
Models, tasks, RT operating systems and 

schedulability

Marco Di Natale
Associate Professor, Scuola S. Anna - Italy, UTRC Visiting Fellow



A development cycle



Model-based design

On August 19, 1418, a competition was announced in Florence, where the city’s 

magnificent new cathedral, Santa Maria del Fiore, had been under construction 
for more than a century

Whoever desires to make any model or design for the vaulting of the main 
Dome of the Cathedral under construction by the Opera del Duomo-for 
armature, scaffolding or other thing, or any lifting device pertaining to the 
construction and perfection of said cupola or vault shall do so before the end of 
the month of September. If the model be used he shall be entitled to a 
payment of 200 gold Florins.
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Model-based design

Engineering has made use 
of models since its very 
early days

Engineering has made use 
of models since its very 
early days

Filippo Brunelleschi's design for the dome of the cathedral 

of Santa Maria del Fiore in Florence remains one of the 

most towering achievements of Renaissance architecture. 

Completed in 1436, the dome remains a remarkable feat of 

design and engineering. Its span of more than 140 feet 

exceeds St Paul's in London and St Peter's in Rome, and 

even outdoes the Capitol in Washington, D.C., making it the 

largest dome ever constructed using bricks and mortar. 

When work on the dome began in 1420 Brunelleschi was 

virtually unknown. Sixteen years later the dome was built, 

and its architect was a superstar. 
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Model-based design flow

• Typical flow, updated in 

V-shape or iterative 

fashion or V-shape

plus iterative ….

• The four tenets on the 

right are fundamental 

to model-based design

• Of course, you must 

select a modeling 

language that allows to 

do everything in the 

most natural and easy 

way …



• Design (continued): matching the logical design into the SW 
architecture design
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This Class Diagram is an early, pre-task design view of class relationships, based on the Object design interaction models.

This diagram would be considerably enhanced as further implementation detail was added.

the 'active' EH Unit is one of the 

aggregate EH Units of the Dispenser
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Models and implementation: Simulink

Where are the tasks?



Models and implementation: UML
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This Class Diagram is an early, pre-task design view of class relationships, based on the Object design interaction models.

This diagram would be considerably enhanced as further implementation detail was added.
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Models and implementation: UML



Models and implementation: FSM



Model-based design: a functional view

• Advantages of model-based design
– Possibility of advance verification of correctness of (control) algorithms 

• Possible approaches
1. The model is developed considering the implementation and the 

platform limitations
– include from the start considerations about the implementation (tasking 

model and HW)
• PROS (apparent) 

– use knowledge about the platform to steer the design towards a feasible solution 
(in reality, this is often a trial-and-error manual process)

• CONS (true) 
– the model depends on the platform (updates/changes on the platform create 

opportunities or more often issues that need to be solved by changing the model)
– Analysis is more difficult, absence of layers makes isolating errors and causes of 

errors more difficult 
– the process is rarely guided by sound theory (how good is the platform selection 

and mapping solution?)
– Added elements (Rate-transition blocks) introduce delays

2. The model is developed as a “pure functional” model according to 
a formally defined semantics, irrespective of the possible 
implementation 

– The model is then refined and matched to a possible implementation 
platform. Analysis tools check feasibility of an implementation that 
refines the functional semantics and suggest options when no 
implementation is feasible (more …)



Model-based design: a functional view

• Advantages of model-based design starting from a purely functional 
model

– Possibility of advance verification of correctness of (control) algorithms 

– Irrespective of implementation

– This allows an easier retargeting of the function to a different platform if 
and when needed

• The functional design does not depend on the platform

– The verification of the functional design can be perfomed by domain 
experts (control engineers) without knowledge of SW or HW 
implementation issues

• Necessary assets to leverage these advantages …

– Capability of defining rules for the correct refinement of a functional 
model into an implementation model on a given platform

– Capability of supporting design iterations to understand the tradeoffs 
and the changes that are required when a given functional model 
cannot be refined (mapped) on a given platform 



Model-based development flow

• Platform-based design 

Architecture Space
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Platform 
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Architecture
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Functional Model 
interface
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instance

