
QUO VADIS, SLD? REASONING 
ABOUT THE TRENDS AND 

CHALLENGES OF SYSTEM LEVEL 
DESIGN

Alberto Sangiovanni-Vincentelli

Presentation by Michael Zimmer
September 21st, 2010

1



Current Problems

 Exponentially rising complexity in circuits and 
systems
 Functionality

 Verification

 Time-to-market

 Productivity

 Safety and Reliability

 Can traditional design flows (i.e. RTL) continue to 
meet these demands?

 Embedded Systems more intricate

2



Possible Solutions

 Raise level of abstraction

 For chips, this means going above RTL

 60% productivity increase? (International Technology 
Roadmap for Semiconductors)

 New levels of design reuse

 Need new “design science” for embedded system 
design

 System Level Design

3



Challenges

 Heterogeneity and Complexity of the Hardware 
Platform

 Exponential complexity growth

 Transistors on a chip

 Expanding use of embedded systems

More networking

 Custom hardware implementations costly

 Design reuse?
 Looks more like a system (integrating predesigned components)

4



Challenges

 Embedded Software Complexity

 Reconfigurable and programmable hardware 
platforms increase reliance on software

 1+ million lines of code in cell phone

 100+ million lines of code in automobiles

 Embedded software requirements stricter

 Continuously react with environment

 Safety and reliability

 How to verify?

 Tens of lines per day

5



Challenges

 Integration Complexity

 Top-down approach?

 Requires knowledge of entire system for efficient 
partitioning

 Integration of predesigned or independently designing 
components?

 Need some way to standardize integration of components 
(often from different suppliers)

6



Challenges

 Industrial Supply Chain

 Health and efficiency essential

 System design needs to be supported across entire 
development

 Integration of tools and frameworks from separate 
domains

 Information flow between companies

 Can more efficiently meets demands (safety, cost, etc)

Who benefits?

7



Example: 
Mobile Communications Design Chain

 Application Developers
 Sell software directly to customer or come bundled with service 

provider

 Service Providers
 Access to network infrastructure

 Device Makers
 Manufacture cell phones with significant software content and 

hardware integration

 IP Providers
 Provide components to design chain

 Outsourcing Companies
 Manufacturing, design, etc

8



Example: 
Mobile Communications Design Chain

 Boundaries under stress

 SIM cards

 Cell phone locked to service provider, but cell phone can 
still operate with different providers

 Standards

 Not locked to one IC provider, IC provider can provide to 
multiple device makers

 Unified methodology and framework favors 
balance that maximizes welfare of the system

9



Example: Automotive Design Chain

 Car Manufactures (OEMs)
 GM, Ford, Toyota

 Provide final product

 Tier 1 Suppliers
 Bosch, Contiteves, Siemens

 Provide subsystems

 Tier 2 Suppliers
 Chip manufacturers, IP providers

 Manufacturing Suppliers
 Not as common for safety and liability reasons

10



Example: Automotive Design Chain

 Sharing IP and standards could improve time-to-
market, development, and maintenance costs

 AUTOSAR, world-wide consortium, has this goal in mind

 Hard real time software hard to share

 Can’t just add tasks and not affect behavior

 New, strong methodology needed that can guarantee 
functionality and timing

 Would cause restructuring of industry

 Plug and play environment results in better solutions

 Tier 1 suppliers?

11



Needs of Supply Chain

 Design chains should connect seamlessly

 Boundaries between companies are often not 
clean

Misinterpretations result in design errors

 Optimization hard beyond one boundary

12



Platform Based Design

 Current approaches address either software or 
hardware but not both

 Software approaches miss time and concurrency

 Hardware approaches too specific for software

 Don’t address all challenges

13



Desired Methodology

 Hardware and embedded software design as two 
faces of the same coin

 High levels of abstraction for initial design

 Effective architectural design exploration

 Detailed implementation by synthesis or manual 
refinement

 Platform

 Reuse and facilitating adaptation of a common design 
to various applications

14



Conventional Use of Platform 
Concept

 IC Domain

 Flexible IC where customization is achieved by 
programming components of the chip

 FPGA, DSP, MPU, etc

 Can’t always fully optimize

 Xilinx Virtex II 

 FPGA with software programming IPs

 Converging?

