Applications of Petri Nets

Presenter: Chung-Wei Lin

2010.10.28

Outline

- Revisiting Petri Nets
- Application 1: Software Syntheses
 - Theory and Algorithm
- Application 2: Biological Networks
 - Comprehensive Introduction
- Application 3: Supply Chains
 - Example and Experiment
- Summary

Definition of a Petri Net

- A 3-tuple (P,T,F)
 - P: set of places
 - T: set of transitions

- F: (P \times T) U (T \times P) \rightarrow N, weighted flow relation

- How does it work?
 - Each place holds some (≥ 0) tokens
 - A transition is enabled if its input places contain at least the required # of tokens
 - The firing of an enabled transition results in
 - Consumption of the tokens of its input places
 - Production of the tokens of its output places

• Marking

A vector representing the number of tokens in all places

- Properties of Petri Nets
 - Reachability (of a marking from another marking)
 - Boundedness
 - The numbers of tokens in all places are bounded
 - Conservation
 - The total number of tokens is constant
 - Deadlock-freedom
 - Always at least one transition can fire
 - Liveness
 - From any marking, any transition can fire sometime
 - Schedulability
 - The first paper will discuss this

T-Invariant and Finite Complete Cycle

- T-invariant is a vector s.t.
 - The i-th component is the number of firing times of transition t_i
 - The marking is unchanged if firing them so many times
 - However, it does not guarantee that a transition can be fired
 - Deadlock
- Finite complete cycle is a sequence of transitions s.t.

The marking is unchanged if firing the sequence

One T-invariant: (4,2,1)

Some finite complete schedules:

 $< t_1, t_1, t_1, t_1, t_2, t_2, t_3 > < t_1, t_1, t_2, t_1, t_1, t_2, t_3 >$

Outline

- Revisiting Petri Nets
- Application 1: Software Syntheses
 - Synthesis of Embedded Software Using Free Choice Petri Nets
- Application 2: Biological Networks
- Application 3: Supply Chains
- Summary

Static, Quasi-Static, and Dynamic Scheduling

- Scheduling problem
 - Mapping a functional implementation to real resources
 - Satisfying real-time constraints
 - Using resources as efficiently as possible
- Static scheduling
 - Specifications contain only data computations
 - The schedule can be completely computed at compile time
- Quasi-static scheduling
 - Specifications contain data-dependent controls, like if-then-else or while-do loops
 - The schedule leaves data-dependent decisions at run-time
- Dynamic scheduling
 - Specifications contain real-time controls

Free Choice Petri Net

- Free Choice Petri Net (FCPN) is a Petri net such that every arc from a place is
 - A unique outgoing arc, or
 - A unique incoming arc to a transition

 Two transitions are in equal conflict relation (ECR) if their presets are non-empty and equal

Valid Schedule (Set)

- Let
 - $-\Sigma = \{\sigma_1, \sigma_2, \ldots\}$ be a finite set
 - $\sigma_i = \langle \sigma_i^1, \sigma_i^2, ... \rangle$ is a finite complete cycle containing all source transitions
- Σ is a valid schedule (set) if
 - For all (σ_i^{j},t_k) s.t.
 - $\sigma_i^j \neq \sigma_i^h$ for all h < j
 - $\sigma_i^j \neq t_k$ and they are in equal conflict relation
 - Exist σ_l s.t.
 - $\sigma_i^m = \sigma_i^m$ for all $m \le j$
 - $\sigma_i^m = t_k^m \text{ if } m = j$
- In words, a valid schedule is
 - A set of finite complete cycles for every possible outcome of a choice

Quasi-Statically Schedulable

- Given
 - A FCPN N
 - An initial marking μ_0
- (N, μ_0) is quasi-statically schedulable if
 - There exists a valid schedule

Non-schedulable

How to Find a Valid Schedule? Step 1

- **T-allocation** is a function that chooses exactly one transition for every place
- T-reduction associated with a T-allocation is a set of subnets generated from the image of the T-allocation

R₁

- Step 1: decompose a net into conflict-free components
 - Compute all T-reductions of the net
 - Reduction algorithm

11

How to Find a Valid Schedule? Step 2

- A T-reduction is **schedulable** if
 - It has a finite complete cycle that
 - Contains at least one occurrence of every source transition of the net
 - _ (Definition 3.5)
- Step 2: check if every conflict-free component is statically schedulable
 - Apply the standard techniques for synchronous dataflow networks
 - Solve T-invariant equation
 - Check deadlock by simulation