System
Platform
Stack
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architectures

Application Space

Execution architecture model
Independent of Functionality

System platform model
(possibly the level of the SW 

implementation in tasks and messages)
Independent from both and suitable for 

evaluation of mapping solutions

refinement



Platform-dependent modeling: an example



PBD and RTOS/platform
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Choosing a functional representation

• Synchronous reactive modeling
• Purely functional implies “zero-time” execution or logical time (no 

notion of platform or computation time)
– The output update and state update functions are computed 

immediately at the time the block is triggered/activated

– Rather than “zero time”, a more accurate definition is:

– “the system response or reaction is guaranteed to be completed 
before the next system event”.

– The only significant references to time are the sampling times (or 
trigger events) of blocks

– Also, the partial order in the execution of blocks because of 
feedthrough behavior must be considered

• Options:
– Signals are persistent (Simulink)

– Signals are not persistent 



Semantics options

• Signals are persistent (Simulink)

T=3 T=2
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4 4
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6
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6

• Signals are not persistent 

• Algebraic loops (causal loops without delays) result in a fixed 

point and lack of compositionality

stutter



Semantics and Compositionality

• Semantics problem: systems compositions  do not behave 
according to the semantics of the components
– The problem is typical of SR semantics when there are causal cycles: 

existence of a fixed point solution cannot be guaranteed (i.e. the system 

may be ill-defined)

– When multirate blocks are in a causal loop the composition is always not 

feasible 
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u=f(x,y) z=g(u)

y=z
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Outline

• Functional vs. Execution model

• Semantics options

• Preserving semantics in refinements
– Verifying that the synchronous reaction assumption holds with 

respect to the actual  (finite) computation times

– The behavior of the simulation (of the functional model –i.e. without 
RT blocks-) must be the same as the run-time behavior 

• Communication behavior must be the same 
• Outputs are produced before the  following event (i.e. The system is 

not sensitive to whatever happens in between events)

• Tradeoffs in task implementations
– Multitask Model implementation by Real-Time Workshop and 

rate transition (RT) blocks

– Scheduling trade-offs (schedulability vs. added delays)

• References



Simulink models (SR)
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Simulink models (not feedthrough)

Integrator (output does 
not depend on input but 
only on state)
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Example of generated code
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Simulink models (feedthrough)

Most blocks are of type 
feedthrough (output does 
depend on input)
This implies a precedence 
constraint in the 
computation of the block 
output functions

Dependencies 
among outputs

Some blocks have 
no state



Simulation of models

• Simulation of Multirate models

– order all blocks based upon their topological dependencies 

– The RTW tool (meant for a single processor implementation) 
generates a total order based on the partial order imposed by 
the feedthrough semantics

– In reality, there are many such total orders that satisfy the 
dependencies!

• Other choices are possible

• In multiprocessor implementations this can be leveraged to optimize the 

implementation 

– Then, for simulation, virtual time is initialized at zero

– The simulator scans the precedence list in order and execute all
the blocks for which the value of the virtual time is an integer
multiple of the period of their inputs

– Simulated execution means computing the block output and 
then computing the new state



From Models to implementation

• Simulink case



Simulink models



Simulink models

The result is a network of 
functions (output/state 
update) with a set of 
partial orders

Each blockset is 
characterized by an 
execution rate



Simulation of mutirate models

• Simulation of multirate models: an example

– Simulation runs in virtual time. The virtual clock is updated at
each step



Motivation: Model-based devel. issues

• The implementation of a SR model should preserve its semantics so to 
retain the validation and verification results. The implementation can 
use 

– Single task executing at the base rate of the system

– A set of concurrent tasks, with typically one task for each execution rate, 
and possibly more. 

