relation"/> 
    ... 
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Separable Tool Archictecture 

 Abstract Syntax 
 Concrete Syntax 
 Abstract Semantics 
 Concrete Semantics 
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Abstract Semantics (Informally) 
of Actor-Oriented Models of Computation 

Actor-Oriented Models of 
Computation that we have 
implemented: 

•  dataflow (several variants) 
•  process networks 
•  distributed process networks 
•  Click (push/pull) 
•  continuous-time 
•  CSP (rendezvous) 
•  discrete events 
•  distributed discrete events 
•  synchronous/reactive 
•  time-driven (several variants) 
•  … 

execution control data transport 

init() 
fire() 
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How Does This Work? 
Execution of Ptolemy II Actors 

Flow of control: 
  Initialization 
  Execution 
  Finalization 
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How Does This Work? 
Execution of Ptolemy II Actors 

Flow of control: 
  Initialization 
  Execution 
  Finalization 

E.g., in DE: Post tags on the event 
queue corresponding to any initial 
events the actor wants to 
produce. 
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How Does This Work? 
Execution of Ptolemy II Actors 

Flow of control: 
  Initialization 
  Execution 
  Finalization 

Iterate 
If (prefire()) { 
     fire(); 
     postfire(); 
} 

Only the postfire() method 
should change the state of the 
actor. 
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How Does This Work? 
Execution of Ptolemy II Actors 

Flow of control: 
  Initialization 
  Execution 
  Finalization 
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Definition of the Register Actor (Sketch) 

class Register extends TypedAtomicActor { 
  private Object state; 
  boolean prefire() { 
    if (trigger is known) { return true; } 
  } 
  void fire() { 
    if (trigger is present) { 
      send state to output; 
    } else { 
      assert output is absent; 
    } 
  } 
  void postfire() { 
    if (trigger is present) { 
      state = value read from data input; 
    } 
  } 

Can the 
actor fire? 

React to 
trigger 
input. 

Read the 
data input 
and update 
the state. 

trigger 
input 
port 

data input port 
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Separable Tool Archictecture 

 Abstract Syntax 
 Concrete Syntax 
 Abstract Semantics 
 Concrete Semantics 
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Concrete Semantics Example 1:  
Discrete Event (DE) Model of Computation 
(MoC) 

DE Director implements 
timed semantics using an 
event queue 

Event source 

Time line 

Signal 
put() method inserts a token 
into the event queue. 

In DE, actors send time-
stamped events to one 
another, and events are 
processed in chronological 
order. 
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Example 2: Kahn Process Networks (PN)  
Model of Computation (MoC) 

actor == thread 

signal == stream 

reads block 

writes don’t 
Kahn, MacQueen, 1977 

In PN, every 
actor runs in 
a thread, 
with blocking 
reads of 
input ports 
and non-
blocking 
writes to 
outputs. 
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Example 3: Synchronous Dataflow (SDF) 

In SDF, actors “fire,” and in each firing, consume a 
fixed number of tokens from the input streams, and 
produce a fixed number of tokens on the output 
streams. 

SDF is a special case of PN 
where deadlock and 
boundedness are decidable. It is 
well suited to static scheduling 
and code generation. It can also 
be automatically parallelized. 
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Example 4: Synchronous/Reactive (SR) 

At each tick of a global “clock,” every 
signal has a value or is absent. 

Like SDF, SR is decidable and suitable for 
code generation. It is harder to parallelize 
than SDF, however. 

SR languages: Esterel, SyncCharts, Lustre, 
SCADE, Signal. 
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Example 5: Rendezvous 

actor == thread 

writes block 

CSP (Hoare), SCCS (Milner), 
Reo (Arbab) 

In Rendezvous, every 
actor runs in a thread, 
with blocking reads of 
input ports and blocking 
writes to outputs. Every 
communication is a 
(possibly multi-way) 
rendezvous. 

reads block 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Example 6: Continuous Time (CT) 

Director includes an ODE solver. 

In CT, actors operate on 
continuous-time and/or 
discrete-event signals. An 
ODE solver governs the 
execution. 

