
METROII AND PTOLEMYII INTEGRATION

Presented by: Shaoyi Cheng, Tatsuaki Iwata, Brad
Miller, Avissa Tehrani

INTRODUCTION

 PtolemyII is a tool for design of component-based
systems using heterogeneous modeling techniques.
  PtolemyII studies modeling, simulation, and design

of concurrent, real-time embedded systems.
  Different MoCs such as Synchronous Dataflow

(SDF) and Finite State Machines (FSM) can be
constructed in PtolemyII.

  Directors define how actors in the design fire and
how tokens are used to communicate between them.

2

INTRODUCTION

 MetroII is a framework for platform-based design
which allows functionality to be assigned to
architecture.
  A platform-based design methodology offers

separation of concerns between architecture
and functionality

  By defining these two parts of a design
through a set of clearly defined abstractions
and systematically mapping functionality onto
architecture, structured design space
exploration is facilitated.

3

MOTIVATION

 Developing functionality to interface PtolemyII
with MetroII would allow more flexibility and
efficiency in implementation of PtolemyII models.

 The objective of our project is to allow users to
describe a system using the PtolemyII graphical
user interface and to produce a MetroII
description of the system which maintains the
semantics of the original PtolemyII model.

 This means that designers are able to graphically
build their functional models in PtolemyII and
map them onto virtual architecture models in
MetroII. This flow will allow developers to
efficiently explore the design space in the early
stages of development. 4

MOTIVATION

 Currently, PtolemyII can generate C code for
SDF, FSM and HDF models. The goal of this
project is to add a module to the PtolemyII code
generator to create MetroII descriptions of
PtolemyII models. The MetroII descriptions can
be used to implement the functionality described
by the PtolemyII model on a particular
architecture.

5

SCOPE OF TASK

  In principle, there are many similarities between
a MetroII and SystemC description of a system.
As none of our group members are regular
developers for MetroII, we preferred work on
SystemC because it is more stable and better
documented.

 We started with the Synchronous Dataflow
domain, as the semantics of this domain seem
easiest to maintain in SystemC. In order to
simplify the design, we have temporarily
restricted ourselves to designs which only require
a size 1 buffer between the modules. 6

ANALYSIS
7

ANALYSIS
 Our SystemCCodeGenerater is based on

CCodeGenerater of PtolemyII.
 CCodeGenerator uses “Helpers” and “Templates”

for C. Reuse of this approach is possible if
several key differences are addressed.

 Comparison of the C code generated by
CCodeGenerator and handcrafted SystemC code
done manually.

 Major differences
  Variable declaration and initialization
  Data transmission
  Firing scheduling

8

VARIABLE DECLARATION &
INITIALIZATION

 Based on procedural programming
 Variable declarations are generated in a group
  Initialization of parameters is also in a group

  Based on Object-oriented Programming
  Variable declarations are in module declaration

(SC_MODULE)
  Initialization process is called in constructor

(SC_CTOR)

Generated C Code

SystemC Code

9

CODE COMPARISON (VARIABLE DECLARATION)

/* Declaration of parameters */
int Actor1_param1;
int Actor2_param1;
….

/* Firing functions for each actor */
Actor1(){

 set value;
}
Actor2(){

 …
}

initialzie(){
 Actor1_param1 = 0;
 Actor2_param2 = 2;
 …

}

SC_MODULE(Actor1){
 int param1;
 SC_CTOR(Actor1){
 SC_METHOD(fire());
 initialize();
 }

}
Actor1::initialize(){

 param1 = 0;
}

Actor1::fire(){
 …

}
SC_MODULE(Actor2){

 int param2;
 SC_CTOR(Actor2){
 SC_METHOD(fire());
 initialize(); }}

Actor2::initialize(){　… }
Actor2::fire(){ …. }

Generated C Code SystemC Code

10

DATA TRANSMISSION

 The preceding actor’s
fire function sets the
following actor’s input
value directly.

 Data is transferred
through ports and
channels.