Simulation: logical execution and

communication time
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From Models to implementation

• Simulink case (single task implementation)



From Models to implementation

• Simulink case (single task implementation)



Implementation of models

• Implementation runs in real-time (code implementing the blocks 
behavior has finite execution time)

• Generation of code: Singletask implementation



From Models to implementation

• Simulink case (single task implementation)

rt_OneStep()

{

Check for interrupt overflow or other error

Enable "rt_OneStep" (timer) interrupt

ModelStep-- Time step combines output,logging,update

}

Single-rate rt_OneStep is designed to execute model_step

within a single clock period. To enforce this timing 

constraint, rt_OneStep maintains and checks a timer 

overrun flag.



Generation of code: multitask mode

• The RTW code generator assigns each block a task identifier (tid) 
based on its sample rate. 

• The blocks with the fastest sample rates are executed by the task with 
the highest priority, the next slowest blocks are executed by a task with 
the next lower priority, and so on (Rate Monotonic)

1 1 12 4 4



Model implementation: single task

t=0 t=1 t=2 t=3 t=4
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Easy but possibly inefficient

System base cycle = 
time to execute the longest system reaction



Model implementation: multi-task

Real-time execution: finite 

execution time and 

possible preemption
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Model implementation: multi-task

Real-time execution: lack

of time determinism

(because of preemption)
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Behavior different from

simulation



From Models to implementation

• Multitask implementation

rt_OneStep()

{

Check for base-rate interrupt overflow

Enable "rt_OneStep" interrupt

Determine which rates need to run this time step

ModelStep(tid=0) --base-rate time step

For i=1:NumTasks -- iterate over sub-rate tasks

Check for sub-rate interrupt overflow

If (sub-rate task i is scheduled)

ModelStep(tid=i) --sub-rate time step

EndIf

EndFor

}



Nondeterminism in time and value

• However, this can lead to the violation of the zero-execution time 
semantics of the model (without delays) and even to inconsistent
state of the communication buffer in the case of 
– low rate (priority) blocks driving high rate (priority) blocks.

– high rate (priority) blocks driving low rate (priority) blocks. 



Adding determinism: RT blocks

• Solution: Rate Transition blocks

– added buffer space and added latency/delay

– relax the scheduling problem by allowing to drop the 
feedthrough precedence constraint

• The mechanism can only be implemented if the 
rates of the blocks are harmonic (one multiple of 
the other)

– Otherwise, it is possible to make a transition to the gcd
of the blocks’ periods, at the price of additional space 
and delay 



RT blocks: High rate/priority to low rate/priority
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Low rate/ 

priority
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time: overhead of 
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COST
space: 1 additional 
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each link
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performance: none 

Output 
update 
only

Consistency here is 
guaranteed by proving 
there is no preemption



RT blocks: Low rate/priority to high rate/priority

Low rate/ 

priority

High rate/ 

priority

pri=2
T=2

pri=2
T=2

pri=1
T=2

pri=1
T=1

Output 
update

State 
update

Output 
update

RTRTRTRT----equivalentequivalentequivalentequivalent

COST
space: 2 additional 
set of variables for 
each link
time: overhead of 
RT implement.
performance: 1-
unit delay (low rate 
period) 

COST
space: 2 additional 
set of variables for 
each link
time: overhead of 
RT implement.
performance: 1-
unit delay (low rate 
period) Consistency here is guaranteed 

by proving there is no preemption



Limitations in the use of RT blocks (1)



Tradeoffs and design cycles

• RT blocks are not a functional entity
– but an implementation device 

• RT Blocks are only required 
– because of the selection of the RM scheduling policy

in slow to fast transitions

– because of the possibility of preemption

in both cases

• In both cases, time determinism (of communication) is obtained at 
the price of additional memory 

• In the case of slow to fast transitions, the RT block also adds a 
delay equal to the period of the slowest block
– This is only because of the Rate monotonic scheduling

– Added delays decrease the performance of controls 



Consistency issues

• Consistency issues in the 1-1 communication between blocks 
with different rates may happen:

– When blocks are executed in concurrent tasks (activated at different 

rates or by asynchronous events)

– When a reader may preempt a writer while updating the communication 

variables (reader with higher priority than writer)

– When the writer can preempt the reader while it is reading the 

communication variables (writer with higher priority). 

