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Abstraction in syste
is the act of pulling 
drawing from the ph
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Piet Mondrian, Tableau I , 1921
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Less Abstract, Closer to the Physical
c
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Piet Mondrian, The Grey Tree , 1912
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Still Less Abstract
c
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Piet Mondrian, The Red Tree , 1908
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What is Time?
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⊥
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s

continuous time

discrete time

multirate discrete time

F1 F2 F3 F4

E1 E2 E3 E4

G1 G2 G3 G4

totally-ordered discrete events

partially-ordered discrete events

Salvador Dali, The Persi
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Totally-Ordered Discrete-Event Models

rom a comput-

ly causal?
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xamples of the sorts of problems that arise f
rized model of physical time:

P1

P2

What if P1 is causal but not strict

Merge

s1

s2

s3

What if s1 and s2 have synchro

f

What does this mean?
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The Tagged Signal Model
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 mathematical framework within which the e
rties of models of computation can be under
ared.

A denotational framework.
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Events and Signals

these questions.
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bstractions of time give us tools to deal with 

 set ofvalues

 set oftags

 an event

 a signal is a set of events

 a functional signal is a (partial) function :

 the set of all signals  (the power

-tuples of signals

V

T

e T V×∈

s T

S 2
T V×( )

=

N s S
N∈
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Possible Interpretations of Tags
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 Universal time ( )

 Discrete time (  is atotally ordered discrete s

 Precedences (  is apartially ordereddiscrete 

Why not always use the “most physica

universal time?

 In specifying systems, avoid over-specifying

 In modeling systems, recognize the inheren
maintaining a globally consistent notion of t

T ℜ=

T

T
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Empty Signals and Events
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 The empty signal:

 The tuple of empty signals:

 Note:  and .

 For any signal , .

 For any tuple ,  (pointwise union

 some models of computation, the set  of v
pecial value⊥ (pronounced “bottom”), which 
bsence of a value.

λ
Λ

λ S∈ Λ S
N∈

s s λ∪ s=

s s Λ∪ s=

V
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Processes and Connections

 

 

 

)

 i sj=
c

•

•

•

•

UNIVERSITY OF CALIFORNIA AT BERKELEY

mparing.fm

Processes

 aprocess  for some

 abehavior  (ssatisfies the process)

 aprocess is a set of possiblebehaviors

Connections (a type of process

 aconnection :

P S
N⊆ N

s P∈

C S
N⊂ s s1 ... sN, ,( )= C∈ s⇔
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Systems

r process:
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iven a tuple P of processes, asystem is anothe

iven a process , theprojection
efined by

if there exists

such that

Q Pi
Pi P∈
∩ 

 =

P S
N⊆ Π j P( ) ⊆

s1 ... sj 1– sj 1+, , , ... sN,,( ) Π j P( )∈

sj S∈

s1 ... sj 1– sj s, j 1+, , , ... sN,,( )
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An Example

C2∩
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,

Q'

P1

P2

s1

C1

s2

s4

s3

C2

s5

s6

s8

s7

P1 P2 C1 C2, , , S
8⊆ Q P1 P2 C1∩ ∩=

Q' Π2 Π3 Q( )( ) S
6⊆=



 ed constraint
eptable

 er

  means that
n take any value

 , I P∩ 1=
•

•

•

•

co
Determinacy

 An input to a process is an externally impos
 such that  is the total set of acc

behaviors.

 Theset of all possible inputs  is a furth
characterization of a process.

 For example,
the first signal is specified externally and ca
in the set of signals.

 A process isdeterminate if for all inputs
or .

I S
N⊆ I P∩

B 2
S

N

⊆

B I I S
N⊆ π1 I( )=s s S∈, ,;{ }=

I B∈
I P∩ 0=
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Input/Output Partitions

 set of
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 ome partition is
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 is apartition of  if .

 A process  with inputs, outputs is a sub

 A process with inputs and output is arelation

 A functional processis a single-valued mapp
partial function) : .

 A process that is functional with respect to s
determinate for

S
m

S
n,( ) S

N
N m n+=

P m n

P S
m

S
n→

B p q,( );q S
n∈{ }; p S

m∈{=
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Example

with respect to

w.r.t.