Generated C Code

SystemC Code

in out

Actor1 Actor2
Actor1 ()

in out

Actor1 Actor2

channel

In port Out port

write() read()

11

CODE COMPARISON (DATA TRANSMISSION)

/* input and output value */
int Actor1_out;
int Actor2_in;

/* firing function */
Actor1(){

 Actor2_in = Actor1_out;
}

SC_MODULE(Actor1){
 sc_out<int> in_port; int a1_value;

}
Actor1::fire(){

 out_port.write(a1_velue);
}
SC_MODULE(Actor2){

 sc_in<int> out_port; int a2_value;
}
Actor2:fire(){

 a2_value= in_port.read();
}
void sc_main(){

 sc_buffer<int> wire; // channel
 Actor1 Actor1_inst; // instance
 Actor2 Actor2_inst;
 Actor1_inst.out_port(wire); // connection
 Actor2_ins.in_port(wire);

}

Generated C Code SystemC Code

12

FIRING SCHEDULING

 Fire functions of
each actor are
invoked in order
assigned by Director.

 Director module sends
a trigger signal to a
special “trigger” port
of each actor.

Generated C Code

SystemC Code

Actor1 Actor2

Actor2()

input

Actor3
Director

Actor1()

Actor1 Actor2

Actor3

trigger
trigger

trigger

data

data

Director

13

CODE COMPARISON (FIRING SCHEDULING)

void main {

 int iteration=10; // get from model

 // firing in order scheduled by director

 for(int i=0; i<iterations; i++){

 Actor1();

 Actor2();

 }

}

SC_MODULE(Director){

 sc_out<bool> fireTrigger[N];

}

Director::fire(){

 for(int i=0; i<iterations; i++){

 fireTrigger.wirte(true);

 …

void sc_main(){

 /* trigger channel*/

 sc_buffer<bool> trigger[N];

 /* trigger connection */

 Director_inst.fireTrigger(trigger[0]);

 Actor1_inst.trigger(trigger[0]);

 Director_inst.fireTrigger(trigger[1]);

 Actor2_inst.trigger(trigger[1]);

 /* run simulation */

 sc_start();

}

Generated C Code SystemC Code

14

CHALLENGES IN DEVELOPMENT

 Variable Declaration & Initialization
  Reallocate the declaration code per corresponding

module.

 Data Transmission
  Generate the code for I/O port of each actor.
  Generate the declaration of the data channel and

connection with ports.

 Firing Scheduling
  Create director module declaration
  Generate director’s firing process in correct order.
  Generate the declaration of the trigger channels and

connection with trigger ports of every actor. 15

DESIGN AND IMPLEMENTATION

OVERVIEW

 Modularization
  Tagging when code is generated for each actor
  Regroup when code is ready for output

 Generation of connections between modules
  Link different modules for data communication

 A separate director module (scheduler)
  A director module which coordinates the dataflow
  Fires each actor in the right order

17

MODULARIZATION

 Try to leverage the existing codegen
infrastructure

 Problem: code was generated in sections
(instead of modules) to match the procedural
nature of C
  Declaration
  Initialization
  Firing

 Each of the sections contains code from all
actors
  Need a way to break them down

18

MODULARIZATION

 Even though C is procedural, a Ptolemy
model itself is modular
  The original codegen has to traverse lists of actors for

generation of operations for each of them
  Each actor generates its own code for each section and the

code segments are reassembled to complete each section
  Modular structure can be restored

  Methodology employed
  Tagging and regrouping

19

MODULARIZATION: TAGGING

 For each section, a tag is added before
code snippets from each actor are
combined

 Information in tags
 Instance name of actors

  Necessary as multiple instantiation of the same actor can
behave differently

 Delimits the boundaries between pieces of code
from different actors

20

MODULARIZATION: REGROUPING

 Code segments are re-parsed and re-
organized before output
  Search for tags to extract the operation of

each actor for each section
  Group all sections generated by an actor

together

 Module declarations and function name
declaration are added to wrap around the
generated code

21

MODULARIZATION: EXAMPLE

Original:
int actor1_output;

int actor2_output;

void initialize(){

 actor1_output = 0;

 actor2_output = 0;

}

void actor1()

{

 actor1_output +=1;

}

void actor2()

{

 actor_output += 2;