– Necessary condition for data inconsistency is the possibility of

preemption reader→writer or writer→reader

• Also, we may want to enforce time determinism (flow preservation)



Consistency issues

• Also, a relaxed form of time determinism may be required 

– Input coherency: when inputs are coming from multiple blocks, we want 

to read inputs produced by instances activated by the same event

b1

b2

b3

T=2

T=1



Guaranteeing data consistency

• Demonstrate impossibility of preemption between readers and writers 
– Appropriate scheduling of blocks into tasks, priority assignment, activation 

offsets and using worst-case response time analysis

• Avoid preemption between readers and writers 
– Disabling preemption among tasks (blocks) (RES_SCHEDULER in OSEK)

• Allow preemption and protect communication variables
– Protect all the critical sections by

• Disabling interrupts 

• Using (immediate) priority ceiling (semaphores/OSEK resources)

– Problem: need to protect each use of a communication variable. Advantage 
(does not require extra buffer memory, but only the additional memory of the 
protection mechanism)

– Lock-free/Wait-free communication: multiple buffers with protected copy 
instructions:

• Typically w. interrupt disabling or kernel-level code

- Problem: requires additional buffer memory (How much?). Advantage: it is 
possible to cluster the write/read operations at the end/beginning of a task, 
with limited change to existing code.

- The best policy may be a mix of all the previous, depending on the 
timing contraints of the application and on the communication 
configuration.



Demonstrating impossibility of preemption

• Assign priorities and offsets and use timing analysis to guarantee 
absence of preemption

• Input data:
– Mapping of functional blocks into tasks

– Order of functional blocks inside tasks

– Worst-case execution time of blocks (tasks)

– Priorities assigned to tasks

– Task periods

– (relative) Offset in the activation of periodic tasks (owr = minimum offset 
between writer and reader activations, Owr maximum offset between the 
activations)

• Computed data
– Worst case response time of tasks/blocks (considering interferences and 

preemptions) Rr for the writer Rw for the reader

• Two cases: 
– Priority writer > priority reader

– Priority reader > priority writer 



Absence of preemption/High to low priority

• Condition for avoiding preemption writer→reader (no assumptions 
about relative rates of reader/writer)

High priority Low priority

Owr
Tw

Rr

Rr ≤ Tw - Owr
Rr ≤ Tw - Owr

w

r



Absence of preemption/Low to high priority

• Condition guaranteeing absence of preemption or reader to writer
(reader→writer)

Low priority High priority

owr

Rw

owr ≥ Rw
owr ≥ Rw

Both conditions are unlikely in practiceBoth conditions are unlikely in practice

Tr

Rw Owr=owr=0
∧

Rw ≤ Tr

Owr=owr=0
∧

Rw ≤ Tr

r

w

r

w



Absence of preemption/Low to high priority

• These conditions are ultimately used by the Rate Transition block 
mechanisms !!

Tr

Rw

Owr=owr=0
∧

Rw ≤ Tr

Owr=owr=0
∧

Rw ≤ Tr

r

w

Low 

priority

High 
priority

pri=3
T=2

pri=4
T=2

pri=1
T=2

pri=2
T=1

Output update Output update



Avoiding preemption

• Disabling preemption

High priority Low priority

The response time of the high priority block/task is affected, need to 
check real-time properties

The response time of the high priority block/task is affected, need to 
check real-time properties

Low priority High priority



Design/Scheduling trade-offs

However ...

• if the communication is fast-to-slow and the slow block  completes 
before the next instance of the fast writer, the RT block is not required

• if the communication is from slow to fast, it is possible to selectively 
preserve the precedence order (giving higher priority to the slow block) 
at the expense of schedulability

– Two tasks at the same rate, one high priority, the other low priority

T=4T=4T=4T=4 T=2T=2T=2T=2

T=4T=4T=4T=4 T=2T=2T=2T=2

T=1T=1T=1T=1 RTRTRTRTRTRTRTRT
RTRTRTRT

No RT, no No RT, no No RT, no No RT, no delaydelaydelaydelay



An approach

Required steps
• Definition of the network of functional blocks with 

feedthrough dependencies

F1
t1=1 F2

t2=1
F3

t3=2 F5
t5=1

F9
t1=2 F10

t2=2

F12

t3=1

F11
t11=1

F7

t7=2

F8
t8=2

F4
t4=1• Definition of the 

synchronous sets 

• Priority assignment 
and mapping into 
tasks

• Definition of the block 
order inside tasks

Type1 RTType2 RT



Preserving streams

• What buffering mechanisms are needed for the general 

case ?

