Model-Based Design:

when you just can't hack it.

University of California, Berkeley

Department of Electrical Engineering & Computer Science

Edited and presented by Jeff C. Jensen

About the Presenter

- B.S. Electrical Engineering & Computer Science
 - University of California, Berkeley
- M.S. Electrical Engineering & Computer Science
 - University of California, Berkeley (Dec. 2009)
- Center for Hybrid and Embedded Software Systems (CHESS)
- Research: PtidyOS
 - Embedded RTOS for code generation
 - PTIDES model of computation
 - Advisor: Professor Edward A. Lee

Jeff C. Jensen

Cyber-Physical Systems

Cyber-physical systems enable seamless, fully synergistic integration of computational intelligence, communication, control, sensing, actuation, and adaptation with physical devices and information processes to routinely realize high-confidence, optimally performing systems that are essential for effectively operating life-, safety-, security-, and mission-critical applications. These systems must be capable of interacting correctly, safely, and securely with humans and the physical world in changing environments and unforeseen conditions.

Source: National Science Foundation, Presidential Budget Amendment; 2010

Distributed Real-Time Systems

Multiple computers, comprising of sensors and actuators, connected on a network that act and react on events to meet timing constraints.

The Problem with Threads

Nontrivial software written with threads is incomprehensible to humans. It cannot deliver repeatable and predictable timing, except in trivial cases.

-Edward A. Lee, University of California, Berkeley

The Problem with Threads

- Wildly nondeterministic
- Incomprehensible
- Unverifiable
- Brittle designs
- Anomalous
- When are they successful?

The Problem with Threads: Decidability

- Execution time
- Incomprehensible
- Unverifiable
- Brittle designs
- Anomalous
- Successful?

Model-Based Design

- Simulation
 - Application logic
 - Demonstrations
- Verification
 - Turing completeness
- Expressiveness

Discrete Event Model of Computation

- Primarily used in performance modeling and simulation:
 - Hardware systems (VHDL, Verilog)
 - Manufacturing systems
 - Communication networks (OPNET, NS-2)
 - Transportation systems
 - Stock market

Discrete Event Modeling in Ptolemy II

Discrete Event Model of Computation

- Drawbacks
 - Centralized queue, sorted by timestamp
 - Difficulty in distributed networks
 - Conservative v. Optimistic (Chandy & Misra v. Jefferson)
 - Events processed in timestamp order regardless of dependencies

PTIDES

- Programming Temporally Integrated
 Distributed Embedded Systems
- Based on Discrete Event (DE)
- Binding model and physical time
- Contributor: Hugo Andrade, National Instruments
- Director: Professor Edward A. Lee

PTIDES – Static Analysis

- Static causality analysis
 - Formal framework for dependency graphs
 - Establishes minimal ordering constraints
 - Timestamp ordering is considered only for causally related events
 - Executed at code-generation time
- Improves executability
- Improves reliability

Source: Y. Zhao, J. Liu, and E. Lee, "A Programming Model for Time-Synchronized Distributed Real-Time Systems", Proceedings of the 13th IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS 07). Bellevue, WA, United States, April 3-6, 2007.

PTIDES - Development

- Static analysis
 - Causality
 - Schedulability
- Code generation
- PtidyOS
- Regression Testing

PTIDES Application: Superbowl

PTIDES Application: Superbowl

- Industry parallel: fuel injection
 - Piston position is sporadic
 - Fuel must quickly be injected in response to piston arrival

- Industry parallel: automated production line
 - Object arrival is sporadic
 - Efficiency demands fastresponse
 - Safety demands real-time response

- Ball drops towards a spinning disc
 - Ball drops are random, sporadic
- Control to ensure ball tunnels through a door on one end of the disc
- Photodetector senses presence of ball
 - Timestamps presence at fixed altitude above disc
 - Determines initial velocity of ball
- Controller only slightly adjusts disc rate.
 - Disc never stops
 - Bounded acceleration

Sporadic arrival times

- Randomly spaced events with lower-bound on time gap between events
- Application unaware of when a ball will arrive
- Requires real-time response from the controller

Concurrency

- Motor decoding
- Disc alignment
- Ball drop detection
- Trajectory planning
- Disc control