}

…�

Tagged:
/***actor1***/

int actor1_output;

/***end actor1 ***/

/***actor2***/

int actor2_output;

/***end actor2***/

void initialize()

{ /***actor1***/

 actor1_output = 0;

 /***end actor1***/

 /***actor2***/
 actor2_output = 0;

 /***end actor2***/

}

void actor1()

{ /***actor1***/

 actor1_output +=1;

 /***end actor1***/

}

…�

Regrouped:
SC_MODULE(actor1)

{

 int actor1_output;

 void initialize();

 void fire();

 SC_CTOR(actor1)

 {…}

}

void actor1::initialize()

{

 actor1_output = 0;

}

void actor1::fire()

{

 actor1_output +=1;

}

…�
22

GENERATION OF CONNECTIONS

 In C code generation all variables are
global
  Sender changes the value of receiver port directly
  Fire code of the sender

 SystemC is modular
  No direct change of value of internal members

from another actor
  Connection is needed to pass data value

23

GENERATION OF CONNECTIONS

 Tagging is used again when fire code is
being generated
  Find source and sink for each connection

 Parse fire code to look for assignment statement

  Tag a connection and annotate variable as
source/sink

  Every connection can have one source and
multiple sinks

 Before output, the tagged code is reparsed
to generate a hashtable

24

GENERATION OF CONNECTIONS

 The hashtable is keyed using concatenation
of the source port name and the container
actor, and contains the value which points to
the sink
  The source port is made an output port of the

sender module
  The sink port is made an input port of the

receiver module

 Wires are instantiated for each connection
when modules are instantiated

25

GENERATION OF CONNECTIONS: EXAMPLE

/****CONNECTION****/
Source:actor1_output_0:endsource
Sink:actor2_input_0:endsink
/****DONE CONNECTION****/

/****CONNECTION****/
Source:actor1_output_0:endsource
Sink:actor3_input_1:endsink
/****DONE CONNECTION****/

Hashtable

….

actor1_output_0:-:actor1
actor2_input_0:-:actor1

actor3_input_1:-:actor1

sc_buffer<int> wire0;
actor1_inst.actor1_output_0(wire0);
actor2_inst.actor2_input_0(wire0);
actor3_inst.actor3_input_0(wire0);

26

A SEPARATE DIRECTOR (SCHEDULER)

 Instead of a simple for loop in the original
C codegen, a separate scheduler is created
  Driven by clock signal and triggers each actor

in the right order
  Manages max iteration count and increments

the iteration index each clock tick
 Generated by the corresponding director

class in the Ptolemy model
  Director class has access to the iteration

count
27

A SEPARATE DIRECTOR (SCHEDULER)

 Acquiring the firing sequence from the
generated fire code
  The original C codegen creates fire code in the

right order
  Actor names embedded in the tags are used to

extract the sequence for firing actors
 Pulls the trigger of each actor to fire

  Communication and control for each actor
separated

  Trigger is a special port for control
28

A SEPARATE DIRECTOR: EXAMPLE

sc_buffer<bool>TRIGGER[ACTOR_NUM];

_Ramp_SDF_Director_Ramp_SDF_Director_inst("_Ramp_SDF_Director");

_Ramp_SDF_Director_inst.trigger(CLOCK);

_Ramp_SDF_Director_inst.fireTrigger[0](TRIGGER[0]);

_Ramp_SDF_Director_inst.fireTrigger[1](TRIGGER[1]);

_Ramp_SDF_Director_inst.fireTrigger[2](TRIGGER[2]);

Ramp_Ramp_inst.trigger(TRIGGER[0]);

Ramp_CompositeActor_SequencePlotter_inst.trigger(TRIGGER[1]);

Ramp_SequencePlotter_inst.trigger(TRIGGER[2]);

