
The STATEMATE Semantics of Statecharts

by David Harel
Presentation by:
John Finn
October 5, 2010

Outline

  Introduction

  The Basics

  System Reactions

  Compound Transitions

  History

  Scope of Transitions

  Conflicting Transitions

Introduction

  No official semantics

  Nearly 20 variants [von der Beek 1994]

  Clarity and Simplicity

  STATEMATE semantics, which is a commercial tool
for the specification and design of complex
systems

The Basics: Activity Chart

  Hierarchy

  Root

  Activities

  Control Activities

  OR/AND/Basic States

The Basics: Syntax

  e[c]/a

  e: event, which triggers a transition

  c: condition, which enables the transition if true

  a: action, which is carried out if the transition is
triggered and its condition is true

  Special Events: enter(S), exit(S)

The Basics: States

  Static Reactions have the e[c]/a syntax, and
can be carried out if the system is in the state

  Virtual State

  Activities can be active “within” or “throughout”
a state

The Basics: System

  Runs represent “snapshots” of the system’s
response to an external stimuli

  Each snapshot is called a Status, which includes:
  Active states
  Activities
  Data and conditional values
  Generated events
  Scheduled actions
  Past behavior

  System changes status by executing a Step

The Basics: Semantics

  Reactions to events and system changes can
only be sensed after the step is complete

  Events only “live” for the step following the one in
which they occur

  Calculations in one step are based on the status
at the start of that step

  The maximal subset of non-conflicting transitions
and static reactions are always executed

  A step takes zero time

System Reactions: Configuration

  Configuration is the maximal set of states a
system can be in simultaneously

  Consider a root state, R and a configuration, C
  C must contain R

  If C contains an OR state A, it must contain one of
A’s sub-states

  If C contains a AND state A, it must contain all of
A’s sub-states

  No extraneous states, all states must be require by
the rules above

System Reactions: Configuration

  If the system is in state A, it must also be in A’s parent
state, unless the current state is the root

  Basic configurations consist of only basic states

  For example:
  Basic Config: {B1, C1, D1}, {E}
  Full Config: {B1, C1, D1, B, C, D, A, S}
  Can you spot another Full Config?
  Illegal Config:

  {B1, B2, C1, D1}
  Non-maximal Config:

  {B1, C1}
  What about {B2, C1, D2}?

{E, S}

Basic Configuration

System Reactions: Operations

  How does a system change its status:
  Transitions

  Static Reactions

  Actions performed when entering a state

  Actions performed when exiting a state

System Reactions: Transitions

  Transition becomes enabled when within the
transition’s source state and the event becomes true

  For example: Exit A and Enter B
  exit(A) and enter(B) are generated

  in(A) becomes false, in(B) become true

  Exiting A actions take place
  Entering B actions take place

  State S’s Static Reactions are executed

  Activities within or throughout A are deactivated,
while activities within (not necessarily) or throughout B
are activated

System Reactions: Transitions

  All of the mentioned changes are sensed in the
next step

  For example, For the step below, which act is
executed if X is initialized to 4? 5?

  X := X + 1;

  if X = 5 then act1 else act2 end

  Racing Condition: when two or more actions
attempt to change a variable in the same step,
the outcome is unpredictable

act2; act1

Compound Transitions: Rules

  Each step must lead the system into a legal
configuration

  A system cannot be in a non-basic state without
the ability to enter a sub-state

  Transition Segment: labeled arrow which can
connect states and other transitions

  Basic Compound Transition: maximal chain of
transition segments that are executed
simultaneously

Compound Transitions

  Joint/Fork are AND connectors

  Condition/Selection/Junction are OR connectors

  Initial CT: source of the CT is a state

  Continuation CT: source is a default or history
connector

  Full CT: Contains one initial CT and potentially
several continuation CTs

Compound Transitions: Examples

  OR connectors
  Two CTs:

  {t1, t2}

  {t1, t3}

  AND connectors
  {t1, t2, t3}

Compound Transitions: Examples

  More complicated…
  t1 and t2 must be executed together, which leads

into t5

  Then, t3 OR t4

  Full CTs: {t1, t2, t5, t3} or {t1, t2, t5, t4}

Compound Transitions: Examples

  Initial CT
  {t1, t2, t3}

  Full CT
  {t1, t2, t3, t4, t5}

  Why not t6?

History

  Two types of history connectors

  Suppose we are executing a CT, t1 to state S
  H Connector

  Let S’ be the sub-state of S which the system was in when
most recently in S

  t1 is treated as if its target is S’ instead of S

  H* Connector
  Let S’ be the basic configuration relative to S which the

system was in when most recently in S
  t1 is targets all of the states in S’

  If entering S for the first time, t1 is treated as if it is
targeting S

History: Example

  Transition t1 is taken
  If B was last in B1 the last time in B, then B’ = B1

  The full transition become {t1, t2}

  If B was last in B2 the last time in B, then B’ = B2
  {t1, t3}

  If entering B for the first time? {t1, t4, t2}

Scope of Transitions

  If the system is in A to start and events e and f
are triggered during the previous step
  Transition t1 become active but not t2

  The system is now in state B, but it does not know f
was triggered previously, and therefore, it will only
go to C if f is triggered again

  CT is enabled in a step if at the beginning of the
step the system is in all the states of its source
and if its trigger is true

Scope of Transitions

  The previous example seems
simple, however, consider this
example

  When executing t1, should
we exit and reenter A?

  Similarly, should events that
trigger from exiting or
entering A be executed?

  Transition Scope answers
these questions

Scope of Transitions

  The scope of a transition is the lowest OR state in
the hierarchy of states that is a proper common
ancestor of all the sources and targets of that
transition, including non-basic states

Scope of Transitions

  For example, the scope of t1 is S

  Execution of t1 implies
  Exiting B2, B, A, C, and C1 or C2

  Entering A, B, B1, C, C2

  What about t4?

U

Exiting W and V

Entering V and W

Scope of Transitions

  What is the scope of t6? W

Conflicting Transitions

  Two transitions are conflicting if there is some
common state that would be exited if any one
of them were to be taken

  Transitions t1 and t2 are conflicting

  Also, t4 is in conflict with
t1, t2 and t3, why?

Conflicting Transitions

  Non-determinism: there is no reason to take t1
over t2 or vice versa

  However, in the second case, t4 has priority over
t1, t2 and t3

  The transition with the
highest scope has priority

  If same scope a
Non-determinism occurs

Conflicting Transitions

  Dealing with non-determinisms
  Simulation Tool waits for one of the possibilities to

be selected by the user

  Dynamic test tool will try all possibilities

  The code synthesized by the software generator
will select the first possibility

  The hardware code generator behaves similarly,
but can report non-determinisms

Summary

  Introduction

  The Basics

  System Reactions

  Compound Transitions

  History

  Scope of Transitions

  Conflicting Transitions

Next Time

  Jonathan Kotker will present the remainder of
the article
  Basic Step Algorithm

  Models of Time

  Racing Conditions

  Multiple State Charts