Modeling necessary

- Derivation of physical dynamics
 - Kinematics of ball in freefall
 - Kinematics of disc, tunnel
- Controller synthesis
 - Modeling of motor + inertial disc
 - Error tolerance
- Model-based design
 - PTIDES application
 - Simulations

- Orthogonalization of concerns
 - Position control
 - Trajectory planning

$$K_{A}v(t) = Ri(t) + L\frac{di(t)}{dt} + K_{B}\frac{d\theta(t)}{dt}$$
$$K_{\tau}i(t) = b\frac{d\theta(t)}{dt} + (J_{A} + J_{D})\frac{d^{2}\theta(t)}{dt^{2}}$$

$$K_{\tau}i(t) = b\frac{d\theta(t)}{dt} + (J_A + J_D)\frac{d^2\theta(t)}{dt^2}$$

The disc on the left is rotated so that a door is centered over the fixed drop target; the tunnel (indicated by the broken line) fills the entire door.

On the right, the disc has rotated, shrinking the tunnel.

$$d(t) = \sqrt{2}r_{\text{drop}}\sqrt{1 - \cos(\theta(t))}$$

$$r_{\text{tunnel}}(t) = \begin{cases} r_{\text{door}} - d(t) & \text{if } d(t) \le r_{\text{door}} \\ 0 & \text{if } d(t) > r_{\text{door}} \end{cases}$$

- Modeling position control in Ptolemy II
 - PTIDES director
 - Custom discrete PID control actor
 - Motor continuous issues

- Modeling position control in MATLAB
 - Simulink
 - SISO toolkit
 - PID design
 - Optimization toolbox

- Modeling position control in LabVIEW
 - Control and Simulation Loop; linear SISO system representation

TI / Luminary Micro LM3s8962 Embedded Microcontroller

- ARM Cortex-M3
 - 50 MHz RISC
- 42 GPIO
 - 4 ADC @ 1 MHz
- IEEE 1588

- HIL
 - Encoder
 - Plant model
- LabVIEW Co-Simulation
- Distributed Extensions
 - IEEE 1588
 - Global notion of time
 - Models many distributed networks

PtidyOS

- Lightweight embedded OS
 - Small footprint
 - No kernel
- Implements PTIDES
 - Code generation (C)
 - Static analysis
- Context switching
 - Interrupt
 - SafeToProcess()

NI and Berkeley - Joint Research

- Curriculum
 - Controls, embedded, mechanical
- Models of computation
 - PTIDES
 - NextGEN
- Real-time operating systems
 - PtidyOS

PRET

Berkeley Research - Ptolemy II

- Modeling, simulation, and design
 - Real-time distributed embedded systems
- Models of computation
 - Heterogeneous mixtures
- Code generation
 - C and Java

• Director: Professor Edward A. Lee

Berkeley Research - PRET

- **Pre**cision **T**imed Machines
 - Average vs. worst case
- Cycle-accurate simulator
- FPGA prototype

- Contributor: Hugo Andrade, National Instruments
- Director: Professor Edward A. Lee

Berkeley Research - Execution Time

- Game-theoretic approach
- Software space discovery
- "Black-box" perspective
- Applications: controls, event-driven models
- Director: Professor Sanjit A. Seshia

NI and U.C. Berkeley - Moving Forward

- IEEE 1588
 - Hard real-time systems
 - 5-10ns precision
 - Immediate PTIDES applications

- Continued R&D
 - Advancements in code generation
 - Concurrent models of computation
 - Distributed,
 - Deterministic
 - Timing from architecture to abstraction
 - Static analysis

Acknowledgments

- Edward A. Lee (U.C. Berkeley)
 - Robert S. PepperDistinguished Professor
 - Chair, EECS (2007 2008)
- Sanjit A. Seshia (U.C. Berkeley)
 - Assistant Professor, EECS
- Hugo Andrade (NI)
 - R&D Site Manager (NI Berkeley)
- Jeannie Falcon (NI)
 - Principal Engineer,
 Control & Simulation

Edward A. Lee

Sanjit A. Seshia

Model-Based Design:

when you just can't hack it.

University of California, Berkeley

Department of Electrical Engineering & Computer Science

Edited and presented by Jeff C. Jensen