– Event-driven activation

– One-to-many communication

A
B

C

D

A

B

C

D

0-delay 
behavior



Preserving streams

• What buffering mechanisms are needed for the general case ?

– Stream preservation (requirement)

– Event-driven activation

– One to many communication

A
B

C

D

A

B

C

D

0-delay 
behavior

The value 
produced by 
this instance Is read by this 

instance
… and needs to be 
buffered in between



Preserving streams

A
B

C

D

A

B

C

D

This block 
instance is 
assigned a buffer 
entry at the time 
of its activation

The entry is 
written at running 
time

This reader 
instance is 
assigned the 
buffer entry at 
the time of its 
activation

The entry is used by the reader 
at running time



Preserving streams

• The time the buffer index is assigned (activation of the block) may 
differ significantly from the time when the index is actually used (at 
running time) because of scheduling delays

– Support from the OS is needed for assigning indexes at block 

activation times

A

B

C

D

This block 
instance is 
assigned a buffer 
entry at the time 
of its activation

The entry is 
written at running 
time

This reader 
instance is 
assigned the 
buffer entry at 
the time of its 
activation

The entry is used by the reader 
at running time



Preserving streams

• Many issues

– Defining efficient mechanisms for assigning indexes to the writers and the 

readers (if they are executed at kernel level)

– Sizing the communication buffers (given the system characteristics, how 

many buffers are needed?)

A

B

C

D

What buffer 
index is available 
at the time of the 
writer activation ?

This reader 
instance is 
assigned the 
buffer entry at 
the time of its 
activation

The entry is used by the reader 
at running time

It is not necessary to store all 

these (6) values, there are at 

most 3 readers at each time !



Model implementation: multi-task

• Efficient but issues with data integrity 

and time determinism

bi bj
oi(m) ij(k) oi(m+1)

oi(m)
ij(k)

Defined at 
activation time

read at 
run time

oi(m+1)

Defined at 
activation time

written at 
run time

Q1:Q1:Q1:Q1: How many buffers you need? How many buffers you need? How many buffers you need? How many buffers you need? 
Q2: Q2: Q2: Q2: How do you define the index How do you define the index How do you define the index How do you define the index 
to be used (at activation time) and to be used (at activation time) and to be used (at activation time) and to be used (at activation time) and 
you pass to the runtime instance ?you pass to the runtime instance ?you pass to the runtime instance ?you pass to the runtime instance ?

Q1:Q1:Q1:Q1: How many buffers you need? How many buffers you need? How many buffers you need? How many buffers you need? 
Q2: Q2: Q2: Q2: How do you define the index How do you define the index How do you define the index How do you define the index 
to be used (at activation time) and to be used (at activation time) and to be used (at activation time) and to be used (at activation time) and 
you pass to the runtime instance ?you pass to the runtime instance ?you pass to the runtime instance ?you pass to the runtime instance ?

read here ? 
ik = oi(m)

or here ? 
ik = oi(m+1)



Buffer sizing methods

Two main methods 

• preventing concurrent accesses by computing an upper bound 
for the maximum number of buffers that can be used at any 
given time by reader tasks. This number depends on the 
maximum number of reader instances that can be active at any 
time. 

• Temporal concurrency control. The size of the buffer can be 
computed by upper bounding the number of times the writer can 
produce new values, while a given data item is considered valid 
by at least one reader.



Bounding the maximum number of reader instances

• the size is equal to the maximum number N of reader task instances 
that can be active at any time (the number of reader tasks if d≤T), 
plus two more buffers: one for the latest written data and one for use 
by the writer [Chen97] (no additional information is available, and no 
delays on the links). 