?

s8, ) s5 s6,( ), )

s6, ) s7 s8,( ), )

5 s6 s7 s8, , , ))
c

K

A

UNIVERSITY OF CALIFORNIA AT BERKELEY

mparing.fm

Suppose:

 is functional 
the partition

 is functional 

ey question: is  functional w.r.t.

nswer: It depends.

Q'

P1

P2

s1

C1

s2

s4

s3

C2

s5

s6

s8

s7

P1

s1 s2 s3 s4, , , s7,((

P2

s1 s2 s3 s4 s5, , , ,((

Q' s1 s4,( ) s(,(
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Partial Ordering of Tags and Events

ntisymmetric,
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Partially ordered: there exists an reflexive, a
transitive relation “ ≤” between tags.

 Version of this relation: “<”.

 Ordering of the tags⇒ ordering of events. G
 and , ⇔

Timed Systems

Timed system:  is totally ordered.

Metric time:  is a metric space.

e1 t1 v, 1( )= e2 t2 v, 2( )= e1 e2< t1 <

T

T



© 1996, p.  24 of  61o

Continuous Time

 in a timed sys-
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 for

 system.

ist two disjoint
 entire set.
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et  denote the set of tags in a signal
m.

 A continuous-time system is a metric timed sy
is a continuum (aclosed connected set) and
each signal  in any tuple  that satisfies the

 connected set is one where there do not ex
pen sets  and  such that  is the

T s( ) T⊆ s

T
s s

O1 O2 O1 O2∪
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Discrete Event Systems
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h e stamps)

  system where
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iven a system , and a tuple of signals
e system, let  denote the set of tags (tim
ppearing in any signal in the tuple .

 A two-sided discrete-event system is a timed
for each , there exists an order-preser
from some subset of the integers to .

Intuitively

ny pair of events in a signal have a finite num
ening events.

Q s Q∈
T s( )

s

Q
s Q∈

T s( )
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One-Sided Discrete-Event Systems

  system where
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 A one-sided discrete-event system is a timed
for each , there exists an order-preser
from some subset of the natural numbers to

Intuitively

very signal has a first event.

Q
s Q∈

T
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Synchrony

 same tag.

 one signal are
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 e system is
ystem.

 rete-event
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 Two events aresynchronous if they have the 

 Two signals are synchronous if all events in 
synchronous with an event in the other sign
versa.

 A system is synchronous if every signal in th
synchronous with every other signal in the s

 A discrete-time system is a synchronous disc
system.

y this definition, synchronous dataflow (SDF
ous. The “synchronous languages” (Argos, L
re synchronous only if .⊥ V∈
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Causality in DE Systems (Intuitively)

 ssibly zero) time

 delay from

  inputs to
.
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 A causal process has a non-negative (but po
delay from inputs to outputs.

 A strictly causal process has a positive time 
inputs to outputs.

 A delta causal process has a time delay from
outputs of at least  for some constant∆ ∆ 0>
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A Metric Space for DE Signals
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 a one-sided DE system, where WOLG
e Cantor metric to be

here  is the smallest time where the two sig
, then .

ith this metric, behaviors of a discrete-event
oints in a metric space!

T [0⊆

d s1 s2,( ) 1

2
t

----=

t

1 s2= d s1 s2,( ) 0=
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Causality in the Cantor Metric Space
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ausality: .

trict causality: .

elta causality: there exists a  such that

 is acontraction mapping.

Note: .

d F s( ) F s'( ),( ) d s s',( )≤

d F s( ) F s'( ),( ) d s s',( )<

k 1<

d F s( ) F s'( ),( ) kd s s',( )≤

F

k
1
2∆------=
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Composing Functional Processes (1)

ta) causal if the
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arallel composition:

he composition is functional and (strictly, del
omponents are functional and (strictly, delta)

eterminacy is preserved.
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Composing Functional Processes (2)

ta) causal if the
 causal.
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ascade composition:

he composition is functional and (strictly, del
omponents are functional and (strictly, delta)

eterminacy is preserved.
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Technicality: Sources

lta) causal if

s  is deter-

f 2

S
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ource composition:

he composition is functional and (strictly, de

 functional and (strictly, delta) causal and
inate.

f1

f2

f 1
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Composing Functional Processes (3)
c

F
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eedback composition:

f1

f2
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Device: Capture Inputs with Source Processes

f , strictly causal,

, strictly causal,
c
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 and  are determinate, and  is causal

r delta causal, then  will be causal
r delta causal, respectively.