Signal is a 
continuous-time 
function. 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Ptolemy II Software Architecture 
Built for Extensibility 

Ptolemy II packages 
have carefully 
constructed 
dependencies and 
interfaces 

PN 

CSP 

CT Kernel 

Data 

Actor Math 

Graph 
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Models of Computation 
Implemented in Ptolemy II 

  CI – Push/pull component interaction 
  Click – Push/pull with method invocation 
  CSP – concurrent threads with rendezvous 
  Continuous – continuous-time modeling with fixed-point semantics 
  CT – continuous-time modeling 
  DDF – Dynamic dataflow 
  DE – discrete-event systems 
  DDE – distributed discrete events 
  DPN – distributed process networks 
  FSM – finite state machines 
  DT – discrete time (cycle driven)  
  Giotto – synchronous periodic 
  GR – 3-D graphics 
  PN – process networks 
  Rendezvous – extension of CSP 
  SDF – synchronous dataflow 
  SR – synchronous/reactive 
  TM – timed multitasking 

Most of 
these are 
actor 
oriented. 
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Scalability 101: 
Hierarchy - Composite Components 

toplevel CompositeEntity 
transparent or opaque 
CompositeEntity 

Entity 
Relation dangling 

Port 

Port 
opaque Port 
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Ptolemy II Hierarchy Supports Heterogeneity 

This requires a composable abstract semantics. 

Concurrent actors governed by one model of 
computation (e.g., Discrete Events). 

Modal behavior given in another MoC. 

Detailed dynamics given 
in a third MoC (e.g. 

Continuous Time) 
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Hierarchical Heterogeneity (HH)  
Supports Hybrid Systems 

Combinations of synchronous/reactive, 
discrete-event, and continuous-time 
semantics offer a powerful way to represent 
and execute hybrid systems.  

HyVisual is a 
specialization of the 
meta framework 
Ptolemy II. 
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In All Cases: Composition Semantics 

Each actor is a function: 

Composition in three forms: 
  Cascade connections 
  Parallel connections 
  Feedback connections 
All three are function composition. 

 The nontrivial part of this is feedback, but 
we know how to handle that. 

The concurrency model is 
called the “model of 
computation” (MoC). 

The model of computation 
determines the formal 
properties of the set T: 

Useful MoCs: 
•  Process Networks 
•  Synchronous/Reactive 
•  Time-Triggered 
•  Discrete Events 
•  Dataflow 
•  Rendezvous 
•  Continuous Time 
•  … 

f : (T → B*) m → (T → B*) n 
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Semantics Clears Up Subtleties:  
E.g. Simultaneous Events 

By default, an actor produces events with the same time as the input 
event. But in this example, we expect (and need) for the BooleanSwitch to 
“see” the output of the Bernoulli in the same “firing” where it sees the event 
from the PoissonClock. Events with identical time stamps are also ordered, 
and reactions to such events follow data precedence order. 
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Semantics Clears Up Subtleties:  
E.g. Feedback 

Data precedence analysis has to take into account the non-strictness of 
this actor (that an output can be produced despite the lack of an input). 
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Zeno Systems 

Theorem: If every directed cycle contains a delta-causal 
component, then the system is non-Zeno. 
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Some Research Thrusts in the  
Ptolemy Project 

  Systems of systems: Modeling and design of large scale systems, those that 
include networking, database, grid computing, and information subsystems. 

  Understandable concurrency: This effort focuses on models of concurrency in 
software that are more understandable and analyzable than the prevailing 
abstractions based on threads. 

  Multicore and parallelism in embedded systems: Code generation for parallel 
machines, scalable parallelism, model engineering, model transformation. 

  Precision-timed (PRET) machines: Introduce timing into the core abstractions of 
computing, beginning with instruction set architectures, using configurable hardware 
as an experimental platform. 

  Real-time software: Models of computation with time and concurrency, 
metaprogramming techniques, code generation and optimization, domain-specific 
languages, schedulability analysis, programming of sensor networks. 

  Distributed computing: Models of computation based on distributed discrete 
events, backtracking techniques, lifecycle management, unreliable networks, 
modeling of sensor networks. 

  Hybrid systems: Blended continuous and discrete dynamics, models of time, 
operational semantics, language design. 
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