Reader instance 1

Reader instance 3
Reader instance 4

Reader instance N

Reader instance i

Reader instance 2

The writer must discover the 
available buffer index at runtime

A linked list implementation may 
trade space for time (O(1) access)



Temporal concurrency control

• Based on the concept of datum lifetime. The writer must not 
overwrite a buffer until the datum stored in it is still valid for 
some reader.

writer uses 
index i

reader gets item i

The writer simply 
writes at the next 
(modulo N) index

Owr

Tw

lifetime lwr = Owr+ max(Rri)

i i+1 i-1

Item I can be reused when 
no reader can access it

i

dri



Combination

• A combination of the temporal concurrency control and the 
bounded number of readers approaches can be used to obtain a 
tighter sizing of the buffer. 

• Reader tasks are partitioned into two groups: fast and slow 
readers. The buffer bound for the fast readers leverages the 
lifetime-based bound of temporal concurrency control, and the 
size bound for the slow ones leverages information on the 
maximum number of reader instances that can be active at any 
time. Overall, the space requirements are reduced. 



Combination

• Readers of τwi are sorted by increasing lifetime (li≤li+1). The 
bound

• Applies to readers with lifetime ≤ lj (fast readers).
• Once j is chosen, the bound is

Buffer shared 
among fast 
readers based on the 

number of reader 
instances inside 
the lifetime



Modeling Real-time systems

• What type of timing constraints are in a Simulink

diagram?



Modeling Distributed Real-time systems

• Where is the task model, the implementation relation and 
the deployment model?

Platform

instance

Application 

instance

Platform API 
(OSEK/AUTOSAR)

Refinement into a set 
of concurrent tasks 
exchanging messages

Single-processor w. priority-based RTOSSingle-processor w. priority-based RTOS

SR modeling (Simulink)SR modeling (Simulink)

Dist. system w. asynchronous network (CAN)Dist. system w. asynchronous network (CAN) Dist. system w. time-triggered network (FlexRay)Dist. system w. time-triggered network (FlexRay)



Distributed implementation of models

Need to characterize

the scheduling delays

(how? cosimulation?) Remote blocks are 

no more reacting at 

the same time

Task
CPU

CPUTask

CAN 

bus



Delays from network

A very simple model with oversampling ….

Imagine the data streams between source blocks and the 

multiplier/comparator are exchanged over a network.

These are the results seen by the control engineer at design 

time



Delays from network

An example of the trade-offs between additional 

functional delays and scheduling feasibility

Block A
period = 4

Block B
period = 4

Block C
period = 4

A B C C C C A B C



Delays from network

Designers may be tempted to ease the scheduling 

problem by choosing the instance of the receiving 
task/block



Delays from network

Unfortunately, by doing so, the behavior is different from 
the one simulated with 0-delay

Are the designers/developers fully aware of these 
issues ?
How can we help them ?

(Task and message design and scheduling are in the 
background)



Delays from network

Unfortunately, solutions like this are possible

(not to mention issues with low-level communication 
levels /drivers and custom code)



Architecture optimization vs features
- Active and Passive Safety

by Leen and Effernan – IEEE Computer



Active and Passive Safety

by Leen and Effernan – IEEE Computer



ACC (from Continental web site)

• Adaptive Cruise Control (ACC) – Chassis Electronics
Combined with Safety Aspects

As with conventional cruise control, the driver 

specifies the desired velocity - ACC 

consistently maintains this desired speed. 

In addition, the driver can enter the desired

distance to a vehicle driving in front.

If the vehicle now approaches a car travelling

more slowly in the same lane, ACC will

recognize the diminishing distance and 

reduce the speed through intervention in the 

motor management and by braking with a 

maximum of 0.2 to 0.3 g until the preselected

distance is reached. If the lane is clear again, 

ACC will accelerate to the previously selected

desired tempo. 