 Semiconductor companies adding FPGA-like blocks

 FPGA companies adding hard components

15



Conventional Use of Platform 
Concept

 PC Domain

 Standard platforms have enabled quick and efficient 
development

 X86 Instruction Set Architecture

 Fully specified set of busses (USB, PCI, etc)

 Full specification of I/O devices 

 Allows hardware/software codesign

16



Conventional Use of Platform 
Concept

 Systems Domain

 Platform allow quick development of new applications

 Sharing subsystems

 Common mechanical features on automobiles like engines, 
chassis, powertrains, etc

17



Platform-Based Design Methodology

 Main Principles

 Start at highest level of abstraction

 Hide unnecessary details of implementation

 Summarize important parameters of implementation 
in abstract model

 Limit design space exploration to available 
components

 Carry out design as sequence of refinements from 
initial specification to final implementation using 
platforms at various levels of abstraction

18



Platform-Based Design Methodology

 Platform
 Library of components usable at current level of 

abstraction
 Computational and communication blocks

 Characterized by performance and functionality

 Can have virtual components

 Platform Instance
 Set of components selected with set parameters

 Mapping functionality to architecture
 Important to keep separate

19



Platform-Based Design Process

 Meet-in-the-middle process

 Top-down: Map functionality into instance of platform 
and propagate constants

 Bottom-up: Build a platform by choosing components 
of the library

 Mapping becomes new functionality

20



Fractal Nature of Design
21



Platform-Based Design

 Partitioning of software and hardware is the 
consequence of decisions at higher levels of 
abstraction

 Platforms should restrict design space

 Establishing number, location, and components of 
intermediate platforms is the essence of PBD

 Precisely defined layers

 Better reuse

22



Example Application of PBD: 
Wireless Sensor Network Design

23



Model-Driven (Software) 
Development

 Closely resembles Platform-Based Design

 Model-Driven Architecture

 Platform-Independent Model

 Platform-Specific Models

 Interface definitions

 Separation of function and platform

24



Domain-Specific Languages

 Vanderbilt University group evolved MDD for 
embedded software design

 Because a single modeling language not suitable for all 
domains

 But how to define and integrate various models?

 Interaction must be mathematically well characterized

 This allows model transformations

25



Remarks on Platform-Based Design

 Is being adopted

 Well-defined layers of abstraction help supply 
chain where performance and cost are the 
contract between companies

 Designers do need to be trained in PBD and have 
supporting tools

26



Overview
27



Representing Functionality

 Need to capture at high level of abstraction without 
assumptions about implementation

 Languages for Hardware Design

 Attempts to raise abstraction levels

 SystemC

 C lacks concurrency and notion of time

 Capture particular aspects of hardware

 Used for simulation (not directly synthesizable or verifiable)

 SystemVerilog

 Extend Verilog (RTL) to higher abstraction level

28



Representing Functionality

 Languages for Embedded System Design

Want higher productivity and correctness guarantees

 Synchronous Languages

 Strong formal semantics to make verification and code 
generation possible

 Esterel, Lustre, Signal

 Safety-critical domain

29



Representing Functionality

 Models of Computation

 In traditional approaches, assumptions about 
architecture embedded in formulation

Want maximum flexibility while capturing design

Mathematically sound representations

 Discrete Time

 Flexible model

 Finite State Machines

 Less flexible, but easier to analyze and synthesize

30



Representing Functionality

 Heterogeneous Models of Computation
 Mixing models is not trivial
 Numerous approaches
 LSV Model, Interface Automata

 Environments for capturing designs
 Ptolemy II
 ForSyDe and SML-Sys
 Behavior-Interaction Priority Framework
 Signal Processing Worksystem
 Simulink
 LabVIEW

31



Representing Architecture

 Needs to be represented to enable mapping of 
functionality

 Netlist that establishes how a set of components is 
connected

 Capabilities should be included

 “Cost” needs to be computed

 Time, Power, etc.