Director driven
by clock

Director firing
actors in order

29

CODE GENERATION EXAMPLES

AVAILABLE ACTORS

 Ramp
 Sequence Plotter
 Composite Actor
 Add/Subtract
 Absolute Value

31

MODIFIED RAMP DEMO

32

MODIFIED RAMP DEMO: OUTPUT

bmiller1@ubuntu:~/courses/ee249/demos$./Ramp.bin

 SystemC 2.2.0 --- Dec 3 2009 17:51:01

 Copyright (c) 1996-2006 by all Contributors
 ALL RIGHTS RESERVED

Ramp_CompositeActor_SequencePlotter__output 0: 0

Ramp_SequencePlotter__output 0: 0
Ramp_CompositeActor_SequencePlotter__output 1: 2

Ramp_SequencePlotter__output 1: 2
Ramp_CompositeActor_SequencePlotter__output 2: 4

Ramp_SequencePlotter__output 2: 4

Ramp_CompositeActor_SequencePlotter__output 3: 6
Ramp_SequencePlotter__output 3: 6

Ramp_CompositeActor_SequencePlotter__output 4: 8
Ramp_SequencePlotter__output 4: 8

Ramp_CompositeActor_SequencePlotter__output 5: 10

Ramp_SequencePlotter__output 5: 10
Ramp_CompositeActor_SequencePlotter__output 6: 12

Ramp_SequencePlotter__output 6: 12
Ramp_CompositeActor_SequencePlotter__output 7: 14

Ramp_SequencePlotter__output 7: 14

Ramp_CompositeActor_SequencePlotter__output 8: 16
Ramp_SequencePlotter__output 8: 16

Ramp_CompositeActor_SequencePlotter__output 9: 18
Ramp_SequencePlotter__output 9: 18

SystemC: simulation stopped by user.

33

MODIFIED RAMP DEMO: ACTOR CODE
/* Actor: Ramp_Ramp */
SC_MODULE(Ramp_Ramp) {
 sc_out<int> Ramp_Ramp_output_0_port;
 /* trigger input */
 sc_in<bool> trigger;
 /* Ramp's referenced parameter declarations. */
 int Ramp_Ramp_step_;
 /* Ramp's type convert variable declarations. */
 int Ramp_Ramp_output_0;
 …
};

void Ramp_Ramp::initialize() {
 /* Ramp's parameter initialization */
 Ramp_Ramp_step_ = 2;
 /* initialize Ramp */
 Ramp_Ramp__state = 0;
}

void Ramp_Ramp::fire() {
 /* Fire Ramp */
 Ramp_Ramp_output_0 = Ramp_Ramp__state;
 Ramp_Ramp__state += Ramp_Ramp_step_;
 Ramp_Ramp_output_0_port.write
 (Ramp_Ramp_output_0);
 …
}

/* Actor: Ramp_SequencePlotter */
SC_MODULE(Ramp_SequencePlotter) {
 sc_in<int>Ramp_SequencePlotter_input_0__port;
 /* trigger input */
 sc_in<bool>trigger;
 /* SequencePlotter's input variable declarations. */
 double Ramp_SequencePlotter_input[1];
 /* preinitSequencePlotter */
 double Ramp_SequencePlotter__xValue;
 …
};

void Ramp_SequencePlotter::initialize() {
 /* initSequencePlotter */
 Ramp_SequencePlotter__xValue = 0.0;
}

void Ramp_SequencePlotter::fire() {
 Ramp_SequencePlotter_input[0] = ((double)
 Ramp_SequencePlotter_input_0__port.read());
 /* Fire SequencePlotter */
 cout << "Ramp_SequencePlotter__output" << "
 "<<Ramp_SequencePlotter__xValue << ": ”
 <<Ramp_SequencePlotter_input[0]<<"\n";
 Ramp_SequencePlotter__xValue++;
}

34

MODIFIED RAMP DEMO: DIRECTOR & MAIN
/* Director: _Ramp_SDF_Director */
SC_MODULE(_Ramp_SDF_Director) {
 /* clock trigger input */
 sc_in<bool>trigger;
 /* fire trigger output */
 sc_out<bool>fireTrigger[ACTOR_NUM];
 int_count;
 int iterations;
 …
};

void _Ramp_SDF_Director::initialize() {
 iterations = 10;
 _count = 0;
}

void _Ramp_SDF_Director::fire() {
 while(true) {
 for(int i=0; i<ACTOR_NUM; i++) {
 fireTrigger[i] = true;
 wait(SC_ZERO_TIME);
 }
 _count++;
 if(_count >= iterations) {
 sc_stop();
 }
 wait();
 }
}