Evolution of Integrated Functions

Speed-dependant volume

Onstar emergency notification
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Automotive architecture trends

• An increasing number of functions will be distributed on a 

decreasing number of ECUs and enabled through an 
increasing number of smart sensors and actuators

• today: > 5 buses and > 30 ECUs

• 90% of innovation in cars for the foreseeable future will be 

enabled through the Electronic Vehicle Architecture 

• Transition from single-ECU Black-box based development

processes to a system-level engineering process
• System-level methodologies for quantitative exploration and selection, 

• From Hardware Emulation to Model Based Verification of the System

• Architectures need to be defined years ahead of production 

time, with incomplete information about (future) features

• Multiple non-functional requirements can be defined



f1 f2 f3 f4

f5 f6

s4

s5

s2

s3

s1

Functional 

model

deadline

Jitter constraint

function
period
activation mode

signal
period

is_trigger
precedence

Input 
interface

Output 

interface

Functional model



f1 f2 f3 f4

f5 f6

s4

s5

s2

s3

s1

ECU2ECU1 ECU3

OSEK1
CAN1

Functional 

model

Execution 

architect.  

model

ECU
clk speed (Mhz)

register width

bus
speed (b/s)

Architecture model



f1 f2 f3 f4

f5 f6

s4

s5

s2

s3

s1

ECU2ECU1 ECU3

OSEK1
CAN1

task1 task2
task3 task4

Functional 

model

System 

platform model

Execution 

architect.  

model

SR1 msg1

msg2
task
period
priority
WCET
activ.mode

message
CANId
period
length
transm. mode
is_trigger

resource
WCBT

Deployment model



Back to architecture synthesis

Periods

Activation modes
System

Functionality

Flow To Implementation

System
Architecture

Mapping

Performance

Analysis

Refinement

Task and 

message

priorities

Function to ECU 

allocation

Number and type of 

ECUs and buses

System topology

Function to task 

mapping

DATE 07 (MILP)

RTAS 07 (B&B)

DAC 07 (GP)

RTSS 07 (MILP)

Simul. annealing

Extensibility RTAS 08 
(MILP+search)



Approach: Mathematical Programming

• Why Mathematical Programming?

• (compared with search, genetic programming or SA …)
– Simplicity

• Problem represented with: 
– Set of decision variables

– Constraints

– Objective function

• “automatically” handles cross dependency among selection choices

– Easier coding of multi-objective optimization

– Standardized approach
• Well established technique

• Sound theory, methods

• Availability of commercial solvers (in essence, search engines)

– How good is your solution?
• Provides safe estimate of optimal solution

• Provides intermediate solutions of increasing quality

• Challenge:
– Capture the problem and obtain efficient runtimes

83



(Example) Problem Formulation

Minimization of (average case)  end-to-end latenciesMinimization of (average case)  end-to-end latencies

• Placement of tasks onto the CPUs

• Packing of signals to messages

• Assignment of priorities to tasks and messages

• Definition of activation modes/synchronization model

• Period optimization

• Placement of tasks onto the CPUs

• Packing of signals to messages

• Assignment of priorities to tasks and messages

• Definition of activation modes/synchronization model

• Period optimization

• Constraints on end-to-end latencies
• Constraints on messages size

• Constraints on utilization

• Constraints on message and task deadlines
• Semantics preservation constraints

• Constraints on end-to-end latencies
• Constraints on messages size

• Constraints on utilization

• Constraints on message and task deadlines
• Semantics preservation constraints

Objective

Subject to

Design 
objectives 

(optimization 
variables)



Periodic Activation Model

End-to-end
latency
analysis

Periodic
asynchronous

activation modelHigh latency, but allows 
decoupling the scheduling 

problem

ECU1 CAN

ECU2

ττττ1
ev0

ev0

m2 ττττ3

where 
(approx.)