How to Find a Valid Schedule? Step 3

- Given a FCPN, there exists a valid schedule if and only if every T-reduction is schedulable
 - Note that: a valid schedule \rightarrow quasi-schedulable
- Step 3: derive a valid schedule, if there exists one
 - Compute the union of the finite complete cycles of all T-reduction

$t_{2} \rightarrow t_{4} \rightarrow t_{6}$ $t_{1} \rightarrow t_{3} \rightarrow t_{5} \rightarrow t_{7}$	$t_{2} \rightarrow t_{4} \rightarrow t_{6}$	$t_{8} \rightarrow t_{9} \rightarrow t_{6} \rightarrow t_{6} \rightarrow t_{6} \rightarrow t_{6} \rightarrow t_{7} \rightarrow t_{7$
T-invariants (why needs two?)	(1,1,0,1,0,1,0,0,0) (0,0,0,0,0,1,0,1,1)	(1,0,1,0,1,0,1,0,0) (0,0,0,0,0,1,0,1,1)
finite complete cycle	<t ₁ ,t ₂ ,t ₄ ,t ₆ ,t ₈ ,t ₉ ,t ₆ >	<t<sub>1,t₃,t₅,t₇,t₈,t₉,t₆></t<sub>
valid schedule	$\{ < t_1, t_2, t_4, t_6, t_8, t_9, t_6 >, < \}$	$< t_1, t_3, t_5, t_7, t_8, t_9, t_6 > \}$

• Derive an implementation directly from a valid schedule

Outline

- Revisiting Petri Nets
- Application 1: Software Syntheses
- Application 2: Biological Networks

 Petri Net Modeling of Biological Networks
- Application 3: Supply Chains
- Summary

Basic Modeling of Biological Reactions (1/2)

• Synthesis Α Α AB AB В В • Decomposition A Α AB AB В В • Reversible reaction with stoichiometry Α Α AB AB 2 В B

Basic Modeling of Biological Reactions (2/2)

Catalyzed reaction

• Inhibited reaction

Extensions of Petri Nets

- Coloured Petri Net (CPN)
 - Assign data values to the token
 - Define constraints on the token values
- Stochastic Petri Net (SPN)
 - Transitions have exponentially distributed time delays
- Hybrid Petri Net (HPN)
 - Discrete and continuous places
 - Marked tokens and concentration levels
 - Discrete and continuous transitions
 - Determined and distributed delays
- Functional Petri Net (FPN)
 - Flow relations depend on the marking
- Hybrid Functional Petri Net (HFPN)

More Complicated Modeling

- Biochemical networks
 - Enzymatic reaction chain: CPN
 - Intrinsic noise due to low concentrations: SPN
 - More general pathway: FPN, HFPN
- Genetic networks
 - Response to genes rather than consumption and production
 - Switch Control: logical approach, CPN
 - Concentration dynamics: HPN, HFPN
- Signaling networks
 - Response to signal rather than consumption and production
 - Transition delay: timed PN, timed CPN, SPN
- Discussion
 - Tradeoff between expressiveness and analyzability
 - Spatial properties, hierarchical modeling, other modeling formalisms

Outline

- Revisiting Petri Nets
- Application 1: Software Syntheses
- Application 2: Biological Networks
- Application 3: Supply Chains
 - Performance Analysis and Design of Supply Chains: A Petri Net Approach
- Summary

Supply Chain Networks (SCN)

Configurations & Operational Models of SCN

- Configurations
 - Serial structure
 - Divergent structure: petroleum industry
 - Convergent structure: automobiles and air crafts
 - Network structure: computer industry
- Operational models
 - Make-to-stock (MTS)
 - Orders are satisfied from stocks of inventory of finished goods which are kept at retail points
 - Make-to-order (MTO)
 - A confirmed order triggers the flow of the supply chain
 - Assemble-to-order (ATO)
 - Before decoupling point, intermediate goods are made-to-stock
 - After decoupling point, goods are made-to-order
 - Tradeoff between holding cost and delayed delivery's cost

Performance Analysis – Modeling

- Generalized Stochastic Petri Net (GSPN)
 - Random order request
 - Random logistics/interface time
- MTS, MTO, and ATO may have different structures & initial markings