f1

f2f3

f

f 1 f 3 f 2

f :S
2

S
2→
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The Semantics of Feedback
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or , define theseman-
cs to be afixed point of

e.  such that .

f

f :S S→
f

s f s( ) s=
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Fixed Point Theorems Applied to Discrete-Event Systems

  fixed point.
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 If  is strictly causal, then it has at most one
Hence the feedback composition is determi

 (Banach fixed point theorem) If the metric spa
(it is) and  is delta causal, then it has exact
point, and that fixed point can be found by st
signal tuple  and finding the limit of:

, ,

 If the metric space is compact (it is if  is a 
signals are discrete-event), then  only need
causal to apply the Banach fixed point theo

f

f

s0

s1 f s0( )= s2 f s1( )= s1 f s0( )=

V
f
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Lessons

 nach fixed point
eir one unique

 rict causality
time” model
 strict causality).
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 get stuck,
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 If subsystems are delta causal, then the Ba
theorem gives us aconstructive way to find th
behavior.

 Specification languages often only insist onst
(VHDL, for example, has a so-called “delta 
that, despite the similar name, only ensures

 The set of VHDL signals is not compact.

 The lack of a constructive solution manifest
practice (VHDL simulators, for example, can
where time fails to advance).
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Ordered Signal Process Networks

 the union of
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 ork  is order
 each signal .

 be that

  a sequence of
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T s( )
s

T s( )
s
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et  denote the tags in the signal  and
e tags in the signals in the tuple s.

 In a two-sided ordered signal process netwo,
isomorphic with , the integers, for each sig
set of all tags  is typically partially order

 In a one-sided ordered signal process netw,
isomorphic with , the natural numbers, for

or any two distinct signals  and , it could
.

 Events are often calledtokens, and a signal is
tokens with no notion of time.

T s( ) s T s(

Z
T s( )

N

s1 s2
s1( ) T s2( )∩ ∅=
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Example of an OSP
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 Because tokens in each signal are ordered,

 for .

 Suppose each token consumed on the inpu
exactly one token produced on the output. T

 for all .

P1s1 e1 i,{ }= s2 e2 i,{ }=

1 1

i j< ek i, ek j,<⇒ k 1 2,=

e1 i, e2 i,< i
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Dataflow

 firing signal.

 t and contains
nts in other

 

. er input or out-
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 A dataflow process or actor is an OSP with a 

 A firing signal is both an input and an outpu
only events that are comparable with all eve
input and output signals.

 A firing  is an event in the firing signal.

e., if  is a firing, and  is an event in any oth
ut signal of the process, then either  or

e e'
e e'< e'
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Consumption and Production of Tokens

 to beproduced

  beconsumed
c
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iven two successive firings :

 An output event  where  is said 

by firing .

 An input event  where  is said to

by firing .

e1 e2<

e' e1 e' e2< <
e1

e' e1 e' e2< <
e2
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Example of a Dataflow Process
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 is the firing signal.

 The process consumes one token from eac

each firing, and produces one token on .

 For each , , , and

P
1

1

s1 e1 i,{ }=

s2 e2 i,{ }=
1

s3 e3 i,{ }=

s4 e4 i,{=

s3

s4

i e1 i, e3 i,< e2 i, e3 i,< e3 i, e4<
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Partially Ordered Signals

  also in .

 all  and
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 By set inclusion:  if every event in  is

 By prefix ordering: ⇔  and for 
, .

s1 s2⊆ s1

s1 s2 s1 s2⊆
e2 s2 s1–∈ e2 e1>
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Complete Partial Orders
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he set of tuples of ordered signals  is acom
rder (cpo) under the prefix order. I.e.,

 A chain in  is a (possibly infinite) sequenc
 where ⇔ .

 Every chain in a cpo has aleast upper bound,

otation:

 Given a set  of -tuples of signals and a f

: → ,  denotes the set of -tup
resulting from applying the function to each 

S
N

S
N

C s1 s2 ..., ,{ }= si sj i j≤

C N

F S
N

S
M

F C( ) M
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Kahn Process Networks
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tt topology.
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 A Kahn process is an OSP that is also a con

 A function is continuousif for every chain

( ) =

his is exactly topological continuity in theSco

nother fixed point theorem (based on theKna
xed-point theorem) shows that networks of c
esses in a cpo have a uniqueleast-fixed-point, w
 be the semantics of feedback loops (we wi
ea).