ECU3

m4 ττττ5

ττττ1

rT1 T1

T2

ττττ1

m2

ττττ3

m2
rT2
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Worst Case Response Times

Tasks:

Messages:

• Resource utilization

– Fraction of time the resource (ECU or bus) 

spends processing its objects (tasks or messages) 

• Utilization bounds less than 100%

– To allow for future extensibility

R∈∀≤













∑

→

jj

Roi i
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t
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Event-based Activation Model

End-to-end
latency
analysis

Data-driven precedence
constrained activation

modelLower latency for high priority 
paths, jitter increases along the 

path

Lower latency for high priority 
paths, jitter increases along the 

path

ECU1 CAN

ECU2

ττττ1
ev0

m2 ττττ3

ECU3

m4 ττττ5

where 
(approx.)

J3

T1 ττττ1

m2

ττττ3

ττττ1

w

m2
w



Design Process and Requirements

• Design optimization

x2

x1

X space of design optimization

variables, such as computation

times, periods, placement, 

priorities …

Schedulability of task i

Schedulability of task j



Design Process and Requirements

• Design optimization

x2

x1

Schedulability
(feasibility) region

Communication constraints

X space of design optimization

variables, such as computation

times, periods, placement, 

priorities …



Design Process and Requirements

• Design optimization

x2

x1

Constraints

Schedulability

Communication
…

Semantics preservation

X space of design optimization

variables, such as computation

times, periods, placement, 

priorities …



Design Process and Requirements

• Design optimization

x2

x1

Constraints

Schedulability

Communication
Model Semantics preservation
…

Sensitivity (extensibility)

X space of design optimization

variables, such as computation

times, periods, placement, 

priorities …



Design Process and Requirements

• Design optimization

x2

x1

X (discrete) space of design 

optimization variables, such as

computation times, placement, 

priorities, periods …

Constraints

Schedulability

Communication
Model Semantics preservation
Extensibility



Design Process and Requirements

• Design optimization

x2

x1

X (discrete) space of design 

optimization variables, such as

computation times, periods …

Constraints

Schedulability

Communication
Model Semantics preservation
Extensibility

Metrics

Control related

Optimal design



(Example) Problem Formulation

Minimization of (average case)  end-to-end latenciesMinimization of (average case)  end-to-end latencies

• Placement of tasks onto the CPUs

• Packing of signals to messages

• Assignment of priorities to tasks and messages

• Definition of activation modes/synchronization model

• Period optimization

• Placement of tasks onto the CPUs

• Packing of signals to messages

• Assignment of priorities to tasks and messages

• Definition of activation modes/synchronization model

• Period optimization

• Constraints on end-to-end latencies

• Constraints on messages size

• Constraints on utilization

• Constraints on message and task deadlines

• Semantics preservation constraints

• Constraints on end-to-end latencies

• Constraints on messages size

• Constraints on utilization

• Constraints on message and task deadlines

• Semantics preservation constraints

Objective

Subject to

Design 
objectives 

(optimization 
variables)



Stochastic analysis

62 msg set (subset of chassis bus). Low priority msg – Distributions of latencies



Statistical analysis of CAN msgs

• Collected distributions of CAN message latencies by simulation 

on automotive buses (5 “realistic msgs configurations” and 20+ 

more obtained by derivation with changes in the load)

Typical shape of 

cdf



Statistical analysis of CAN msgs

• Can we fit the latency cdf with a “well-known” statistical distribution?

• What would be the accuracy?

Fitting with a gamma 

distribution

An exponential fitting 

also returns good 

results!



Statistical analysis of CAN msgs

• Finally, can we estimate the offsets and the parameters of the 

Gamma distribution (a, b) or (µ,b) for each message by regression 
from parameters of the message set like Ui

r, Ui
hr,Qi, Qi

hr ?

Using regression 

formulas as predictors 

for Xoff, Yoff, µ and b

Example: 

formula for µ

Example: medimum

priority msg
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Conclusions

• Schedulability theory and worst-case timing analysis …

– From the run-time domain to the design domain (already 
happening)

– From the analysis domain to the optimization (synthesis) 

domain

– Complemented by sensitivity analysis and uncertainty 

evaluation

• However …

– Typical deadline analysis is not enough!

– Tasks and messages are not the starting point (semantics 
preservation issues from functional models to tasking models)

– Worst case analysis needs to be complemented

– Mixed domains (time-triggered / event-triggered)



Q&A

Thank you!