32



Representing Architecture

 Software Architecture Description

 Unified Modeling Language (UML)

 Stresses successive refinement

 Graphical nature

 Too general? (difficult to express common programming 
constructs)

 Profiles allow redefining for specific applications

 SysML, Rational, Rhapsody, Tau

 Eclipse

 Integrated Development Environment

33



Representing Architecture

 Hardware Architecture Description
 Useful when providing model for performance and 

property analysis

 Transaction Level Modeling
 Levels of abstraction above RTL, can it do better?

 Assembly Tools
 CoWare, Synopses, Mentor, and ARM all exploring model 

creation, integration, simulation, and analysis

 Communication Based Design
 Design of interconnect infrastructure and IP interfaces

 Network-on-Chip

 Global Interconnect becoming dominant

34



Representing Architecture

 Hardware Architecture Description (cont)

Microprocessor Modeling

 Embedded systems normally contain software 
programmable processors

 Tradeoff between speed and accuracy when modeling

 Examples
 Virtual Processor Model

 C-Source Back Annotation

 Interpreted Instruction-Set Simulator

 Compiled Code Instruction-Set Simulator

 Worst Case Execution Time Estimation

35



Mapping

 Mapping functional description to hardware 
instance

 Mismatch of models of computation

 Asynchronous and synchronous

 If forced to be the same, restricts design space

 Scheduling

 For example, concurrent processes onto processor

 Static vs. dynamic

36



Mapping

 Correct-by-Construction Mapping – Giotto

 Solve scheduling problem by forcing models of 
computation to match

 Time-triggered architecture

 Separates platform independent functionality and 
timing from platform dependent scheduling

37



Mapping

 Automatic Mapping with Heterogeneous Domains

 Needs to be a way to automate mapping process

 Like logic synthesis

 Need common mathematical language between 
functionality and platform

 Tradeoffs in mapping

 Granularity vs. Optimality

38



Metropolis Framework

 Unified framework for platform-based design

 Allows for different levels of abstraction and 
models of computation

 Metropolis Meta-Model

Most models of computation and formal languages 
can be translated into it

 Can be used to capture and analyze functionality, and 
describe architectures and mapping

39



Metropolis Framework

 Functional Model

 Functional netlist of a network of processes

 Architectural Model

 Architectural netlist is an interconnection of 
computational and communication components

 Mapping

Mapping netlist instantiates both functional and 
architectural netlist with synchronization constraints

40



Metropolis Framework

 Tool Support

 Allows for back-end tools for analysis

 Simulator 

 translates to SystemC

 Verification

 Synthesis

 Easy to incorporate external tools

41



Metropolis Framework

 Related Work

 None support all the requirements of PBD

 Polis System

 Co-Design Finite State Machines

 Limitations of target architecture and model of computation

 VCC

 Artemis Workbench

 Mescal

 CoFluent Studio

 Simulink-Based Flows

42



Metropolis Design Example: 
JPEG Encoder Design

 Goal: Map algorithm efficiently onto a 
heterogeneous architecture

 Modeling and Design Space Exploration

 Architecture-independent model of JPEG Encoder in 
Metropolis

 Processor modeled in Metropolis

 Design Space Exploration and Results

 Tried different mapping scenarios

 Simulation close to actual implementation

43



Conclusions

 Platform-Based Design is a unifying design 
methodology for system design

 Promising achievements so far, but work still to be 
done
 Better understand relationships in heterogeneous 

environment

More efficient algorithms and tools

More models must be developed

 Industry must embrace new paradigms

 Academia must develop new curricula

44