/* main part */
int sc_main(int argc, char *argv[]) {
 sc_clock CLOCK("clock");
 sc_buffer<bool>TRIGGER[ACTOR_NUM];
 _Ramp_SDF_Director_Ramp_SDF_Director_inst
 ("_Ramp_SDF_Director");
 _Ramp_SDF_Director_inst.trigger(CLOCK);
 _Ramp_SDF_Director_inst.fireTrigger[0](TRIGGER[0]);
 _Ramp_SDF_Director_inst.fireTrigger[1](TRIGGER[1]);
 _Ramp_SDF_Director_inst.fireTrigger[2](TRIGGER[2]);
 Ramp_RampRamp_Ramp_inst("Ramp_Ramp");
 Ramp_Ramp_inst.trigger(TRIGGER[0]);
 Ramp_CompositeActor_SequencePlotterRamp
 _CompositeActor_SequencePlotter_inst
 ("Ramp_SequencePlotter");
 Ramp_CompositeActor_SequencePlotter_inst.trigger
 (TRIGGER[1]);
 Ramp_SequencePlotterRamp_SequencePlotter_inst
 ("Ramp_CompositeActor_SequencePlotter");
 Ramp_SequencePlotter_inst.trigger(TRIGGER[2]);
 sc_buffer<int> wire0;
 Ramp_Ramp_inst.Ramp_Ramp_output_0_port(wire0);
 Ramp_SequencePlotter_inst.Ramp_SequencePlotter
 _input_0__port(wire0);
 Ramp_CompositeActor_SequencePlotter_inst.Ramp
 _CompositeActor_SequencePlotter_input
 _0__port(wire0);
 sc_start();
 exit(0);
}

35

ABSOLUTE VALUE DEMO

bmiller1@ubuntu:~/courses/ee249/
demos$./abs_with_neg.bin

 SystemC 2.2.0 --- Dec 3 2009
17:51:01

 Copyright (c) 1996-2006 by all
Contributors

 ALL RIGHTS RESERVED
abs_SequencePlotter__output 0: 5
abs_SequencePlotter__output 1: 3

abs_SequencePlotter__output 2: 1
abs_SequencePlotter__output 3: 1
abs_SequencePlotter__output 4: 3
abs_SequencePlotter__output 5: 5
abs_SequencePlotter__output 6: 7
abs_SequencePlotter__output 7: 9
abs_SequencePlotter__output 8: 11
abs_SequencePlotter__output 9: 13
SystemC: simulation stopped by user.

36

ADDER DEMO

bmiller1@ubuntu:~/courses/ee249/demos$./
Ramp2.bin

 SystemC 2.2.0 --- Dec 3 2009 17:51:01
Copyright (c) 1996-2006 by all Contributors

 ALL RIGHTS RESERVED
Ramp2_SequencePlotter2__output 0: 3
Ramp2_SequencePlotter2__output 1: 6
Ramp2_SequencePlotter2__output 2: 9

Ramp2_SequencePlotter2__output 3: 12
Ramp2_SequencePlotter2__output 4: 15
Ramp2_SequencePlotter2__output 5: 18
Ramp2_SequencePlotter2__output 6: 21
Ramp2_SequencePlotter2__output 7: 24

Ramp2_SequencePlotter2__output 8: 27
Ramp2_SequencePlotter2__output 9: 30

37

DESIGN CHALLENGES

 Multiple inputs
  Incompatible with native data-driven control
  Addressed in our design by trigger ports

 Multiple tokens on single buffer
  Would prohibit simply connecting actor data ports

with wires
  Buffers would need to be statically sized
  Synchronization would be needed between actors and

buffers so that no data is lost

38

CONCLUSION

 This project is an attempt to extend PtolemyII
code generator to generate a MetroII
description

 We restricted our scope to SDF model and
SystemC code generator as a first version of
our work.

 Our initial step of code modification was to
modify the C code generator to output only the
firing code for each actor.

 The SystemC code generated by this project is
similar to MetroII code 39