Performance Analysis – Setting

- Cost function
 - Holding cost for inventories: H_I
 - Cost of delayed delivery: H_D
 - Vary the ratio of H_D and H_I from 1.5 to 40.0
- Apply Stochastic Petri Net Package (SPNP)
- Compare between make-to-stock (MTS) and assembleto-order (ATO)

Performance Analysis – Experiment 1

• Change arrival rate of end products on (W₂)

	Total Cost				
Arrival Rate	$H_D / H_I = 1.5$ (Expensive Holding)		$H_D / H_I = 40$ (Expensive Delay)		
(W ₂)	MTS	ATO		MTS	ATO
0.8	22.421	19.815		26.001	257.437
1.0	21.237	18.610		25.818	237.559
1.2	20.012	17.714	{	25.961	224.228
1.4	18.774	17.016		26.339	214.675
MTS > ATO U-shape MTS < ATO reasonable why? reasonable					

Performance Analysis – Experiment 2

• Change targeted finished goods inventory (on M)

			Total Cost				
FGI (M)			MTS		ATO		
MTS	ATO	ŀ	$H_{\rm D} / H_{\rm I} = 1.5$	$H_{\rm D} / H_{\rm I} = 40$	ŀ	$H_{\rm D} / H_{\rm I} = 1.5$	$H_{\rm D} / H_{\rm I} = 40$
6	5		(18.54	28.01		(15.64	197.40
9	6		27.53	29.34		18.37	201.52
12	7		35.553	42.175	{	21.07	204.87
15	8		43.403	49.929		23.73	207.92
			holding co	osts plav more			immune but

holding costs play more important roles immune but useless

Performance Analysis – Experiment 3

• Change interface times (from S₂ to M)

Interface	Total Cost				
Rate $(S \rightarrow M)$	$H_D / H_I = 1.5$ (Expensive Holding)		$H_D / H_I = 40$ (Expensive Delay)		
$(S_2 \rightarrow M)$	MTS	ATO	MTS	ATO	
4.0	(22.566	(15.542	(24.934	(197.185	
5.0	22.651	15.640	24.981	197.360	
6.0	22.709	15.705	25.038	197.502	
8.0	22.780	15.785	25.109	197.659	

holding costs increase because interface S1→M is not fast enough to work with interface S2→M

Decoupling Point Location Problem – Modeling

- 1 ic tzt Pbo2 LK2 KI €. °°° P D2+1 DL+L D2+L DL+1
 - Integrated GSPN-queuing model
 - Amendable for integrated queuing network GSPN analysis and deriving aggregated facility by solving the original product from queuing network (PFQN)

Decoupling Point Location Problem – Setting

- Cost function
 - Holding cost (proportional to H_1)
 - H₁: holding cost for the first stage supplier
 - Increase as moving from the first stage supplier to the distribution center (H₁, 1.2H₁, 1.2²H₁, 1.2³H₁, ...)
 - Lead time cost (proportional to H₂)
 - H₂: average lead time cost per unit good per hour
- Consider 5 stage supply chain with the last stage being the retail outlet
- Set the decoupling point at stages 1, 2, 3, and 4
- Solve the PFQNs

Decoupling Point Location Problem – Experiment

	Total Cost (Base Stock Policy)				
Decoupling Point	Expensive Holding $\leftarrow \rightarrow$ Expensive Delay				
FOIL	$H_2 / H_1 = 10$	$H_2 / H_1 = 30$	$H_2 / H_1 = 40$	$H_2 / H_1 = 50$	
1	3.596	5.940	8.285	10.630	
2	5.215	6.963	8.712	10.461	
3	8.967	10.237	11.508	12.779	
4	12.071	12.429	12.788	13.147	
	Total Cost (Reorder Point Policy)				
Decoupling Point	Expensive Holding $\leftarrow \rightarrow$ Expensive Delay				
Point	$H_2 / H_1 = 10$	$H_2 / H_1 = 30$	$H_2 / H_1 = 40$	$H_2 / H_1 = 50$	
1	3.427	5.853	8.280	10.706	
2	4.234	6.060	7.886	9.711	
3	5.686	6.974	8.262	9.550	
4	8.055	8.414	8.772	9.131	

As delay cost increases, the decoupling point is moving to right

Outline

- Revisiting Petri Nets
- Application 1: Software Syntheses
- Application 2: Biological Networks
- Application 3: Supply Chains
- Summary

Summary

- Perti Net and its extension provide a wide range of applications
 - Software synthesis
 - Biological network
 - Supply chain