C

F C F C( )
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Monotonic Functions

, meaning that

 consider two

the increasing

o from conti-
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heorem: A continuous process  ismonotonic

⇒ .

roof: Suppose :  is continuous and

ignals  and  in  where . Define 

hain . Then = , s
uity,

 = ( ) =  =

herefore , so the process is mo

F

s3 s1 F s3( ) F s1( )

F S
N

S
M→

s1 s2 S
N s1 s2

C s1 s2 s2 s2 …, , , ,{ }= C s2

F s2( ) F C F C( ) F s1( ),{

F s1( ) F s2( )
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Monotonicity does not imply Continuity

.

nfinite and
te, then  =

 chain

 is infinite, so

F s( )
c
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T

T

w

s
[
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xample:

o show that thisis monotone, note that if  is i
, then , so . If  is fini

, which is a prefix of all possible outputs.

o show that it isnot continuous, consider any

 = {  ...},

here each  has exactly  events in it. Then

(  ) = ≠ .

F s( )
0[ ] if s is finite;

0 1,[ ] otherwise;



=

s
s′ s s′= F s( ) F s′( ) s

0]

C s0 s1

si i C

C 0 1,[ ] F C( ) 0[ ]=
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Composing Continuous Processes (1)

or monotonic if
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arallel composition:

he composition is functional and continuous 
e components are functional and continuou

eterminacy is preserved.
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Composing Continuous Processes (2)

or monotonic if
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ascade composition:

he composition is functional and continuous 
e components are functional and continuou

eterminacy is preserved.
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Technicality: Sources

or monotonic if

and  isf f 1 S
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T
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ource composition:

he composition is functional and continuous 

 is functional and continuous or monotonic 
eterminate.

f1

f2

2
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Composing Continuous Processes (3)
c

F
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eedback composition:

f1

f2
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Device: Capture Inputs with Source Processes

f uous or mono-
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 and  are determinate, and  is contin

nic, then  will be continuous or mo
spectively.

f1

f2f3

f

f 1 f 3 f 2

f :S
2

S
2→
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Composing Continuous Processes (3)

ast fixed point
) s.t. .f s( ) s=
c

F
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eedback composition:

or , define thesemantics to be thele
f , i.e. the smallest  (in a prefix order sense

f

f :S
N

S
N→

f s
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Least Fixed Point Theorems

lest” one

 has a least
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 has a least

 xed point is the
e prefix order.
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Principle: The desired behavior is the “smal
consistent with the specification.

Fixed-point theorem I: A continuous function
fixed point, the least upper bound of the seq

...

Fixed-point theorem II: A monotonic function
fixed point.

 Given an input constraint , the least fi
unique minimum value  under th

s1 F Λ( )=
s2 F s1( )=
s3 F s2( )=

I S
N⊆

min Q I∩( )
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Sequential Processes and Rendezvous

 red.

  events in  and

P2

s2

s1
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 The events on the self-loops are totally orde

 There exist events in  with the same tag as
 (rendezvous).

s

P

s1

P1 s3

s3
s2
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Petri Nets (part 1)

a  such that

b  and

r all

c  and

d  for

s3

f

s1

f e s3∈

s1

f f 2 e( ) e<
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) There exists a one-to-one function

 for all .
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Petri Nets (part 2)
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Related Models
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 Fidge, 1991 (processes that can fork and jo
counter on each event)

 Lamport, 1978 (gives a mechanism in which
asynchronous system carry time stamps an
manipulate these time stamps)

 Mattern, 1989 (vector time)

 Mazurkiewicz, 1984 (uses partial orders in d
algebra of concurrent “objects” associated w

 Pratt, 1986 (generalizes the notion of forma
languages to allow partial ordering).

 Winskel 1993 (describes “event structures,” 
framework for concurrent systems).

 Yates, 1993 (works with -causal functiona
timed model with metric time).

∆
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Conclusions

resented:

 The beginnings of a framework for understan
comparing models of computation.

 A suite of mathematical techniques for analy
properties of these models of computation.

 the future:

 Use this framework to understand heterogen
of models of computation.
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