
The STATEMATE Semantics of Statecharts  

by David Harel 
Presentation by: 
John Finn 
October 5, 2010 



Outline 

  Introduction 

  The Basics 

  System Reactions 

  Compound Transitions 

  History 

  Scope of Transitions 

  Conflicting Transitions 



Introduction 

  No official semantics 

  Nearly 20 variants [von der Beek 1994] 

  Clarity and Simplicity  

  STATEMATE semantics, which is a commercial tool 
for the specification and design of complex 
systems 



The Basics: Activity Chart 

  Hierarchy 

  Root 

  Activities 

  Control Activities 

  OR/AND/Basic States 



The Basics: Syntax 

  e[c]/a 

  e: event, which triggers a transition 

  c: condition, which enables the transition if true 

  a: action, which is carried out if the transition is 
triggered and its condition is true 

  Special Events: enter(S), exit(S) 



The Basics: States  

  Static Reactions have the e[c]/a syntax, and 
can be carried out if the system is in the state 

  Virtual State 

  Activities can be active “within” or “throughout” 
a state 



The Basics: System   

  Runs represent “snapshots” of the system’s 
response to an external stimuli 

  Each snapshot is called a Status, which includes: 
  Active states 
  Activities 
  Data and conditional values 
  Generated events 
  Scheduled actions 
  Past behavior 

  System changes status by executing a Step  



The Basics: Semantics 

  Reactions to events and system changes can 
only be sensed after the step is complete 

  Events only “live” for the step following the one in 
which they occur 

  Calculations in one step are based on the status 
at the start of that step 

  The maximal subset of non-conflicting transitions 
and static reactions are always executed 

  A step takes zero time 



System Reactions: Configuration 

  Configuration is the maximal set of states a 
system can be in simultaneously 

  Consider a root state, R and a configuration, C 
  C must contain R 

  If C contains an OR state A, it must contain one of 
A’s sub-states 

  If C contains a AND state A, it must contain all of 
A’s sub-states 

  No extraneous states, all states must be require by 
the rules above 



System Reactions: Configuration 

  If the system is in state A, it must also be in A’s parent 
state, unless the current state is the root 

  Basic configurations consist of only basic states 

  For example: 
  Basic Config: {B1, C1, D1}, {E} 
  Full Config: {B1, C1, D1, B, C, D, A, S} 
  Can you spot another Full Config? 
  Illegal Config: 

  {B1, B2, C1, D1} 
  Non-maximal Config: 

  {B1, C1} 
  What about {B2, C1, D2}? 

{E, S} 

Basic Configuration 



System Reactions: Operations 

  How does a system change its status: 
  Transitions 

  Static Reactions 

  Actions performed when entering a state 

  Actions performed when exiting a state 



System Reactions: Transitions 

  Transition becomes enabled when within the 
transition’s source state and the event becomes true 

  For example: Exit A and Enter B 
  exit(A) and enter(B) are generated 

  in(A) becomes false, in(B) become true 

  Exiting A actions take place 
  Entering B actions take place 

  State S’s Static Reactions are executed 

  Activities within or throughout A are deactivated, 
while activities within (not necessarily) or throughout B 
are activated 



System Reactions: Transitions 

  All of the mentioned changes are sensed in the 
next step 

  For example, For the step below, which act is 
executed if X is initialized to 4? 5? 

  X := X + 1; 

  if X = 5 then act1 else act2 end 

  Racing Condition: when two or more actions 
attempt to change a variable in the same step, 
the outcome is unpredictable 

act2; act1 



Compound Transitions: Rules 

  Each step must lead the system into a legal 
configuration 

  A system cannot be in a non-basic state without 
the ability to enter a sub-state 

  Transition Segment: labeled arrow which can 
connect states and other transitions 

  Basic Compound Transition: maximal chain of 
transition segments that are executed 
simultaneously 



Compound Transitions 

  Joint/Fork are AND connectors 

  Condition/Selection/Junction are OR connectors 

  Initial CT: source of the CT is a state 

  Continuation CT: source is a default or history 
connector 

  Full CT: Contains one initial CT and potentially 
several continuation CTs 



Compound Transitions: Examples 

  OR connectors 
  Two CTs: 

  {t1, t2} 

  {t1, t3} 

  AND connectors 
  {t1, t2, t3} 



Compound Transitions: Examples 

  More complicated… 
  t1 and t2 must be executed together, which leads 

into t5 

  Then, t3 OR t4 

  Full CTs: {t1, t2, t5, t3} or {t1, t2, t5, t4} 



Compound Transitions: Examples 

  Initial CT 
   {t1, t2, t3} 

   Full CT 
  {t1, t2, t3, t4, t5} 

  Why not t6? 



History 

  Two types of history connectors 

  Suppose we are executing a CT, t1 to state S 
  H Connector 

  Let S’ be the sub-state of S which the system was in when 
most recently in S 

  t1 is treated as if its target is S’ instead of S 

  H* Connector 
  Let S’ be the basic configuration relative to S which the 

system was in when most recently in S 
  t1 is targets all of the states in S’ 

  If entering S for the first time, t1 is treated as if it is 
targeting S 



History: Example 

  Transition t1 is taken 
  If B was last in B1 the last time in B, then B’ = B1 

  The full transition become {t1, t2} 

  If B was last in B2  the last time in B, then B’ = B2 
  {t1, t3} 

  If entering B for the first time? {t1, t4, t2} 



Scope of Transitions  

  If the system is in A to start and events e and f 
are triggered during the previous step 
  Transition t1 become active but not t2  

  The system is now in state B, but it does not know f 
was triggered previously, and therefore, it will only 
go to C if f is triggered again 

  CT is enabled in a step if at the beginning of the 
step the system is in all the states of its source 
and if its trigger is true 



Scope of Transitions 

  The previous example seems 
simple, however, consider this 
example 

  When executing t1, should 
we exit and reenter A? 

  Similarly, should events that 
trigger from exiting or 
entering A be executed? 

  Transition Scope answers 
these questions 



Scope of Transitions 

  The scope of a transition is the lowest OR state in 
the hierarchy of states that is a proper common 
ancestor of all the sources and targets of that 
transition, including non-basic states 



Scope of Transitions 

  For example, the scope of t1 is S 

  Execution of t1 implies 
  Exiting B2, B, A, C, and C1 or C2 

  Entering A, B, B1, C, C2 

  What about t4? 

U 

Exiting W and V 

Entering V and W 



Scope of Transitions 

  What is the scope of t6? W 



Conflicting Transitions 

  Two transitions are conflicting if there is some 
common state that would be exited if any one 
of them were to be taken 

  Transitions t1 and t2 are conflicting 

  Also, t4 is in conflict with 
t1, t2 and t3, why? 



Conflicting Transitions 

  Non-determinism: there is no reason to take t1 
over t2 or vice versa 

  However, in the second case, t4 has priority over 
t1, t2 and t3 

  The transition with the 
highest scope has priority 

  If same scope a  
Non-determinism occurs 



Conflicting Transitions 

  Dealing with non-determinisms 
  Simulation Tool waits for one of the possibilities to 

be selected by the user 

  Dynamic test tool will try all possibilities 

  The code synthesized by the software generator 
will select the first possibility 

  The hardware code generator behaves similarly, 
but can report non-determinisms 



Summary 

  Introduction 

  The Basics 

  System Reactions 

  Compound Transitions 

  History 

  Scope of Transitions 

  Conflicting Transitions 



Next Time 

  Jonathan Kotker will present the remainder of 
the article 
  Basic Step Algorithm 

  Models of Time 

  Racing Conditions 

  Multiple State Charts 


